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We consider a general, classical theory of gravity with arbitrary matter Gelds in n dimensions,
arising from a di6eomorphism-invariant Lagrangian L. We 6rst show that I always can be written
in a "manifestly covariant" form W.e then show that the symplectic potential current (n —1)-form O
and the symplectic current (n 1)-form—u for the theory always can be globally defined in a covariaut
manner. Associated with any infinitesimal diÃeomorphism is a Noether current (n —1)-form J and
corresponding Noether charge (n —2)-form C}. We derive a general "decomposition formula" for

Using this formula for the Noether charge, we prove that the first law of black hole mechanics
holds for arbitrary perturbations of a stationary black hole. (For higher derivative theories, previous
arguments had established this law only for stationary perturbations. ) Finally, we propose a local,
geometrical prescription for the entropy Sdy„of a dynamical black hole. This prescription agrees with
the Noether charge formula for stationary black holes and their perturbations, and is independent
of all ambiguities associated with the choices of L, O, and Q. However, the issue of whether this
dynamical entropy in general obeys a "second law" of black hole mechanics remains open. In an
appendix, we apply some of our results to theories with a nondynamical metric and also brieQy
develop the theory of stress-energy pseudotensors.

PACS uumber(s): 04.20.Fy, 97.60.Lf

I. INTRODUCTION

Recently, many authors have investigated the validity
of the first law of black hole mechanics and the de6nition
of the entropy of a black hole in a wide class of theories
derivable from a Hamiltonian or Lagrangian [1—10]. In
particular, in [6] the first law was proven to hold in an ar-
bitrary theory of gravity derived from a diffeomorphism
invariant Lagrangian, and the quantity playing the role of
the entropy of the black hole was identi6ed as the integral
over the horizon of the Noether charge associated with
the horizon Killing vector field. Although some key issues
concerning the validity of the first law and the de6nition
of black hole entropy in a general theory of gravity were
thereby resolved, the analysis of [6], nevertheless, was de-
ficient in the following ways. (1) It was not recognized
that a diffeomorphism covariant choice of the symplec-
tic potential current form always can be made. Conse-
quently, several steps in the arguments were made in an
unnecessarily awkward manner. (2) While a completely
general proof of the first law of black hole mechanics was
given for perturbations to nearby stationary black holes,
a proof of the first law for nonstationary perturbations
was given only for theories in which the Noether charge
takes a particular, simple form. (3) A proposal was made
for defining the entropy of a dynamical black hole. How-
ever, this proposal made use of a rather arbitrary choice
of algorithm for defining the symplectic potential current
form, and it turns out to possess the undesirable feature
that the addition of an exact form to the Lagrangian
(which has no effect upon the equations of motion of the
theory) can induce a nontrivial change in this proposed

formula for the entropy of a dynamical black hole [11].
The main purposes of this paper are to remedy all of

the above de6ciencies, and, in addition, develop further
the theory of Noether currents and charges in diffeomor-
phism invariant theories. We shall show, 6rst, that the
Lagrangian of a diffeomorphism invariant theory always
can be expressed in a manifestly covariant form. This will
enable us to give globally defined, covariant definitions of
the symplectic potential current form O and symplectic
current form w in an arbitrary diffeomorphism invariant
theory. Furthermore, results on the general form of 0 in
an arbitrary theory will be obtained, &om which it will
follow that the Noether charge form Q always has a par-
ticular, simple structure. As a consequence of this struc-
ture of Q, the first law of black hole mechanics will be
proven to hold for nonstationary perturbations in an arbi-
trary theory of gravity derived &om a diffeomorphism co-
variant Lagrangian. We thereby obtain a formula for the
entropy S of a stationary black hole, which generalizes
formulas of [7] and [8] to theories of gravity of arbitrar-
ily high derivative order and matter couplings. We then
shall propose a definition of the entropy Sdz„of an arbi-
trary cross section of a nonstationary black hole, wherein

Sg~„ is given by an integral over the horizon of a local, ge-
ometrical quantity. Our proposed definition agrees with
the known answer (as determined by the first law) for
stationary black holes and their perturbations, and is in-
dependent of all ambiguities associated with the choices
of L, O, and Q. However, it is not known whether our
S~~„obeys a "second law" in general theories of gravity.
The paper concludes with an Appendix in which some of
our results are applied to theories with a nondynamical
metric, and some results on stress-energy pseudotensors
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are obtained.
We shall follow the notation and conventions of [12].

All spacetimes, tensor fields, and surfaces considered in
this paper will be assumed to be smooth (C ).

II. THE FORM OF THE LAGRANGIAN FOR
DIFFEOMORPHISM INVARIANT THEORIES

We wish to consider, here, Lagrangian theories on an
n-dimensional, oriented manifold M, with the dynamical
fields consisting of a Lorentz signature metric g b, and
other fields @. For simplicity and definiteness, we shall
restrict consideration to the case where g is a collection
of tensor fields on M (with arbitrary index structure).
However, we foresee no essential difhculty in extending

our analysis and results to the case where g is a section of
an arbitrary vector bundle which possesses a connection
uniquely determined by g b.

We start with the general form of a Lagrangian postu-
lated in [15] and [6]: Specifically, we introduce an arbi-

0
trary, fixed, globally defined, derivative operator & and
take the Lagrangian to be a function of the quantities

g b, Q, and finitely many of their symmetrized deriva-
0

tives with respect to p'. In addition, the Lagrangian is
permitted to depend on additional "background fields"
0 0
p —which, like &, do not change under variation of the
dynamical fields; a good example of such a background
field upon which the Lagrangian could depend is the cur-

0 0
vature gb g' of &. Thus, we take the Lagrangian to be an
n-form locally constructed, in the precise sense explained
in [14], out of the quantities

0 0 0 0 0 0 0

gab) +ay gab) .")+{ay " +ay) gab) ) I a1 )" ) +(a1 " +al) ) ~

Here and in what follows, we use boldface letters to de-
note differential forms on spacetime, and we shall, in gen-
eral, suppress their tensor indices. In the following, we
also shall collectively refer to the dynamical fields "Q and

n
ann

We shall be concerned here only with diKeomorphism
invariant theories; i.ee) the Lagrangian will be assumed
to be diEeomorphism covariant in the sense that

(2)

where f' is the action induced on the fields by a diffeo-

morphism f:M ~ M. Note that on the left side of this
0

equation f' does not act on p' or the background fields
0
'y.

The main result to be established in this section is
that any Lagrangian L, which is diEeomorphism covari-
ant in the sense of Eq. (2), always can be written in a
manifestly covariant form. More precisely, we have the
following lemma, which is closely related to the "Thomas
replacement theorem" [16].

lemma 8.I. If L as given in (I) is digeomorphism
covariant in the sense of (2) then L can be reexpressed aa

L (gab& +aq I4cde y
" I +(az ' ' ' +a~) +bcdei '(by +argy +(az ' ' ' 7a~ )0) y

where V denotes the derivative operator associated with

g b, m = max(k —2, l —2), R b,g denotes the curvature of
g b, and the absence of any dependence on "background
zelda" in (8) should be noted.

Proof We begin by usi. ng the relation (written here
schematically)

0 0
Q o. = V o. + o. x terms linear ln Q g

for any tensor field o, to rewrite all of the & derivatives of

the matter fields Q in terms of V derivatives of Q, where
V is the derivative operator associated with g, together

0
with terms involving the g derivatives of g. Next, we
rewrite the V' derivatives of @ in terms of symmetrized
V derivatives and the curvature of g and its derivatives.
Then we rewrite the curvature of g and its derivatives in

0 0
terms of & derivatives of g and the curvature of & and its
0 0
& derivatives. Finally, we write all of the & derivatives

0
of g in terms of symmetrized & derivatives of g and the

0 0
curvature of & and its & derivatives. We thereby obtain
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0 0 0 0
L = L g& (7a& gab& ~ ~ ~

& &(a ' ' I7a, ) gaby i 7al ~ ~
~ +(al ' &a~) (4)

where s = max(k, t) and 'Y is comprised by 1 together with the curvature of V and (finitely many of) its V derivatives.
0 0

Next we eliminate & gb, and its higher & derivatives in favor of

0 0 0
( 'eg = 2g' (V', gym+ Vg gee —V'f gee)

and its & derivatives via the substitution

(7a gbc —gecC ab + gbeC ac.

Again, we express all & derivatives of C,d in terms of symmetrized & derivatives and the curvature of &. %e thereby
obtain

0 0 0 0

cd& +a1 C cd& "
& +(al ' ' ' 7a, 1) C cd» +a1 & +(a1 ' ' +a~)

It is tedious but straightforward to check that the symmetrized derivatives of C can be rewritten as

p + 3 I

V'(, V, ) ( a = V'(o, . Ve, ("',ai+ 4p+1 p+2 ) V'(, V', V'
) (R, g'+ Rg, ,')

3@+4 A

+
8S v+1 @+2 ) V(gV', V',. V,. V, i R,, ,

'

+terms involving no more than (p —1) V derivatives of (,
where V, means the omission of this derivative operator in the sequence. By repeatedly making this substitution
in sequence, starting with p = s —1, then p = 8 —2, etc. , and, at each step, writing multiple derivatives in terms of
symmetrized derivatives and curvatures, we can express the Lagrangian as

0 0 0

gab& C cd) 7(a1 C cd) & "') 7(a1 ' I7a, 1 C cd) & +bede& +ay +bcde1 " s 7(a1 ' ' +a, g)+bede&

@,'V, g, . . . , '7(, V)@i') . ', ,

The infinitesimal version of the diffeomorphism covariance condition (2) is

OLI
&tL(&) = (10)

Applying this to Eq. (9) we obtain

OL OL
l'.(C',d +

'9 +(al C cd)

OL
Eg &(, C',d) + ~ ~ ~ +

(7(a1 ' ' ' (7a. 1 C cd)

0 0 0,l'.
g &(, &, C',d) +

gp I

&(, bC d)+. +
(7(a1 7a, 1 C cd)

V(, V, bC' gi, (ll)

where

0 0 0 0
bc = g V(bV i(d eRd(be) (e 2 V ( gde+ bc (12)

is the variation of C b, arising &om the metric variation bg b = l:gg b = 2V'( gb&. [Note that the terms in Eq. (10)
arising from the variations of g, g, and the curvature R of g cancel and were therefore omitted when writing Eq.

