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Instabilities of the Cauchy horizon in Kerr black holes
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A previously developed Cauchy horizon stability conjecture is used to investigate the stability of the
Cauchy horizon in the Kerr geometry when various fields are introduced. In particular, the effects of an
electromagnetic field, infalling null dust, and combined infalling and outgoing null dust are studied. Sta-
bility predictions are made and in one case verified. The nature of any resulting singularities is predict-

ed.
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I. INTRODUCTION

The Kerr geometry of a rotating black hole has two
horizons: an outer, event horizon and an inner, Cauchy
horizon. The Cauchy horizon (CH) is the boundary of
points within the Cauchy development of the world out-
side the event horizon. The stability of this CH is in-
teresting because it is a gateway to regions containing
singularities and alternative external worlds in the com-
plete analytic extension of the geometry. Observers
falling through the event horizon of a Kerr black hole
would subsequently pass through the CH as well, enter-
ing a region in which they could see the singularity, in
violation of the strong cosmic censorship hypothesis. In-
stabilities of the CH in realistic circumstances might
close the gate, protecting strong cosmic censorship by in-
troducing impenetrable singularities.

In a number of papers [1-8], we have developed stabil-
ity conjectures for the investigation of mild singularities
and CH’s in solutions of Einstein’s equations. We look at
the behavior of test fields in the vicinity of the singulari-
ty or CH, and based upon this behavior, we predict what
should become of the singularity or CH if the fields are
allowed to influence the geometry through back reaction
calculations using Einstein’s equations. In a few cases,
these back reaction calculations have actually been car-
ried out [3,5,8]; in each of these cases, the results agree
with the predictions of the conjectures.

In this paper we use the CH conjecture [8] to investi-
gate the stability of the CH in the Kerr geometry when
various fields are added. We are able to test our conjec-
ture for one of these fields by comparing with the results
of a back reaction calculation.

In Sec. II we define singularity types and review the
strong cosmic censorship hypothesis of Penrose. We then
state the stability conjectures and tests of the conjectures.
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In Sec. III we begin by reviewing the properties of Kerr
spacetime and review a previous investigation of the CH
stability in this geometry. Then in Sec. III A we derive a
prediction in the case of the lowest electromagnetic-field
mode and compare with the Kerr-Newman spacetime.
In Sec. III B we derive a prediction in the case of infalling
null dust. In Sec. III C we derive a prediction in the case
of both infalling and outgoing null dust. In Sec. IV we
summarize our conclusions.

II. SINGULARITY CLASSIFICATION
AND STABILITY CONJECTURES

We use a singularity classification scheme based on one
devised by Ellis and Schmidt [9]. They classified singu-
larities in maximal spacetimes into three basic types:
quasiregular, nonscalar curvature, and scalar curvature.
The mildest singularity is quasiregular and the strongest
is scalar curvature. At a scalar curvature singularity,
physical quantities such as energy density and tidal forces
diverge in the frames of all observers who approach the
singularity. At a nonscalar curvature singularity, there
exist curves through each point arbitrarily close to the
singularity such that observers moving on these curves
experience perfectly regular tidal forces [9,10]. For a
quasiregular singularity, no observers see physical quanti-
ties diverge, even though their world lines end at the
singularity in a finite proper time.

Our version of the Ellis-Schmidt classification scheme
can be expressed mathematically. We define singular
points simply as the end points of incomplete geodesics in
maximal spacetimes; Ellis and Schmidt use instead a b-
boundary construction to define the singular points. In
our scheme a singular point g is a quasiregular singularity
if all components of the Riemann tensor R, evaluated
in an orthonormal frame parallel propagated along an in-
complete geodesic ending at g are C° (or C°7). In other
words, the Riemann tensor components tend to finite lim-
its (or are bounded). On the other hand, a singular point
g is a curvature singularity if some components are not
bounded in this way. If all scalars in g,,, the antisym-
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metric tensor 7,4, and R,,.; nevertheless tend to a finite
limit (or are bounded), the singularity is nonscalar, but if
any scalar is unbounded, the point g is a scalar curvature
singularity.

We have previously used stability conjectures [1-7] to
test the stability of quasiregular singularities, nonscalar
curvature singularities, and Cauchy horizons. For singu-
larities our conjecture states the following.

Conjecture 1. If a test-field stress-energy tensor evalu-
ated in a parallel-propagated orthonormal (PPON) frame
mimics the behavior of the Riemann tensor components
which indicate a particular type of singularity, then a
complete nonlinear back reaction calculation would show
that this type of singularity occurs.

