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We study the interactions of quarks and antiquarks with the changing Higgs Geld during the
electroweak phase transition, including quantum mechanical and some thermal efFects, with the
only source of CP violation being the known CKM phase. We show that the GIM cancellation,
which has been commonly thought to imply a prediction which is at least 10 orders of magnitude
too small, can be evaded in certain kinematic regimes, for instance, when the strange quark is
totally reaected but the down quark is not. We report on a quantitative calculation of the asym-
metry in a one-dimensional approximation based on the present understanding of the physics of
the high-temperature environment, but with some aspects of the problem oversimplified. The re-
sulting prediction for the magnitude and sign of the present baryonic asymmetry of the Universe
agrees with the observed value, with moderately optimistic assumptions about the dynamics of the
phase transition. Both magnitude and sign of the asymmetry have an intricate dependence on quark
masses and mixings, so that quantitative agreement between prediction and observation would be
highly nontrivial. At present uncertainties related to the dynamics of the EW phase transition and
the oversimplifications of our treatment are too great to decide whether or not this is the correct
explanation for the presence of remnant matter in our Universe; however, the present work makes
it clear that the minimal standard model cannot be discounted as a contender for explaining this
phenomenon.

PACS number(s): 98.80.Cq, 12.15.Ji

I. INTRODUCTION

The nonzero ratio of baryon number to entropy,
ns/s (4 —6) x 10 ~~, is an important challenge to
particle theory. Many possible mechanisms have been
advanced to explain it [1—6] (for reviews and references
to more recent work see, e.g. , Refs. [7—13]). The standard
electroweak theory contains in principle all the elements
necessary [1] for generation of the baryonic asymmetry
of the Universe (BAU). (1) C and CP violations, in the
fundamental gauge and Higgs interactions of the quarks;
(2) anomalous electroweak baryon number violation~ [14,
15]; (3) a departure from thermal equilibrium, assuming
the cosmological SU(2) xU(1) phase transition [19,20] is
6rst order.

However, conventional wisdom holds that the minimal
standard model (MSM) cannot by itself cause the ob-
served baryonic asymmetry of the Universe. The most
important reason is that the CP violation present in
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It was shown in Ref. [16] (for earlier discussion see [17,6,
18]) that although anomalous B violation is negligible at zero
temperature, it is enormously enhanced at high temperature,
so that it can be large enough that the baryonic asymmetry of
the Universe may have been produced during the electroweak
phase transition.

the MSM to account for the observed CP violation in
kaon decays is commonly believed to be inadequate, by
10—12 orders of magnitude or more, to explain the ob-
served ~ 10 —10 level of the asymmetry. The sec-
ond reason is that such a large asymmetry can only be
generated in a strongly 6rst order phase transition, and
the Higgs sector of the MSM may not produce a suffi-
ciently strong phase transition. In particular, the rate
of sphaleron transitions after the phase transition must
be small enough not to wash out the asymmetry, so the
mass of the W' just after the phase transition must not
be too small [21). Using the one-loop high temperature
effective potential together with the one-loop sphaleron
rate results in the upper bound on the Higgs boson mass
in the MSM: MJV' = 45 GeV [22, 23], which is in con-
tradiction with the experimental lower bound reached at
the CERN e+e collider LEP: M~) 60 GeV.

For these reasons, people have considered extensions of
the standard model in a search for a mechanism for elec-
troweak baryogenesis [16, 25—34]. Variants of the elec-
troweak theory contain more &ee parameters thaD the
MSM alone, allowing the introduction of an extra source
of CP violation and allowing the upper bound on the
Higgs boson mass to be relaxed [35—39]. The general con-

For the current best limit &om all four experiments, see

[24].
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elusion is quite optimistic: the baryon asymmetry of the
Universe can plausibly be a natural consequence of sev-
eral extended versions of the standard model, provided
the electroweak phase transition is sufEciently strongly
first order and the additional source of CP violation is
strong enough. In these "scenarios, " however, the mag-
nitude and sign of the asymmetry cannot be predicted;
instead, the observed BAU must be used to constrain the
parameters of the extended theory.

We shall demonstrate in this paper that, contrary to
popular belief, known MSM physics alone may in fact
be responsible for the production of the baryonic asym-
metry, with no new source of CP violation required, as
long as the usual requirement of a sufBciently strongly
first order phase transition is met. We make a detailed
calculation of the asymmetry which is produced when
the quarks and antiquarks, treated as quasiparticle exci-
tations of the plasma (whose dispersion relation we ob-
tain using one-loop high temperature perturbation the-
ory) are quantum-mechanically re8ected from the bar-
rier presented to them by the interface between the re-
gions of small and large Higgs VEV. We simplify the
problem in several important respects, neglecting inco-
herent scattering of the quasiparticles and considering
only one-dimensional scattering. Since the results can be
consistent with observation in sign and magnitude, our
simpli6ed treatment provides the necessary incentive to
investigate MSM production of the BAU with a more re-
alistic treatment. It also provides insight into the most
important and problematic aspects of the physics, and
thus can be of guidance in future work.

The bulk of this paper is devoted to elucidating the
essential aspects of the physics involved in production
of the BAU in the minimal standard model, developing
necessary theoretical machinery for solving the problem,
and presenting the quantitative results of a fairly realistic
but nonetheless oversimplified calculation.