0
(11).] The dependence of the terms in Eq. (11) on g and its symmetrized V derivatives should be noted: no more
than one derivative of f appears on the left side of this equation, but the right side contains terins with as many
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as (s+ 1) symmetrized derivatives of ( . Since, at any given point in M, ( and its symmetrized derivatives can be
chosen independently, it follows directly that a necessary condition for Eq. (11) to hold for all ( is

t9&(, - &, C,d)

This reduces the Lagrangian to the form

= 0 for i = 0, ..., (s —1).

IL = L Jab& Rbcde& &a1Rbcde~ "-& V(a1 ' 7a~)Rbcde& ) 7a1 )" ) 7(a1 +at) (14)

where m = s —2 = max(k —2, l —2). The diffeomorphism invariance condition (11) yields one more relation: namely,

OL o IZgp'=0,
(j p I

where a sum over the fields p ' should be understood. To show that this implies that L has no essential dependence
0

on p ', we proceed by introducing a local coordinate system x, ..., 2;", and viewing L as a function of the coordinate
0 0

components of the dynamical fields and p '. We then view the components of p ' as given functions of x". In this
way, we may view L as

L = L (g& Rbcde & +a& Rbcde »"~ V(a& ' ' ' Va~) Rbcde& 4 & &7a& Q& ...
& V(a& '

&7a&) 4 &
Z )

0
i.e., we replace the dependence of L on p by explicit dependence on coordinates. Condition (11) then implies that

. BL) Zgx" = 0. (17)

Clearly, this equation holds for all ( if and only if

= 0.

We therefore see that (18) implies that any diffeomorphism invariant Lagrangian must be of the form

L = L (gab& Rbcde& +a& Rbcde»" 7(a& ' ' +a~) Rbcde& Il' 7a&& 4'& 7(a& ' ' ' +a&)4') &

as we desired to show. 0
Note added. It should be noted that on account of dif-

ferential identities satisfied by the curvature, the quanti-
ties R bcd, V', R b,d, V'(fV, )R b,d, ..., cannot be specified
independently at a point. As a consequence, the choice
of Lagrangian function of the form (3) is not unique. A
natural way of fixing the Lagrangian would be to choose
it to depend upon the the derivatives of the curvature
only in the combination [13]

b d
Qabfcd7(e1 ' +e p i)

since, as proven recently by Anderson and Torre (un-
published), these quantities provide an appropriate set
of "independent fields. " In the following we shall assume
that this choice of Lagrangian has been made, although
all of the considerations of the paper would apply to any
choice of Lagrangian of the form (3). We wish to thank
Ian Anderson and Charles Torre for bringing this issue
to our attention.

III. THE FORM OF THE SYMPLECTIC
POTENTIAL AND SYMPLECTIC CURRENTS

FOR DIFFEOMORPHISM INVARIANT
THEORIES

bL = Ebg+ dO (20)

with

Ebg = (Es) bg b + Eybg,

where a sum over the "matter fields" Q is understood,
and it is also understood that for each matter field, Ey

As is well known (and as will be explicitly demon-
strated in Lemma 3.1 below), if we vary the dynamical
fields P = (g b, @), then, by "integration by parts" ma-
nipulations of the terms involving the derivatives of hP,
the first variation of the Lagrangian can always be ex-
pressed in the form
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has tensor indices dual to Q, and these indices are con-
tracted with those of hQ in Eq. (21). Here Es and Ey
are locally constructed out of the dynamical fields (b and
their derivatives, whereas O is locally constructed out
of P, hP and their derivatives and is linear in h' P. The
equations of motion of the theory are then taken to be

(Es) = 0, and E~ = 0.

addition of a closed (and hence exact [14]) (n —1)-form.
Thus, some arbitrariness is present in the choice of O.
The principal result of this section is stated in the fol-

lowing lemma.
Iemma 8.1 Given a covariant Iagrangian of the form

(19) one can always choose a covariant O satisfying (20).
Moreover, O can be chosen to have the form

The (n —1)-form O defined by Eq. (20) is called the
symplectic potentiaL form (see below). However, although
the equations of motion form E is uniquely determined
by Eq. (20), this equation determines O only up to the

e = 2E™R"V,rgb. + O',

where 0' is of the form

m —1

O' = S'(&)hg b+ ).T'(&) '"" "h'7(-. &-')R-b d+) '(&)" " (- " )&.
i=o

(24)

In other words, in the expression for O, the h's can be put to the left of derivatives of the dynamical fieLds everywhere

except for the single term E&~dV'dhgb, . Finally, E~gd is given by

(ER )b, ",b = ER' cab, b„)" (25)

where E&~deb, b, . b„ is the .e.quation of motion form that would be obtained for R b,d if it were viewed as an independent

field in the Iagrangian (19) rather than a quantity determined by the metric
Proof. Given L in form (19) we write it as L = Le, where e is the canonical volume form on M associated with

g b. Computing a 6rst variation, we obtain

OLbV', R b,g+ + bV'(, g )R b,~
&(~ ' ' ' &~ )Ras d,

1 c)L BL BL
hgab + hR bcd +

gab abed a q abed

OL OL BI l 1
+ hg+, hV', g+. +,bV'(, . V', )Q ~

+ —g hg bL. (26)

(For tensors, such as bR b,d, whose components are not algebraically independent at each point, we uniquely fix
the partial derivative coeKcients appearing in this equation by requiring them to have precisely the same tensor
symxnetries as the varied quantities. ) In order to obtain the desired expression for O we must suitably rewrite Eq.
(26) in the form (20). To see how this can be done we focus attention on a typical term

OL
6 BV(&l 7~i) Rabcd

&(a, 7a, )Rabcz

and rewrite it as

bV', . V.Rbdi

DL OL
e bV(, V', )R b d = e

~

V', (hV', .&,R b d)
~

+(az ' +a; }Rabcd ( (aq
' ' a;) abed )

+e. terms proportional to V'bg

t' OL
e

o+(ag ' ' +a;}Rabcd
+V', [e . (terms proportional to bg)]

~

hV'. , "V'.,R.~d
BL

c)V'(, .V', )R b,d )
+e (terms proportional to hg),

= dV —eV,
i i

hV', . . .V',. R b d
(a~

' a;) abed )
+e ( terms proportional to hg),

where the (n —1)-form V has the form
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OL
+62 '6 a16g ' 6

(a1 a; ) abed
bV, . V, R b,d + e x (terms proportional to bg). (29)

This shows that we can rewrite our original terxn (27) as a sum of a similar term of lower differential order, the exact
form dV, and terms proportional to bg. By iterating this procedure and performing similar manipulations on all other
terms in (26) containing derivatives of variations of the curvature or matter fields, we obtain

bL = e (A bg b+EIT' bR b,d+Eybg) +dO, (30)

where the (n —1)-form 0 is covariant and has the same structure as the right side of Eq. (24). Note that in Eq. (30)
eEy is precisely the equations of motion form for the matter fields g and

BL BL c)1,
eER =el

BR
V 'NT R + + (' )NT V Rabed a1 abed (aq

' '' a ) abed )

Making this substitution and integrating twice by parts,
we obtain

bL = e(Ag'bgb +2VaVdER bgb + Eqbg)

+d(2E Vdgb, —2V'dE '
bgb, + 8), (33)

where

would be the equations of motion form for R b,d if it were
viewed as an independent field. In fact, however, R g,d
is not an independent field, and, taking account of the
symmetries of ER™,we have

E~™bRabcd= 2E~ "VaVdbgbc + E& Rab, 'bgd, . (32)

to O an exact (n —1)-form which has the structure of
the right side of Eq. (24). The proof of the lemma does
implicitly provide a particular algorithm which uniquely
determines a particular 0 from a given L, but there does
not appear to be any reason to prefer this algorithm over
other possible ones. Thus, it appears most preferable to
leave the choice of 0 unspecified apart &om the restric-
tion of covariance. In fact, there exist two independent
sources of ambiguity in 0.

First, as noted above, Eq. (20) allows the freedom to
alter 0 by addition of an exact (n —1)-form

0 ~ 0 + dY ((t, bP),

and

(Ebcd) Eabcd& (34) where the covariant (n 2)-form Y—
'

is linear in the varied
fields. Second, if we alter the Lagrangian by addition of
an exact n-form

A'=A +E"'" Rg g R W& (35) L -+ L+dp, (40)

(EN) =a~A +2V c~ER ). (36)

Note that the equations of motion associated with g p

are thus then the equations of motion are un''ected, so we do not
alter the dynamical content of the theory. Nevertheless,
0 must be shifted by

Thus, by inspection (33) is of the form (20) with

0 = 2ER Vdbg~+ 0 )

where

8' = 8 —2V'dE~Rdag&, .