For Cauchy horizons, the conjecture
modified [8] to state the following.

Conjecture 2. For all maximally extended spacetimes
with CH’s, the back reaction due to a field (whose test-
field stress-energy tensor is T, ) will affect the horizon in
the following manner: (1) If both T/ and T,,T"" are
finite and if the stress-energy tensor T,z in all PPON
frames is finite, then the CH will remain nonsingular; (2)
if both T% and T,,T"" are finite but T .4 diverges in
some PPON frame, then a nonscalar curvature singulari-
ty will be formed at the CH; (3) if either Tﬁ or T#VT*“’
diverges, then a scalar curvature singularity will be
formed at the CH.

Conjecture 1 has been tested in several cases, as re-
viewed in a previous paper [8]. Conjecture 2 has been
tested so far only in the Reissner-Nordstrom spacetime
[8]. The conjecture predicts that the addition of infalling
null dust with a power-law tail produces a nonscalar cur-
vature singularity at the CH in the Reissner-Nordstrom
spacetime. The prediction was verified using a Reissner-
Nordstrom-Vaidya spacetime studied by Hiscock [11].
The conjecture also predicts that a combination of in-
falling and outgoing null dust produces a scalar curvature
singularity at the CH. This prediction was verified using
the mass inflation results of Poisson and Israel [12]. Fi-
nally, the conjecture predicts that the addition of in-
falling scalar or electromagnetic waves produces a scalar
curvature singularity at the CH; there are no exact solu-
tions with which to verify the conjecture in these cases.

Conjecture 2 bears on the question of cosmic censor-
ship. There are two versions of the cosmic censorship
conjecture [13]. The strong version states that there are
no nontrivial CH’s, that is, that the entire spacetime is
globally hyperbolic. One can reduce the question of
strong cosmic censorship down to a question: Does
there exist at least one stable CH? Or does there exist at
least one observer who sees a singularity but does not run
into it? If so, strong cosmic censorship is violated. The
weak version states that all “physically realistic” singu-
larities are hidden by black hole event horizons. In other
words, all breakdowns of global hyperbolicity occur in-
side black holes.

We are concerned here with strong cosmic censorship.
Three exact solutions are counterexamples: Taub-
Newman-Unti-Tamburino (Taub-NUT), Reissner-
Nordstrom, and Kerr. The maximal extensions of all
these spacetimes are extendible through their maximal
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Cauchy developments. However, many authors have
shown that perturbations of these spacetimes destroy the
extendibility of the CH’s by turning them into singulari-
ties [13].

Here we are interested in perturbing the CH in Kerr
and in predicting not only whether a singularity forms
but predicting what kind of singularity forms. In other
words, we are not only interested in answering the ques-
tion of strong cosmic censorship in this case, but also in
answering the question of the nature of the singularity if
one forms.

III. STABILITY TESTS
OF THE KERR CAUCHY HORIZON

The extended Kerr geometry of a rotating uncharged
black hole is described in Boyer-Lindquist coordinates
[14] by the metric
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ds?=— I—M dt2-—2is—12n—2(2mr)dtd¢
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where A=r?+a>—2mr and p*=r?+a’cos’d. There is
an outer event horizon at » =r_, and an inner (Cauchy)
horizon at r =r_, where r,. are the zeros of A. A por-
tion of the extended Kerr geometry for a?><m? is shown
in Fig. 1. Observers falling into the black hole through
r, see light from the entire future history of the region
outside the black hole, as they approach » _.

Evidence has accumulated [13] showing that this CH,
like the Reissner-Nordstrom CH, is unstable. Fields
falling in the vicinity of  _ from outside the black hole or

FIG. 1. Conformal diagram of a portion of the Kerr space-
time. An observer (OB) is shown falling through the event hor-
izon (EH) at r =r, into the interior region and then through
the Cauchy horizon (CH) at r =r_. Just before reaching the
CH, the observer can receive light from the entire future of the
exterior region; after passing the CH, the observer can view the
singularity.
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scattering from within the black hole are blueshifted; the
magnitude and/or energy density of these fields diverges
as measured by observers falling toward the CH.
McNamara [15] analytically evolved gravitational and
electromagnetic perturbations in Kerr space, determining
the effect of the perturbations on the CH to first order.
He argued that the entire CH would become singular.
While this result does not prove that the CH is unstable,
since it does not include a complete back reaction calcu-
lation of the field effects on the geometry, it does point to
a likelihood of instability. Many other researchers use
the instability of the Reissner-Nordstrom CH to indicate
the instability of the Kerr CH because of the similar
geometries (see the review in [13]).