(37)

0 + 0 + by. (41)

(If 0 is defined by the algorithm implicit in the proof
of the above lemma, then an additional exact term also
would be added to 0.) Thus, O is ambiguous up to the
addition of two terms

0 -+ 0+ by+ dY($, bP). (42)
This shows that 0 is manifestly covariant and of the form
claimed in the statement of the lemma.

VVe comment, now, on the possible ambiguities in the
choice of O for a covariant Lagrangian. The above lemma
proves that O always can be chosen to be covariant.
This appears to be a very natural requirement, and, in
the following, we shall restrict consideration to covariant
choices of O. The statement of the lemma also provides
the canonical form (23) for 0, which will play an im-
portant role in our analysis below. However, this general
form does not uniquely determine O, since one could add

The consequences of this ambiguity in 0 for the Noether
current and charge will be analyzed in the next section.

We conclude this section by brie8y reviewing the def-
inition of the symplectic form 0 in globally hyperbolic
spacetimes and investigating its possible ambiguities for
asymptotically Hat solutions. This is of relevance here
because 0 is used to define the notion of a Hamiltonian,
which, in turn, gives rise to the notions of total energy
and angular momentum. Thus, ambiguities in 0 could
result in ambiguities in these notions.
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Recall that the symplectic current (n —1)-form [15] is
defined by

~(4') b14 I b24') b2e(4') bid ) bi e(4') ~24') (43)

A(P, big, h2$) = ~(P, big, S2P).

(More precisely, Eq. (44) defines a "presymplectic form"
on field configuration space. As explained in detail in
[15], the phase space then is obtained by factoring out
by the degeneracy submanifolds of 0, and 0 then gives
rise to a symplectic form on phase space. ) If C is noncom-
pact, as we assume here, then some "asymptotic flatness"
conditions must be imposed upon the dynamical fields P
(and, hence, on their variations) in order to assure con-
vergence of the integral appearing in (44). One normally
assumes that the metric g g approaches a flat metric g ~

and the matter fields g approach zero at some suitable
rate. The precise asymptotic conditions appropriate for a
given theory depend upon the details of the theory, and,
thus, must be examined on a case-by-case basis, subject
to the following general guidelines: the asymptotic fall-ofI'

rates of the dynamical fields should be sufFiciently rapid
that quantities of interest (such as 0, energy, and angu-
lar momentum) are well defined, but not so rapid that a
suSciently wide class of solutions fails to exist. We shall
not investigate this issue further here, but will merely
assume that such suitable conditions have been imposed.

In principle, the definition of 0 depends upon the
choice of C. However, since dw = 0 whenever big and
h2$ satisfy the linearized equations of motion [15], the
dependence of 0 on C when the equations of motion are
imposed is given by an integral of u over a timelike sur-
face near spatial infinity. If suKciently strong asymptotic
conditions at spatial infinity have been imposed on the
dynamical fields to assure convergence of the integral ap-
pearing in (44), then the integral of w on this timelike
surface typically will vanish, and, thus, the definition of
0 should be independent of C. Of course, if this were not
automatically the case, one presumably would strengthen
the asymptotic conditions imposed upon the dynamical
fields in order to make 0 be independent of C.

As noted above, O is ambiguous up to the terms given
in (42). The term involving gs does not contribute to m

or 0, so we find that the only ambiguity in 0 is

with

(45)

AO = bgY )b2 —b2Y )b~ )

Let C be a Cauchy surface. We take the orientation of
C to be given by e, .. . , = n eb, ... , where n is
the future pointing normal to C and e~, ... , is the
positively oriented spacetime volume form. We define
the symplectic form relative to C by

AO typically will be weaker than the conditions needed
to ensure that 0, Eq. (44), is well defined for a given
choice of O. In particular, taking account of the di%cul-
ties in constructing a covariant (n —2)-form, V, out of
the metric and its first variation (as well as e), we see
that for a theory in spacetime dimension n in which no
matter fields are present, the asymptotic conditions

( ri —3)
9ab 9ab'+ +(r ) (47)

IV. THE FORM OF THE NOETHER CHARGE

In this section we will obtain an expression for the gen-
eral structure of the Noether charge (n —2)-form, Q, for a
di8eomorphism invariant theory. We begin by reviewing
the construction of the Noether charge given in [6) (see
also [17]).

Let ( be any smooth vector field on the spacetime
manifold M (i.e. , ( is the infinitesimal generator of a
diffeomorphism) and let P be any field configuration. (P
is not required, at this stage, to be a solution of the
equations of motion. ) We associate to ( and P a Noether
current (n —l)-form, defined by

J = e(g CtP) —( L (4S)

where Q(P, Et/) denotes the expression obtained by re-
placing bg with Ztg in the expression for Q, and the
"centered dot" denotes the contraction of the vector field

into the first index of the differential form L. A stan-
dard calculation (see, e.g. , [15]) gives

which shows J is closed (for all ( ) when the equations
of motion are satisfied. Consequently [14] there is a Q
locally constructed Rom P and ( such that whenever P
satisfies the equations of motion, E = 0, we have

(50)

We refer to Q as the Noether charge (n —2)-form. Note
that for a given J, Eq. (50) determines Q uniquely up to
the addition of a closed (and, hence, exact [14]) (n —2)-
form.

Proposition 4.1. The Eoether charge (n —2) form-
can always be expressed in the form

Q = lvV, ($)('+ X (P)7(,(gj + Y'(P, Zt'P) + dZ(P, (),
(51)

together with faster fall-oK conditions on derivatives of
the metric, suKce to ensure that AO = 0. Thus, it does
not appear that the ambiguity in 0 will typically give
rise to an ambiguity in the definition of 0 for suitable
asymptotic conditions on the dynamical fields.

where the integral is taken over an (n —2)-sphere at spa-
tial infinity. It appears that the asymptotic conditions
on the dynamical fields needed to ensure the vanishing of

where W, X,Y, and Z are coeariant quantities which
are locally constructed from the indicated fields and their
derivatives (with V hnearin ZgP and Z linearin(). This
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decomposition of Q is not unique in the sense that there
are many diferent utays of writing Q in the form (51);
i.e., W„X,Y, and Z are not uniquely determined by

Q (see below) H. owever, X may be chosen to be

cd abed(X )"-..= —Exx (52)

J = 2Exx Vd(Vb(, + V,(b) + O'(p, Ztp) —( L. (53)

Now the algorithxn of Lemma 1 of [14] for obtaining Q
from J reduces the highest number of derivatives of ( ap-
pearing in the expression for J by one. Since O' is linear
in the quantities (bg b, bR b,d, bVR b,'d, ...) and does not
contain any terms involving derivatives of these quan-
tities, it follows that O'(P, Z~P) is linear in ((,Vb( );
i.e., it has no dependence on any derivatives of ( higher
than first. Since ER" is antisymmetric in c and d, the
term E&~dVd V,(b has no dependence on derivatives of ( .
Thus, no derivatives of ( higher than second appear in
Eq. (53), and only the term E&dVdVb(, involves second
derivatives of ( . The contribution of this latter term to
Q is readily computed, and we find that with our choice
of O and algorithm for calculating Q, we have

Q = W, (P)('+ X' Vl, (dt, (54)

where W is a covariaxit (n —2)-form locally constructed
out of the dynamical fields, P, and their derivatives, and
where

whexe E&~d was defined by Eq. (81), and we may choose
Y =Z=o.

Proof W.e proceed by calculating Q using the choice
of O given in Lemma 3.1, and using the algorithm for
calculating Q from J given in Lemma 1 of [14]. For the
choice of O given in Lemma 3.1 we have

unique. For example, it is clear that for any choice of (n
2)-form U, (P), the quantity d[U, (g)('] can be written as
a sum of terms of the same form as the first three terms
on the right side of (51), since we can write it as a sixm

of a term linear in (', a term linear in Vl,(dj, and a term
linear in 2V~, (dl = l:tg,d. Thus, we can always add
the term U, (P)(' to Z and make compensating changes
in W', X, and V without affecting Q. One might be
tempted to impose additional conditions to determine
the terms W, X, V, and Z in Eq. (51). In particular,
it might appear natural to fix the term X b (which plays
a key role in the definition of black hole entropy below)
by simply requiring it to be given by Eq. (55) above.
However, this proposal suffers &om the difficulty that a
change of Lagrangian of the form (40), which should have
no effect upon the physical content of the theory, would,
in general produce in a change in X ~. For this reason
we shall not attempt to give unique definitions of the
individual terms in Eq. (51) but will derive the first law
of black hole mechanics and give a proposal for defining
the entropy of dynamical black holes based only upon the
general form of Q given in Proposition 4.1.

V. EXAMPLES OF LAGRANGIANS AND
ASSOCIATED NOETHER CURRENTS AND

CHARGES

In this section we shall give the symplectic potential
O, the Noether current J, and the Noether charge Q
arising &om three Lagrangians of interest. In giving these
examples, we shall simply make convenient choices of 0,
J, and Q, but, of course, it should be kept in xnind that
the ambiguities (42), (57), and (58) remain present.

Our first example is general relativity. We have the
Lagrangian four-form

Equation (54) gives the general forxn of Q for our par-
ticular algorithm for choosing O and obtaining Q from
J. Recall that O had two ambiguities (42), one arising
&om the ambiguity in L and the other kom its defining
equation (20). Using the identity

1
&aced = &glacd&.16'

This yields a symplectic potential three-form

1
Oabc = edabc g g (Vf~geh Ve~gfh) .de fh

16'

(6o)

(61)

&tu =( df +d(( t )

we see that the ambiguity in O gives rise to the following
ambiguity in J:

From this we obtain the Noether current three-form

Jabc = —
edam' Ve

I
V ( +1 r ), d) 1

Svr E 8m'
(62)

J -+ J + d(g p) + dY (P, ZgP). (57)

Q m Q+(.p+ Y(4, l:gP) + dZ. (58)

Thus, for any choice of Q, we have

Q = W.( +X'V,.(„+V(y,&,y)+dz, (59)

as we desired to show. 0
As stated above, the decomposition (51) of Q is not

Taking into account the additional ambiguity of addition
of an exact form to Q, we obtain the following ambiguity
in Q [8]:

The second term on the right side of this equation van-
ishes when the field equations (G b = 0) hold. The cor-
responding Noether charge two-form is

1 c
Qob = —'eabcdV (

16m

Our second example is two-dimensional dilaton gravity
(in the form given in [3]), with scalar field P, coupling
constant A, and an additional "tachyon field" T. The
Lagrangian two-form is

L b = 2e be~ IR+ (Vp) —(VT) + p T + A] . (64)

This yields the symplectic potential one-form
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O~ = e~i, e ((V' P)hP —(V' T)bT+ zg '[V' (bg, g) —g 'V', (bgg, ) —(V' P)bg,g+ (V,P)g"'bgg, ]) .

From this we obtain (omitting terms proportional to the field equations) the Noether current one-form

(65)

&p~[c bl + 2 tc~bl to& (66)

which yields the Noether charge zero-form (i.e. , function)

q = - -,
' e., (.~V"g' + 2t V"'~) . (67)

As our final example, we consider the special case of Lovelock gravity in n dimensions obtained by keeping only the
terms in the Lagrangian up to quadratic order in the curvature (see [18]). The Lagrangian n-form is

1
r,.... .. =~.. .

~

@+~~a,,a"—4a.,a'+a'))." ql6~

This yields a symplectic potential (n —1)-form

(68)

+ 2+R
~ g 'g (V', hg. , —V.bgq', )

(1 de fh

q 16'

+a[ 2(V'—R)g" bg, y + 4R"'(V,bgys)g
"+ 4R' (V"bg,y)

8R' (V',—egg )g"" —4(V'R )bg, y+ 4R"' "7' bg, g] (69)

The corresponding Noether current (n —1)-form (again, omitting terms proportional to the field equations) is

J, ... „,= eg, .. . „,V,
i

—+4+R
i

V't'("I+16n(Vy(')R"~~+4nR'"~"V'y(i,f1
(70)

This yields the Noether charge (n —2)-form

'%7"(' + 2o(R&"(' + 4& ("R'y + R"' "&y(s)
i

." ' q16z. (71)

VI. THE FIRST LAW OF BLACK HOLE
MECHANICS

In this section we will use Lemma 3.1 and Proposition
4.1 to improve upon the derivation of the first law of
black hole mechanics given in [6]. We thereby will prove
that the first law of black hole mechanics holds for non-
stationary perturbations of a black hole in an arbitrary
diKeomorphism covariant theory of gravity, without any
restriction on the number of derivatives of fields which
appear in the Lagrangian.

Let P be any solution of the equations of motion, and
let bg be any variation of the dynamical fields (not neces-
sarily satisfying the linearized equations of motion) about

Let ( be an arbitrary, fixed vector field on M. We
then have [6]

bJ = bO(P, CgP) —( $L
= hO(g, ZtP) —( dO(P, bP)
= bO($, Z(P) —ZgO(Q, bQ) + d[( O($, hQ)], (72)

~(P, hP, CtP) = bJ —d(( O). (74)

The fundamental identity which gives rise to the first
law of black hole mechanics applies to the case where (
is a symmetry of all of the dynamical fields, i.e, Ct P = 0,
and hP satisfies the linearized equations of motion. When
l:gP = 0, the left side of Eq. (74) vanishes, and when hP
satisfies the linearized equations, we may replace bJ by
bdQ = dhQ on the right side. Thus, we obtain

dbms
—d((. O) = 0. (75)

Integrating this equation over a hypersurface = we ob-
tain

forms was used in the last line. Since our choice of 0 is
covariant, ZgO is the same as the variation induced in 0
by the field variation b'P = ZgP. Consequently, we have

bO(g, l:t'P) —E(O(P, hP) = ~(P, bP, ZtP), (78)

where w was defined by Eq. (43). We therefore obtain

where Eq. (20) together with E = 0 was used in the
second line, and the identity (56) on Lie derivatives of

bQ[(] —( O(g, bg) = 0.
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bH = Q(g, b4, ZgP). (77)

We thereby find that if a Hamiltonian H exists for the
dynamics generated by (, then

We emphasize that the only conditions needed for the
validity of Eq. (76) are that P be a solution to the equa-
tions of motion, E = 0, satisfying ZgP = 0, and bg be a
solution of the linearized equations (not necessarily sat-
isfying ZgbP = 0).

We shall be interested here in the case where = is an
asymptotically Qat hypersurface in an asymptotically flat
spacetime. In this case, a boundary term from an asymp-
totic (n —2)-sphere at infinity will contribute to Eq. (76).
The following argument shows that this boundary term
has the natural interpretation of being the variation of
the "conserved quantity" canonically conjugate to the
asymptotic symmetry generated by P.

Consider a solution, P, corresponding to an asymptot-
ically Qat, globally hyperbolic spacetime, with Cauchy
surface, C, having a single asymptotic region and a com-
pact interior. We return to Eq. (74) but no longer im-
pose the additional assumptions that ZtP = 0 or that bg
satisfy the linearized equations of motion. We integrate
Eq. (74) over t taking into account Eq. (44) and the
fact that, by de6nition, Hamilton's equations of motion
for the dynamics generated by the time evolution vector
field ( are

t —t B (82)

where t is an asymptotic time translation. We then
adopt Eq. (82) as the definition of the canonical energy
associated to any asymptotically Qat region of any solu-
tion, whether or not the spacetime is globally hyperbolic.

We illustrate this de6nition of canonical energy by
evaluating E' for vacuum general relativity. We consider
spacetimes which are asymptotically Qat in the sense that
there exists a Qat metric g g such that in a global inertial
coordinate system of g p we have

g„„=g~„+ O(1/r) (83)

and

Thus, we have shown that in any theory arising &om a
diffeomorphism covariant Lagrangian, the Hamiltonian,
if it exists, always is a pure "surface term" when eval-
uated "on shell. " Similarly, for a closed universe (i.e.,
compact C), the Hamiltonian always vanishes "on shell. "

We now shall assume that the asymptotic conditions
on the dynamical 6elds have been specified in such a way
that when ( is an asymptotic time translation, B exists,
and the surface integrals appearing in Eq. (81) approach
a 6nite limit at in6nity. We de6ne the canonical energy
8' to be the value of the Harniltonian: i.e.,

bH=b J — d(( 0)
C C

J — O. (78)

sf g. B f(.e=
in which case H is given by

(79)

Thus, a Hamiltonian for the dynamics generated by (
does exist if (and only if) we can find a (not necessarily
diffeomorphism covariant) (n —1)-form B such that

,."." = O(1/") (84)

f w~l=- 1 c
16m f ey,gV t

1 „(Bgii
16' q Br

Bg~t l
Bt )

(85)

Let t be the asymptotic time translation (B/Bt), and
let the 2-sphere at infinity be the limit as r + oo of the
coordinate spheres r, t =const. Then from our previously
calculated expression for Q s, Eq. (63), we find that

Now evaluate K on solutions. We then may replace J by
dg, whence H becomes

Note that for a stationary spacetime with stationary
Killing field t, the first line of Eq. (85) shows that

J Q[t] is precisely one-half of the Komar mass (see, e.g. ,
l12j)

We now compute the contribution to E' from the second
term on the right side of Eq. (82). Using Eq. (61) we
have

f 1
t 0 16'

1
16m

1

16'

f dSrgg 'g~" (Vybg, g —7',bgig)

dSg"" g"(Btbg„t, —B,bg„) + h" (B;bh„~ —B„bh;,)

8 dS B~gtg —Oggqg + T h 0 AIc) —|9gh (86)

where r~ = (B/Br) and h;~ is the spatial metric. Thus, we see that Eq. (79) holds if B is chosen to be any three-form
such that asymptotically at infinity, we have

t B i = — es, (B„gtt, —Bgg„i)+r"h* (B;hi„—Bi,h;, ) (87)
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where e~ is the volume two-form for the sphere at infin-
ity. Combining this with (85) we 6nd that the canonical
energy E' for general relativity is

t —t B

dSr"h*' (0;hi„—c)&h;~)16'

and, of course, the second term on the right side is en-
tirely absent in two dimensions. ) Let = be an asymp-
totically Bat hypersurface having Z as its only "interior
boundary. " Then, taking into account Eq. (90), the def-
initions of E and g, and the fact that g vanishes on Z,
we obtain directly from Eq. (76) the result

Q[(] = hE —O~(")8J(„).
= MADM) (88)

Q[v] (89)

where it is assumed that the asymptotic conditions on
the dynamical fields are such that this surface integral
approaches a well-defined limit at infinity. [The relative
sign difference occurring in the definitions (82) and (89)
traces its origin to the Lorentz signature of the spacetime
metric. The same relative sign difference occurs in the
definitions, E = —p t and J = +p y, of the energy and
angular momentum of a particle in special relativity. ] In
the axisymmetric case in vacuum general relativity, Eq.
(89) is precisely the Koinar formula for angular momen-
tum. Thus, we see that in any theory, the Komar-type
expression —f Q[p] always yields the angular momen-
tum, but f Q[t] does not, in general, yield the energy.
Indeed, since the Komar and ADM masses agree for sta-
tionary solutions in general relativity [19], we see from
our calculation above that f Q[t] yields only half of the
energy in that case. It is the presence of the "extra"
t B term in Eq. (82) which accounts for this well-known
"factor of 2" discrepancy in the Komar formulas for mass
and angular momentum in general relativity.