We now explore the Kerr CH using our conjecture.
Radial geodesics with angular momentum L =aE in the
equatorial plane 6=1/2 obey

. r*+a?
i A E ,
1/2

A
. 2__
F= E ) ,
=0 (2)
j— 9E
¢— A ’

where E is the energy. We will use only PPON frame
vectors E{,, for infalling timelike L =aE geodesics in the
equatorial plane; general vectors are more complicated.

These  vectors,  satisfying  Ef, ,E(;=0 and
E (0, Ely) =8(ap) are
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in the order ¢,r,0,¢.

A. Electromagnetic field

The only nonzero Maxwell scalar in the Newman-
Penrose formalism for a monopole electric and dipole
magnetic field in the Kerr metric is [16]

¢=—%[r—ia cos0] 2. 4)
The corresponding electromagnetic-field tensor in a coor-
dinate frame is

Fo =29+ @)n,l, 1,0, 1+29=F)m 7,7, m,] ,
(5)

in terms of the null tetrad I,,n,,m,,m, for the Kerr
metric [16,17]. One may then calculate the stress-energy
tensor T,, in a coordinate frame. Its nonzero com-

ponents are
To=Q(A+a%in’0)/2p°
Toy=—Qa sin’0(A+mr)/p® ,
T, =—0/2% , (6)
T,,=Q/2p%,
Ty =0 sin®0[(r2+a?)*+ Aa’sin20]/2p°

for which the scalar T#,=0 and the scalar
™T,,=16Q /p%. Since both are finite, a scalar curva-
ture singularity should not form at the CH, according to
the conjecture. What about a nonscalar curvature singu-
larity?

To predict the formation of a nonscalar curvature
singularity, we need to calculate T, in the parallel-
propagated orthonormal frame of Egs. (3). The nonzero
components are

Tio0)=T22)=T(13/2=T 3, /2=—8/r*, )

which are nonsingular at the CH. Our conjecture pre-
dicts that the CH will remain nonsingular if the T, are
nonsingular for all PPON frames approaching the CH.
Although we have calculated the T, only for L =aE
equatorial-plane geodesics, we expect that the CH is non-
singular in general.

There is a well-known back reaction solution with
which to compare the Kerr-Newman spacetime of a ro-
tating black hole with electric charge Q. Its Coulomb
electric field and dipole magnetic field lead to the same
F,, and T,, as those of the test field in the Kerr
geometry. The Kerr-Newman spacetime has a CH at
r_=m—V m?—a?—Q? which corresponds to the Kerr
CH when the charge Q —0. The only singularity is the
scalar curvature ring singularity at r =0, 8=m/2 as in
the Kerr case; in particular, the Kerr-Newman CH is
nonsingular. As one would expect, our conjecture is
verified in this simple case.

B. Infalling null dust
Now add to a background Kerr spacetime a test field

of infalling null dust. The stress-energy tensor has the
form



844 D. A. KONKOWSKI AND T. M. HELLIWELL 50

T =putu" , (8)
where p(t,r,60) is a scalar density and

2 2
wh=|7F4% 04/ ©)

is the infalling principal null congruence [18]. From the
continuity equation 7#*,, =0, we find p has the form

A(O)F (v)
(t,r,0)=———7F—,
P r2+a3cos?6

where A(0) is an arbitrary function of 8 and F(v) is an
arbitrary function of v =¢ +r_, with tortoise coordinate

2 2
ri +a

(10)

r* +a?
re=r-+ Inlr—r |- In[r—r_|.

Fy—r_ + T F_

(11

We can set initial data for p on a spacelike hypersurface
and will set 4 (0)=1.

The scalars T*, and T#'T,, vanish everywhere, and so
according to our conjecture such null dust should not
produce a scalar curvature singularity (SCS) at the CH.
To see whether null dust should produce a nonscalar cur-
vature singularity (NSCS) instead, we must compute T,
in a PPON frame and see how it behaves as the frame ap-
proaches the CH. The PPON frame vector Efj, for
equatorial-plane timelike geodesics, with angular momen-
tum and energy related by L =akE, is

E(r’+a®) i

Efp)= A E*—A/r%,0,aE/A | . (12)

Therefore the energy density of infalling radiation mea-
sured in the PPON frame is

VEIZA /r2)?
T(o0)= UE|+ EAZA/r VFv) . (13)

As v— 0, the behavior of Ty, is governed by that of
F(v)/A% If this ratio diverges, a NSCS will be formed at
the CH.