We now are ready to apply Eq. (76) to the case of
a stationary black hole solution with bifurcate Killing
horizon. Let ( be the Killing field which vanishes on
the bifurcation (n —2)-surface E, normalized so that

where M~DM denotes the Arnowitt-Deser-Misner (ADM)
mass. Thus, the term t . 8 cancels the contribution to
E from the term Q, and, in addition, provides the term
M~0M, thereby making our definition of E' in vacuum
general relativity reduce to the standard, ADM, defini-
tion of energy. Note, however, that additional contribu-
tions to 8 in general relativity can occur when long-range
matter fields are present; see [1] for an explicit evaluation
of the contribution to E' for Yang-Mills fields.

When ( is an asymptotic rotation p we may choose
the surface at infinity to be everywhere tangent to p, in
which case the pullback of p 0 to that surface vanishes.
Hence, we define the canomcal angular momentum, g of
any asymptotic region by

We now are ready to state and prove the first law of black
hole mechanics in a form which strengthens the results
of [6] by establishing the general validity of this law for
nonstationary perturbations.

Theorem 6'. 1. Let P be an asymptotically flat stationary
black hole solution with a bifurcate ICilling horizon, and
let b(b be a (not necessarily stationary), asymptotically
flat solution of the linearized equations about (b. Define
S as,

S = 2' X'"e,g, (92)

where X' is as given in Proposition $.1, and the integral
is taken over the bifurcation (n —2) surfac-e E, with e,g
denoting the binormal to Z (i.e., e is the natural volume
element on the tangent space perpendicular to Z, oriented
so that e,qT'R~ ) 0 when T is a future directed t-imelike
vector and the spacelike vector R points "toward infin-
ity"). Then we have

—h S = b E —0(")b g( ),27r

where K is the surface gravity of the black hole
Proof The theore. m will follow from Eq. (91) provided

that we can show that

Q[(] = —bS.
2 7r

(94)

bV(P, ZgP) = Y(P, l:the)
= l:(Y(q), bg)

dV+ d(( V), (95)

To evaluate the left side of this equation, we appeal to
Proposition 4.1 and examine the contribution of each of
the four terms individually. Since ( vanishes on Z, it is
clear that the term W,(' contributes neither to Q nor to
its variation. Similarly, the term dZ clearly also makes no
contribution to the left side of Eq (94). S.ince Zg(b = 0,
the term Y vanishes in the stationary background, and
its first variation is given by

( =t +n(")p„,0 V'(@)~ (90)

where t is the stationary Killing field with unit norm
at infinity, and summation over p is understood. (This
equation picks out a family of axial Killing fields, y&„~,
acting in orthogonal planes, and also defines the "an-

gular velocities of the horizon, " O~ . No summation is
required when the spacetime dimension is less than Gve,

b = b X'" VI

Now, in the stationary background, we have, on E,

(96)

where the Lie derivative identity (56) was used in the last
line. It follows immediately that the term V also makes
no contribution to the left side of Eq. (94). Thus, we

have
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Vck = «cd. (97)

Furthermore, since ( = 0 on Z, and h( = 0 everywhere,
we have

hV, ( =0 (98)

on Z. Consider, now, the variation, bee" of the binor-
mal, e,", with an index raised. Clearly, s'be, "= 0 for all
s tangent to Z, so be," has no "tangential-tangential"
piece. However, since e,"eg' does not vary as the met-
ric is changed, it follows that g [,bed] has no "normal-
normal" piece with respect to the background metric.
Thus, writing

Xiicd = V[c4] &&cd (99)

we have that m, g vanishes in the stationary background,
and

~~cd —~ ga [d (Vc]( —«c] )

&gc[dh&c] (100)

so that b'xi', d has only a "normal-tangential" piece with
respect to the background metric. Thus, substituting in
Eq. (96) we find

(101)

Finally, we note that since LgP = 0, we have l:gX'd = 0,
and, hence, by Lexnxna 2.3 of [20], at each point of Z,
X'" must be invariant under "re8ections" about Z; i.e.,X" must be invariant under the map of the tangent
space which reverses the normal directions to Z but keeps
the tangential directions unchanged. On the other hand,
since bxu d is purely "normal-tangential, " it reverses sign
under reflections about Z. However, the pullback of
X' hxo, d to Z is purely tangential, and, hence, invariant
under refiections. Consequently, the pullback of X'"hxo,d

to Z must vanish, so the second term on the right side of
Eq. (101) does not contribute. 0

Note that Eq. (92) corresponds to the following sim-
ple algorithm for determining the entropy of a station-
ary black hole in an arbitrary theory of gravity: Start
with the Lagrangian n-form (3) and contract it with

(—1/n!)ec""c" to obtain a scalar I Take the fun. ctional
derivative of L with respect to R x d (viewing it as a
field independent of g s) to obtain the tensor field EIx '".
Then we have

S[Z'] = 2vr X' e,'d, (103)

where e',& denotes the binorrnal to Z', then S also is
independent of the choice of Z' [8]. To prove this, we
note that since X'" is invariant under the one-parameter
group of isometrics, yi, generated by (, it follows im-
mediately that S[yq(Z')] = S[Z']. However, as t m —oo,
yi(Z') continuously approaches the bifurcation surface Z
and (since X'd is smooth) we thus obtain S[Z'] = S[Z],
as we desired to show. It follows immediately that for
stationary perturbations, the first law of black hole me-
chanics (93) holds with S taken to be the entropy of an
arbitrary cross section of the horizon. However, when
nonstationary perturbations are considered, it is essen-
tial for the validity of Eq. (93) that S be evaluated on
the bifurcation surface Z.

As emphasized at the end of Sec. IV, the decomposi-
tion of Q given by Eq. (51) does not uniquely determine
X . Nevertheless, Theorem 6.1 and its proof show that
all of the different possible choices of X'" yield the same
value of the entropy, S, for a stationary black hole. Fur-
thermore, even for nonstationary perturbations, the first
variation b'S of S on Z is independent of the choice of
X ". However, for nonstationary perturbations, bS will,
in general, depend upon the choice of X'" when evalu-
ated on an arbitrary cross section Z' of the horizon, and
the dependence of S upon the choice of X'" becomes
even more severe if we attempt to generalize the notion
of entropy to an arbitrary cross section of a nonstation-
ary black hole via Eq. (103). We turn now to an analysis
of the definition of entropy for nonstationary black holes.

VII. A PRESCRIPTION FOR DYNAMICAL
BLACK HOLE ENTROPY

In this section we will suggest a definition of the en-
tropy Sd„ for a "dynamical" (i.e., nonstationary) black
hole. We seek a formula of the general type

gral of Q is independent of the choice of horizon cross
section. Namely, the difference between the integrals of
Q over cross sections Z and Z' is given by an integral of
3 over the intervening portion of the horizon. However,
by Eq. (48), the pullback of J to the horizon vanishes,
since ZgP = 0 and the pullback of (.L vanishes since (
is tangent to the horizon.

Furthermore, if we define the entropy, S, for an arbi-
trary horizon cross section, Z', of a stationary black hole
by

S = —2m E~
E

(102) Sdr„[C] = X'"(p)e,d,
C

(104)

where e b again denotes the binormal to Z, and the inte-
gral is taken with respect to the natural, induced volume
element on Z.

It should be noted that in the above discussion, Z was
explicitly chosen to be the bifurcation surface of a bifur-
cate Killing horizon. However, as pointed out in [8], for
a stationary black hole with bifurcate horizon, the inte-

where C is an arbitrary cross section of the event horizon
of a dynamical black hole, and I'" is a diffeomorphism
covariant (n —2)-form locally constructed out of the dy-
namical fields, P, and their derivatives by an algorithm
whose sole input is the Lagrangian, L. There are four
basic criteria which our definition of Sd„must satisfy.

(1) For an arbitrary cross section Z' of a stationary
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black hole we must have

(105)

[see Eq. (103) above].
(2) For an arbitrary (nonstationary) perturbation of

a stationary black hole, on the bifurcation surface E we
must have

b'Sa~„[E] = bS = 2mb f X ~a.~ (106)

[see Eq. (92) above].
(3) If we alter the Lagrangian by the addition of an

exact n-form

L m L+dp, (1o7)

then the definition of Spy„should not change, since there
is no change in the dynamical content of the theory.

(4) At least for an appropriate class of theories, Sdr„
should obey a "second law"; i.e., Spy„should be a nonde-
creasing quantity when evaluated on successively "later"
cross sections of the horizon of a dynamical black hole.

The last of these criteria is by far the most interesting
and important. Unfortunately, it also is the most difB-
cult to analyze in a general theory of gravity for at least
the following two reasons: First, it seems clear that, un-
like the "first law, " any proof of the second law would
need to make detailed use of the equations of Inotion of
the theory. Second, it seems clear that the "second law"
should hold only for the case of theories which satisfy
certain physically reasonable criteria, likely examples of
which are the existence of a well-posed initial value for-
mulation, cosmic censorship, and the property of having
positive total energy. For example, even for general rela-
tivity, the second law can fail if matter is present which
fails to satisfy the weak energy condition. However, it
is far from clear as to precisely what conditions should
be imposed upon a theory for the validity of the second
law to hold, and, even if these conditions were known,
it undoubtedly would be highly nontrivial to determine
whether a given theory satisfied them.

Despite these two difBculties, there are some hints that
it may be possible to prove some general results pertain-
ing to the second law. In particular, we saw in the previ-
ous section that the entropy S of a stationary black hole is
just its Noether charge with respect to the horizon Killing
field ( . Thus, the change in entropy between cross sec-
tions C and C' of a stationary black hole is given by the
Hux of the corresponding Noether current through the
horizon between C and C'. For a stationary black hole,
this Bux, of course, vanishes. However, if Spy„could simi-
larly be identified as the Noether charge of an appropriate
vector field, one might be able to establish a relationship
between the "second law" and positive energy (i.e., pos-
itive net Noether ffux) properties of the theory. Another
suggestive fact is that the quantity X'" which plays a
key role in the definition of entropy for stationary black
holes can be chosen to be very simply related to ERa™
[see Eq. (52) above], and EJ7 ", in turn, is a term in the

equations of motion [see Eq. (36) above]. Thus, there is a
hint that it may be possible to define Spy„ in such a way
that its dynamical properties may be directly related to
the equations of motion of the theory. Unfortunately, we
have not, as yet, succeeded in developing either of these
hints into any results regarding proposed definitions of
S~y„. Thus, for the remainder of this section, we shall
not consider criterion (4) further, and will merely seek a
definition of S~„which satisfies conditions (1)—(3).

An obvious first try at defining Sdy„via an equation of
the form (104) would be to simply set X'" = X'", with
X' given by the decomposition (59) of Q. However, we
already emphasized above that this decomposition is not
unique. Although, as discussed at the end of the previous
section, this ambiguity does not acct the evaluation of
S on an arbitrary cross section of a stationary black hole
horizon or the evaluation of 6S on the bifurcation surface
of a stationary black hole, this ambiguity in X'" is of
importance for a dynamical black hole.

An obvious try at circumventing this difBculty would
be to continue to set X " = X'" and simply fix X'" by
some definite algorithm. In particular, the choice

cd abedX, = —ER (1os)

[see Eq. (52) above] appears to be particularly simple
and natural. This proposed definition of Spy„clearly
satisfies conditions (1) and (2) above. However, it is not
difficult to verify that it fails [11) to satisfy condition
(3): By adding an exact form to L which has suitable
dependence upon the curvature, we can alter ERa™in
such a way as to produce nonvanishing changes in Spy„
for nonstationary black holes. %'e feel that it is unlikely
that any other simple algorithm for fixing X'" for a given
L will fare any better in this regard.

Thus, it is a nontrivial challenge to find any prescrip-
tion for Ss„„ofthe form (104) which satisfies conditions
(1)—(3). We now shall demonstrate that such a prescrip-
tion does exist. The basic idea will be to construct new
dynamical fields relative to a cross section C, which make
C "look like" a bifurcation surface of a stationary black
hole. We then shall define Ss„„[C]to be the entropy of
this stationary black hole. Before giving a precise state-
ment of our prescription, we give the following two defi-
nitions.

Definition 7.1 Let C be an (n —2) dimensional-
spacelike surface in an n dimensional s-pacetime, and let
M~'"'~"

s s be a (spacetime) tensor field defined on C.
Then M '" "s, ...s, is said to be boost invariant on C if,
for each p p C, M ' "i„,is inv"arian. .t. under Iorentz
boosts in the tangent space at p in the Aao-dimensional
timeline p/ane orthogonal to C.

The following simple criterion can be used to check if
a tensor field M '"' 'g, ...~, is boost invariant on C. At
each point p E C, choose a null tetrad with null vectors
l and n orthogonal to C, and spacelike vectors s„ tan-
gent to C. Expand M '" "~,...~, in this basis. Then it
is easy to verify that M '" 'p, ...p, is boost invariant if
and only if its basis expansion is "balanced" with respect
to l and n, i.e., if the basis expansion coeKcients are
nonvanishing only for terms involving equal numbers of
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l 's and n 's. This motivates the following de6nition.
De6nition '7.2 Let C be an (n —2) -dimensional

spacelike surface in an n-dimensional spacetime, and let
M '" "i„...i„be a (spacetime) tensor field defined on C.
We define the boost invariant part of M ' " 'i,, . ..i„ to be

the tensor field on C obtained by keeping only the terms
which are balanced with respect to l and n in a null
tetrad basis expansion.

It is easily seen that the boost invariant part of
M '"' '~, ...~, does not depend upon the choice of nuO

tetrad appearing in the de6nition.
Note that the spacetime metric g g on C is automati-

cally boost invariant. However, the curvature of g p and
its derivatives need not be. Nevertheless, we may de6ne

a notion of the boost invariant part (up to order q), g &,

of the spacetime metric in a neighborhood of C. The
curvature of g &

and its covariant derivatives up to order

(q —2) then will automatically be boost invariant on C.

This construction of g &
will lead directly to a proposal

for defining Sdyn.

To de6ne g &, it is convenient to introduce a coordinate
system in a neighborhood of C as follows [20]. Define a

I

null tetrad l, n, s„on C as above, with l n = —1. Let
0 be any neighborhood of C suKciently small that each
point x 6 0 lies on a unique geodesic orthogonal to C.
Given x E 0 we 6nd the point p E C and the geodesic
tangent v in the 2-plane normal to C such that x lies at
unit afBne parameter along the geodesic determined by

p and v . We assign the coordinates (U, V, si, ...s„z) to
z E 0 by taking (U, V) to be the components of v along
l and n, respectively, and taking s; to be (arbitrar-
ily chosen) coordinates of p on C. We denote by 8 the
Bat derivative operator associated with these coordinates.
Note that a change in tetrad, l + nl, n -+ a n, at
p E C (corresponding to a Lorentz boost in the tangent
space in the plane orthogonal to C) induces the linear
change in coordinates, U ~ o. U, V ~ o.V, s; ~ s;.
Since linearly related coordinate systems de6ne the same
"ordinary derivative operator, " it follows that 8 does
not depend upon the choice of l and n, and so is in-
variant under the action of Lorentz boosts in the plane
orthogonal to C.

Now consider the 6rst q terms in the Taylor series ex-
pansion of g g around C in U and V:

Um Vn pm+kg
os ( ) ) i i ) 8 Uy~V( )

n, m=0 aP U=V=O

(dz ) (dz~)b. (109)

The coeKcients appearing in this expansion are just components of the tensors 0„8,„g p on C: namely,

~ 0 g~p
8 U8"V

cxP U=V=O

(dz ) (dz~)i, = l" . l'-n" . n'"8„. 8, +„g s (110)

We de6ne g q& by replacing each tensor, 0„.. B,„g p, ap-

pearing in the expansion of g & by its boost invariant
part. In other words, we alter g g by extracting the boost
invariant part of the coefBcients of the 6rst q terms of its
Taylor expansion in U and V.

The nature of g q& can be best elucidated in the case
where g p is analytic, in which case we may set q = oo
and write g &

for g &
. It then follows that the vector

Beld

t'8) (8)
q8U) (8Vp

(which induces Lorentz boosts of the coordinates) is a
Killing field of the metric g &, that is,

Egg q
——0.I

by extracting the boost invariant part of the coefBcients
of the first q terms of the Taylor expansion of Q in U and
V about C. It then follows that ( also Lie derives Q &

up to order q.
Our ProPosal for de6ning Sdyn is the following: Choose

q to be larger than the highest derivative of any dynami-
cal field appearing in the decomposition of Q given in
Proposition 4.1. Given a cross section C of the hori-

zon of a black hole, we replace g & by g &
and Q by

in a neighborhood of C. Define Q[Q on C to be
the Noether charge (n —2)-form of the dynamical fields

(g ~&, @i&) for the vector field ( defined by Eq.Iq

(ill) above. Define Sa„„at "time" C by

Sa„„[C]= 2z. Q[(].
e

Equivalently, by Proposition 4.1 we have

Furthermore, ( vanishes on C. Thus, our construction
of g & has, in effect, created a new spacetime (which is
not necessarily a solution of the field equations) in which
C is the bifurcation surface of a bifurcate Killing horizon.

In an exactly similar manner, we define the boost in-
variant part, QI~ of the matter fields g (up to order q)

where

Spy„[C] = 2vr X'"e,g,
e

Xcd (y) Xcd (yI& )

(114)
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Equation (114) shows that Sg„„ is of the desired gen-
eral form (104), and the equivalence of Eqs. (113) and
(114) shows that the right side of (114) does not depend
upon the choice of X " in the decomposition of Proposi-
tion 4.1. Note, incidentally, that since X'" is a nonlinear
function of the dynamical fields P, the tensor field X
is not necessarily equal to the "boost invariant part" of
the tensor field X' (P). [Use of the boost invariant part
of X~ (P) would not yield a satisfactory prescription for

Spy& since it would, in general, fail to satisfy condition

(3) above. ] More generally, for a nonlinear tensor func-
tion P of the dynamical fields P, we have, in general,
[P(P)]1& g P(P &). On the other hand, if P is linear in P,
then [P(&)]"= P(4").