Define e=r—r_; then, A=—(r, —r_)e to first order
in €. Along an infalling timelike geodesic,

Ao _ 30 _ _ (ge)-! (14)

to leading order, where a=(r, —r_)/2(r> +a?).
Therefore e =gpe ~ *" near the CH, where ¢, is a constant,
and so

F(v)/A*~F (v)e?® (15)

for large v, which diverges unless F(v) falls off fast
enough. That is, according to the conjecture, a NSCS
should be formed at the CH by infalling null dust, unless
F (v) falls off at least as fast as F(v) ~e 2%, in which case
the CH remains nonsingular.

Sources of infalling radiation outside a Kerr black hole
typically produce a power-law tail F(v)~v " inside 7,

due to scattering [19]. If so, F(v) does not fall off fast
enough to prevent the formation of a NSCS at the CH.

C. Both infalling and outgoing null dust

Now add “outgoing” null dust to the infalling null dust
described in the previous subsection, in the region
r_ <r<r,, as shown in Fig. 2. This outgoing radiation
moves from lower left to upper right in the figure, ap-
proaching the CH at » _. One would expect such outgo-
ing radiation in realistic circumstances, originating at the
surface of the collapsing star. We assume the infalling
and outgoing beams do not interact, and so each is sepa-
rately conserved. We will show that the addition of out-
going radiation produces a SCS at the CH.

The infalling radiation has stress-energy T4 =p uf'uy,
where p;(v,r,0) and uf are given by Eqgs. (10) and (9), re-
spectively. The outgoing radiation has the stress-energy

T =polu,r,0)ufuy , (16)
where
G(u)
(u,r,0)=————"——, (a7
Po r?+a’cos’0

with G (u) an arbitrary function of u =r, —¢. The outgo-
ing null vectors are

24 2
p— |_rte’ o _a 18
uO A b ’ b A b ( )
the appropriate solution of ufug, =0 and uf,ugs=0.

The outgoing radiation also satisfies the continuity equa-
tion T4, =0.

The total null dust stress-energy for both infalling and
outgoing null dust is

TH=p,(v,r,0)ufu} +polu,r,0)ubul | (19)

for which T#,=0. Because of cross-product terms, how-
ever,

_ 8F(v)G (u)
==

which diverges as r —r_ if (i) G(u) is nonzero as v — o

T*T,, , (20)

singularity

FIG. 2. Inflowing and outflowing radiation in the Ker
geometry. Inflowing radiation moves from lower right to upper
left, falling through the event horizon into the black hole.
Outflowing radiation, originating at the surface of a collapsing
star or from backscattering of inflowing radiation, moves from
lower left to upper right, passing through the Cauchy horizon.
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and (ii) F(v)/A? diverges. Therefore, if there is at least
some outgoing null dust, no matter how small, and the
infalling dust has a power-law tail or otherwise fails to
fall off too quickly as v— o, a SCS is formed at the CH
according to our conjecture. The addition of even a tiny
amount of outgoing radiation is sufficient to convert the
NSCS of the preceding subsection into a SCS. This is re-
lated, according to our method, to the nonlinearity of
T™T,,, which combines properties of the two nonin-
teracting beams.

In the case of the Reissner-Nordstrom electrically
charged, nonrotating black holes, Poisson and Israel have
shown that an exact solution of Einstein’s equations with
both infalling and outgoing null dust has a SCS at the CH
[12]. This result is consistent with our conjecture for the
stability of CH’s [8]. In this paper we have shown that
according to the conjecture the same result should per-
tain to the CH of rotating, uncharged black holes. We
expect that solutions containing both infalling and outgo-
ing null dust should display a scalar curvature singularity
at the inner horizon.

IV. CONCLUSION AND DISCUSSION

We have used a stability conjecture for Cauchy hor-
izons introduced in a previous paper to predict the fate of
the Cauchy horizon in a Kerr black hole under the
influence of an added electric charge, infalling null dust,
or combination of infalling and outgoing null dust. With
the lowest-mode electromagnetic field caused by the elec-
tric charge, the Cauchy horizon should remain nonsingu-
lar. This result is in agreement with the back reaction
calculation embodied in the Kerr-Newman solution of a
charged, rotating black hole. With infalling null dust, a
nonscalar curvature singularity should be formed, and
with the combination of infalling and outgoing null dust,
a scalar curvature singularity should be formed.
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