We now may verify that our definition of Spy„satis-
fies conditions (1)—(3) above. First, if C is taken to be
the bifurcation surface Z of a stationary black hole, then

P & = P, so, clearly, Ssz„[Z] = S[Z]. On the other hand,
if Z' is an arbitrary cross section of a stationary black
hole, then since our prescription for de6ning Spy~ is a "lo-

cal, geometrical" one, by isometry invariance we clearly
have Spy„[yi (E')] = Ssr„[E']. But it also is clear that our
prescription for defining Ss„„is such that Ss„„[C]varies
continuously with C. From these facts, it follows imme-

diately by the same argument as given below Eq. (103)
that Ssr„[K'] = Sgr„[Z]. Thus, we have

Ssv„[Z'] = Spy„[Z] = S[Z] = S[Z'];

i.e., condition (1) is satisfied.
To verify that condition (2) holds, we note that since

we have Pl~ = P on the bifurcation surface Z of a station-
ary black hole, and since 8[X'"e,g] clearly is linear in 8P,
it follows that 8[(X' —X' )e,q] has no boost invariant
part. However, this immediately implies that the pull-
back of this differential form to E vanishes, from which
it follows that hSs„„[Z]= bS[Z], as desired.

Finally, the complete ambiguity in Q (including that
arising from the change in Lagrangian L -+ L + dp) is

given by Eq. (58). It is manifest that none of these am-

biguous terms can contribute to fc Q[(]. Consequently,
we see from Eq. (113) that condition (3) holds.

Thus, we have proven the existence of a definition of
S~„„which satisfies conditions (1)—(3). These conditions
do not uniquely determine Spy~ Nevertheless, we have
been unable to come up with any "natural" alternative
de6nitions of S~y„. Thus, we believe that our de6nition
of Spy„ is a serious candidate for the de6nition of the
entropy of a nonstationary black hole in a general theory
of gravity. See the Vote added to the end of the Section

%'e conclude this section by evaluating Spy„ for the
three theories considered in Sec. V. Consider, first, vac-
uurn general relativity. Let C be an arbitrary cross section
of a black hole, let e b be the binormal to C, and let & b

denote the volume element on C. Comparing Eqs. (51)
and (63) we see that the two-form X' is given simply by

(X') g ———
16vr

Since X'" does not depend upon any derivatives of g b,
it is clear that it is unaBected when g b is replaced by its
boost invariant part. Thus, we obtain

cd
Spy„[C] = ——

8

&ab

Area [C]

in agreement with the usual formula for the entropy of
a dynamical black hole in general relativity. By the area
theorem, this de6nition of Spy„satis6es the "second law"
(assuming that the cosmic censor hypothesis is valid).
Note that if we add to the Lagrangian "matter terms"
which have no explicit dependence upon the curvature,
then X'" does not change [see Eq. (52)], so Eq. (118)also
holds for general relativity with matter present, provided
only that the matter does not have an explicit coupling
to the curvature in the Lagrangian.

The calculation of Spy~ for dilaton gravity with La-
grangian (64) in two spacetime dimensions proceeds sim-
ilarly. We see from Eq. (67) that the 0-form I'" is given
by

Ssr„[C] = 2vre~ (120)

It is known that this de6nition of Spy„also satis6es the
second law [3].

Lovelock gravity provides a more interesting illustra-
tion of our prescription, since it can be seen from Eq.
(71) that X'" contains terms involving the curvature

Xcd & P cd
2

Again X'" does not depend upon any derivatives of the
dynamical 6elds, and is unchanged when they are re-
placed by their boost invariant parts. In this case, a
cross section C of the horizon is a point, and we obtain

(X' ),... „,= —e'", ... „,~
+ 2nR

~"-' (16~ )

and the replacement of the metric by its boost invariant
part will have a nontrivial effect. Indeed, since, after
this replacement is made, both extrinsic curvatures of C

embedded in M vanish, we see (using a "Gauss-Codazzi"
equation, see, e.g. , [12]) that the curvature of the boost

invariant part of the metric satisfies

~R=B —2t R b+t t "A bd, (122)

where t b ———n nb+ r rb is the metric for the subspace
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orthogonal to C (spanned by the unit timelike and space-
like normals, n and r, respectively) and (" )R is the
scalar curvature of C. From Eqs. (121) and (122) we

obtain

e.dX, ...a„=
~

—+ 4o. (" ')R[g ']
~
eo, ...o„„(123)

(8vr

where (" )R[gle] is the (n —2)-scalar curvature of C

computed with the boost invariant part of the metric
and 6, ... „,is the volume form C. However, we clearly

have (" 2)R[gie] =(" 2) R[g]. Hence, we obtain

Sd„„=4Area[C] + 8vra " R.
C

(124)

(In particular, Eq. (124) yields the entropy of a sta-
tionary black hole in Lovelock gravity, in agreement with
[4].) Note that this formula difFers from what would be
obtained from simply substituting the expression (121)
into Eq. (92). It is not known whether this definition of
Spyn satisfies the second law.

Note added. After this paper was submitted, it came to
our attention that a fifth condition could be added to the
requirements for the definition of Sdz„. (5) Sd„„should
not change under a local, nonderivative field redefinition

I

P ~ F(P). Since, in general, we have [F($)]I& P F(/le),
our proposed definition does not satisfy condition (5)
for arbitrary theories of gravity, although it does satisfy
this condition for the three theories explicitly considered
above. Thus, it appears that the definition of Sdy„ in an
arbitrary theory of gravity remains an open problem.
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APPENDIX: APPLICATIONS TO THEORIES
WITH A NONDYNAMICAL METRIC

In the body of this paper we have considered theories
which are difFeomorphism covariant in the sense of Eq.
(2). It was seen in Sec. II that this condition implies
the absence of "nondynamical fields" in the Lagrangian.
In particular, the difFeomorphism covariance condition
excludes the case of theories with a nondynamical metric,
such as theories of fields in Hat spacetime. Nevertheless,
a number of formulas and results derived in the body of
this paper continue to hold for theories with a Lagrangian
locally constructed out of a metric, g p, and matter fields

g, of the form (3), i.e., for the Lagrangian

L = L (gabr+ &Rab de err+(a& ' '+a~)Rbcder Or+a& Pr +(az '''+ar) Pj (A1)

but where the metric g g is now treated as a fixed, non-
dynamical entity, so that, in particular, the equations of
motion, Ez ——0, no longer are imposed. The purpose
of this appendix is to present simple, unified derivations
of some formulas and results (most of which are "well
known") for such theories with a nondynamical metric.

In a theory with Lagrangian of the forin (Al) but with
nondynamical metric, we define the stress-energy tensor
T ~ = T~ ~~ of the matter fields by

(A5)

d(J+k e) =0 (A6)

from which it follows immediately [14] that

which shows that the stress-energy tensor is covariantly
conserved whenever the matter equations of motion hold.
Note that Eq. (A3) then yields simply

Tab 2(E )ab (A2) J+k e=dK, (A7)

dJ = —(Eg) Egg b

TV'( fb)e—
V[T fb]e+ (—bV [T ]e

= -d(k . e) + (bV'a[T ]e, (A3)

where

For each vector field, (a, we again define the Noether
current J by Eq. (48) above. However, the (matter)
equations of motion no longer imply that J is closed.
Indeed, by Eq. (49), we see that when Eq = 0, we have

where K is locally constructed out of g b, Q, f, and their
derivatives. In other words, we have shown that, apart
Rom a "surface term, " the Noether current is equivalent
to the stress-energy current Tb(b. —

It is important to note that the equations of motion
for g g were not used anywhere in the derivation of Eqs.
(72)—(74) or Eqs. (77)—(80). Thus, these equations re-
main valid in the case of a theory with a nondynam-
ical metric. In particular, if a Hamiltonian exists for a
time translation vector field, t, on a globally hyperbolic,
asymptotically Bat spacetime, then it is natural to de6ne
the canonical energy at "time" C by

ka Tabg (A4) J — t. B (A8)

By inspection of Eq. (A3), we see that the n-form
gbV' [T ]e is exact for all $ . However, since ( is arbi-
trary, this is impossible unless

[see Eqs. (80) and (82) above]. In other words, apart
from the possible "surface term" J'~ t B (which vanishes
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in most of the commonly considered theories of matter
fields in a background spacetime), the canonical energy
is simply the integral of the Noether current, J, over a
Cauchy surface. However, since we no longer have J =
dQ, this volume integral no longer can be converted into a
surface integral. In particular, E' depends upon the choice
of t in the interior of the spacetime, not just upon its
asymptotic value at infinity. Note also that since J need
not be closed [see Eq. (A3)], S need not be conserved,
i.e. , independent of C.

Using Eq. (A7) we find

km+ K —t B

Tgnt 8+ K —t B, (A9)

(A10)

In particular, since l:2 it) vanishes at A = 0, we see that the
first variation of the canonical energy about a stationary
solution vanishes:

bZ =0. (All)

where n denotes the future-directed unit normal to C,
and Rg, . ..g„, ——n e t„...g„, is the natural volume ele-
ment on C. Thus, apart &om some possible surface term
contributions which can arise &om both K and B, the
canonical energy is given by the usual formula involving
an integral of the stress-energy tensor over C.

As noted above, in general E' is not conserved, i.e., in-
dependent of choice of Cauchy surface, C. However, if
the spacetime metric is stationary, Dig b = 0 (but sta-
tionarity need not be imposed upon the matter fields),
then the first line of Eq. (A3) shows that J is closed.
Equation (A7) then immediately implies that the stress-
energy current form —k e also is closed (as also could
easily be verified directly). Equation (A8) then implies
that E' does not change when the Cauchy surface, C, un-
dergoes variations of compact support. In the usual case
where t B vanishes at infinity and J goes to zero suit-
ably rapidly at infinity, S will take the same value for all
asymptotically Bat Cauchy surfaces.

Now, suppose that g t, is stationary, i.e. , Czg~p = 0,
and suppose that g(A) is a one-parameter family of so-
lutions to the matter equations of motion (in the fixed
metric g b) such that Q(0) is stationary, i.e. , l:&Q(0) = 0.
Let 8(A) denote the canonical energy of these solutions.
Then, since l:2g b = 0, by Eqs. (77) and (80), we have,
for all A,

where

(A13)

tt (bg, L lip) = 2 f T tv t 2 + 2j (K —t . B). (Alt)

Again, for the types of theories usually considered (such
as a Klein-Gordon scalar field), the surface terms from
infinity in Eq. (A14) vanish. The resulting relation plays
an important role in defining a natural vacuum state for
linear quantum fields in a stationary spacetime [21,22].

Consider, now, the case where the nondynamical met-
ric is a flat metric, g b. We denote the (flat) derivative
operator associated with )7 b by 8 Let ( .be a transla-
tional Killing field of q b, so that )9 ( = 0. Then, clearly,
at each point of spacetime the Noether current J asso-
ciated with ( is linear in the value of ( at that point.
Hence, there exists a unique tensor field, 7 b, called the
canonical energy-momentum tensor, such that

a 6Ja . a = 7 b( &aa a (A15)

Conservation of J implies conservation of 7 b in its first
index: i.e. ,

Note, in particular, that h E' depends oiily upon b@, and
not upon h2$.

Equation (A12) is one of the key results of this ap-
pendix. To elucidate its meaning, we note that if h@
satisfies the linearized equations of motion about a sta-
tionary solution, 2)'2, then so does l:qadi)2. Consequently, the
symplectic current form ur (g, bg, l:tbQ), defined above by
Eq. (43), is closed. Thus, its integral over a Cauchy sur-
face, C, yields a conserved quantity for perturbations.
Equation (A12) shows that, apart Rom a factor of 2, this
conserved quantity is just the second order change in the
canonical energy associated with this perturbation. By
our previous results, we see that this conserved quan-
tity is equivalent, up to possible "surface terms, " to the
conserved quantities f& b2 J and f& b2T bn tbe.

As a simple application of the above result, consider
the theory of a linear field @ in a stationary spacetime,
where by "linear" we mean that L is quadratic in g, so
that the equations of motion for g are linear. In this
case, the equations of motion are the same as the lin-
earized equations about i)2 = 0, so we may choose the
"unperturbed solution" to be g = 0, and we may write
8Q = g in the above formulas. We also have b2E' = 8
and h2T b = T b Hence, .we obtain, from Eqs. (A9) and
(A12),

Now take the derivative of Eq. (A10) with respect to A

and evaluate the resulting equation at A = 0. A nonzero
contribution will occur on the right side only when the A

derivative acts on l:2$. We thereby find that the second
variation of canonical energy about a stationary solution

g is given by

c) 7b=0 (A16)

7-ab Tab + g Hcab

However, 7 need not be symmetric. Nevertheless, Eq.
(A7) implies that there exists a tensor field Ha™
H~ l, locally constructed out of q b and g, such that

(A12)
Thus, we have rederived the well-known fact that 7 b
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always can be "symmetrized" by the addition of an iden-
tically conserved tensor 0 H' ~.

Finally, we note that much of the theory of pseudoten-
sors can be derived by applying the results of this ap-
pendix back to the case where the metric again is a dy-
namical variable in the Lagrangian (Al). For a diffeo-
morphism invariant theory of the type considered in the
body of this paper, we may introduce a fixed Bat metric,
g p, on spacetime, and express the dynamical metric g p

as

gab —gab + hah (A18)

We then may treat g p and h p as independent fields,
and view our theory as a theory with Lagrangian of the
form (Al) with the dynaxnical fields (h s, @) and a non-
dynamical metric xI s. One of the (very few) advantages
of doing this is that many xnore quantities qualify as "co-
variant" when g g and h t, are viewed as independent
6elds. In particular, in general relativity, no diffeomor-
phism covariant (n —1)-form, B, satisfying Eq. (79) can
be constructed out of g p, but there is no difBculty in
constructing a diffeomorphism covariant B out of the in-
dependent 6elds g p and h p. Thus, we may change the
Lagrangian via

LmL'=L —dB (A19)

and still view L' as being of the general form (Al) (with
rI s and Ix s viewed as independent fields). Under the
change of Lagrangian (A19), O is modified by

0~ 0'= 0 —bB (A20)

[see Eq. (41) above]. Consequently, we have J' t O' = 0,
and the canonical energy now is given simply by

(A21)

Since the theory has been recast to have a Lagrangian
of the form (Al) in a spacetime with a nondynamical fiat
metric g p, a canonical energy-momentum tensor can be
defined by Eq. (A15). We denote this tensor as t s, and
refer to it as a pseudotensor because it depends upon the
choice of Hat metric, g g and thus is not covariant with
respect to difi'eomorphisms which act only upon the dy-
namical 6elds. For the case of vacuum general relativity
with the Lagrangian L' of Eq. (A19) with an appropriate
choice of B, t g corresponds to the Einstein pseudotensor
[23]. Note that Eq. (A21) can be rewritten in terms of
t gas

t ~n. t'a

t Od x, (A22)

where the last line holds when C is taken to be the hy-
persurface t =const in a global inertial coordinate system
of go

In order to de6ne a stress-energy tensor corresponding

to (A2) we must specify the functional dependence of the
Lagrangian on xl s for general (nonflat) q q. One way to
do this would be to take L for general g g to be given

by the substitution (A18) in the original Lagrangian. In
that case, L clearly depends upon g ~ and h g only in
the combination q p + h p. Consequently, the equations
of motion for g g will be satis6ed whenever the equations
of motion for the dynamical Geld h p hold. Note that B
need not depend only on the combination g g + h g, so
L', defined by Eq. (A19), need not depend only upon
this combination. Nevertheless, since addition of an ex-
act form to L does not alter the equations of motion,
it remains true for L' that the equations of motion for

g p will be satisfied whenever the equations of motion
for the dynamical field h p hold. But, this implies that
the energy-momentum tensor defined by (A2) vanishes

by virtue of the equations of motion for the dynamical
fields. Equation (A17) then yields

tab g IIcab (A23)

This proves that, when the equations of motion are im-

posed, the pseudotensor t p always can be derived &om
a "superpotential" H' ~. Consequently, the volume inte-
gral (A22) always can be converted to a surface integral
at in6nity. This fact, of course, corresponds to our previ-
ous result, Eq. (82), which was derived in a much more
simple and direct manner.

When recast in the form (Al), the Lagrangian obtained
from L' by the simple substitution (A18) described above
will, in general, have a nontrivial, explicit dependence
upon the curvature of g g. However, an alternative pro-
cedure for defining a Lagrangian for nonHat g ~, which
clearly agrees with L' when g p is Bat, would be to mod-
ify the Lagrangian of the previous paragraph by simply
setting the terms in L' involving the curvature of g g to
zero. If we do so, the stress-energy tensor defined by
(A2) for this modified Lagrangian will be nonvanishing.
We denote this stress-energy tensor by t ~. If, as seems
plausible, the surface term K does not contribute to Eq.
(A9), then the symxnetric pseudotensor t s will be equiv-
alent to t b insofar as the calculation of canonical energy
is concerned, i.e. , Eq. (A22) will hold with t s replaced
by t s Note that .Eqs. (A9) and (A23) imply that t b

also is derivable from a superpotential. Other symmetric
pseudotensors derivable &om a superpotential can be ex-
plicitly constructed in the case of general relativity (see,
e.g. , [24]).

The dependence of pseudotensors such as t g or t g

on the choice of g g signi6cantly limits their physical in-
terpretation and utility. Indeed, it is diKcult to imag-
ine any use to which they could be put other than for
the definition or calculation of the canonical energy and
other asymptotic conserved quantities, and this can be
accomplished much more straightforwardly by the meth-
ods described in the body of this paper. Nevertheless,
the canonical energy can be correctly computed &om a
pseudotensor via Eq. (A22). In particular, if we consider
perturbations of a stationary solution and choose the Bat
metric g p so that the Killing field, t, of the stationary
background is a translational Killing field of g g, then
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bE'= bt pdx (A24)

is a nontrivial conserved quantity which depends only on
the 6rst order perturbation of the dynamical 6elds. For
an arbitrary pseudotensor, this formula for b2E' is not
very useful because to get an expression for the conserved
quantity in terms of the first order perturbation, one
must use the second order 6eld equations to eliminate the
terms in 8 t p which involve the second order perturba-
tion. However, as shown by Sorkin [23], for the Einstein
pseudotensor, the terms in b t p involving the second or-
der perturbation are separately conserved (irrespective of
the second order field equations), so the Einstein pseu-
dotensor can be used to obtain a nontrivial conserved

quantity constructed out of the 6rst order perturbation
of the dynamical 6elds. For perturbations of static, elec-
trovac spacetimes in general relativity, this conserved
quantity is equivalent to the conserved Aux integral ob-
tained by Chandrasekhar and Ferrari [25,26]. As was
shown explicitly in [27], the Chandrasekhar-Ferrari con-
served current also is equivalent to the symplectic current
(n —1)-form w(P; bP, I' the), which directly yields 4 8 by
Eq. (A12) above. Note that w is constructed entirely out
of the dynamical 6elds and their perturbations —-in par-
ticular, no background Bat metric need be introduced ——

so it provides a covariant version of the conserved Aux

integral. However, w is not gauge invariant under in-
6nitesimal gauge transformations of the perturbed dy-
namical 6elds, so it also does not provide a meaningful
notion of the local energy density of the perturbation.
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