All present models of electroweak baryogenesis depend on
two essential aspects of the strength of the phase transition
which are in principle independent, but which for simplicity
we lump together when speaking of a requirement that the
phase transition be strong enough: the vacuum expectation
value (VEV) after the transition must be large enough that
sphaleron transitions in the broken phase are turned ofF, and
the bubbles of low temperature phase which expand to 6ll
the Universe must not be too Simsy or slow moving. The
Srst condition is the one which is better understood, so that
it is normally the one whose constraint is given quantitatively.

Whether or not the minimal standard model with a single
Higgs boson produces a suKciently strongly Grst order phase
transition is a separate question from whether the MSM CP
violation in the CKM matrix is suKciently large. In fact, it
is still an open question, since the uncertainties in the upper
bound on the Higgs boson mass are rather large. Although
the one loop calculation gives M~' ——45 GeV, taking into
account Debye screening efFects reduces the critical mass to
MH" ——35 GeV [40, 41]. The two-loop corrections increase
the latter number by about 5 GeV [42, 43], while nonpertur-
bative effects may change it up to MJI" 100 GeV [44].

The plan of the paper is as follows. We begin with a
section describing CP violation in the MSM and the ar-
gument leading to the conventional wisdom on the small-
ness of MSM CP violation. We discuss CP violation in
the K system, which is known to be 10, in order to
understand how the physics of the MSM may lead to C
and CP violation at the level required for the production
of the observed BAU. This allows us to identify aspects
of the physics which must be treated adequately if we are
to avoid missing the eEect in cosmology.

In Sec. III we give an overview of the various dynami-
cal mechanisms for electroweak baryogenesis which have
been discussed in the literature, and describe the mech-
anism [32, 33, 45j which we quantitatively investigate in
the latter portion of this paper. In this mechanism, the
CP-violating scattering of thermal quarks from the bub-
ble wall of the expanding Higgs VEV produces a baryonic
current flowing from the unbroken to the broken phase.
In Sec. IV we make a rough estimate of the size of the
baryonic current which might be anticipated from this
process, when the important region of phase space is not
overlooked. The quantitative calculation of the current
is deferred to the latter portion of the paper.

Given a nonzero current of baryon number produced by
some process involving the bubble wall, we must estimate
the ratio nB/s which remains after the phase transition
is complete, produced on account of sphaleron processes
which diminish the antibaryon excess in the unbroken
phase. We cannot give a 6rm estimate of this ratio as
a function of the sphaleron rate in the unbroken phase,
since it also depends on the nature of the bubble wall.
However we can obtain a conservative estimate of the
magnitude of n~/s by considering the case that the bub-
ble wall does not disequilibrate the medium as it passes,
i.e., in quasistatic approximation. This analysis is pre-
sented in Sec. V. Presumably improvements on the qua-
sistatic approximation will only increase the magnitude
of nJ3/s.

Interactions of the fermions with the gauge and Higgs
6elds of the high temperature plasma are crucial to the
existence of nontrivial'CP violation, as explained in Sec.
II. Moreover they are quantitatively important in other
regards. Thus we present in Sec. VI a discussion of the
properties of quark excitations in the thermal plasma.

While the discussion in the 6rst part of the paper is
rather general, independent of the precise source of the
baryonic current, in order to make a quantitative predic-
tion of the asymmetry we must adopt a particular mech-
anism for its production. The formalism which we have
developed in order to calculate the asymmetry in the re-
flection probabilities of quarks and antiquarks scattering
from the domain wall, is given in Sec. VII and the Ap-
pendixes. Using this formalism, Sec. VIII is devoted
to obtaining analytic results under various simplifying
assumptions. The analytic expression presented here is
helpful for understanding how the Glashow-Ihopoulos-
Maiani (GIM) mechanism can be evaded, and explaining
the 6nal dependence on quark Yukawa couplings. How-
ever in order to do a calculation with sufBcient accuracy
to address the question of the sign of the result, we must
do an exact numerical calculation. The results of this
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are given in Sec. IX. We explore in some detail how the
asymmetry depends on quark masses and mixings.

Having determined the asymmetry in the reBection
probabilities, we then combine it with the estimates of
the sphaleron conversion efFiciency and the asymmetry
in the Huxes, obtained in earlier sections, and give in
Sec. X our final estimate for ns/s. We review and elabo-
rate on the uncertainties and inadequacies of the present
calculation. The last section is the Conclusion, where we
summarize the present situation, describe the problems
which must be solved, and mention some consequences.

The main ideas of the paper can be understood by
reading Secs. II—IV, IX, X, and the Conclusion, although
Sec. V is important in that it shows how the final pre-
diction is connected to the kinetics and dynamics near
the bubble wall, and Sec. VI will aid in comprehending
some of the unusual properties of the thermal excitations
which are the actual eigenstates of the scattering prob-
lem. Many readers will also want to study the analytic
formula derived in Sec. VIII in thin wall, small p/u ap-
proximation, working to lowest nonvanishing order in the
mixing angles, in order to understand the dependence on
quark masses of the final asymmetry. Other sections and
the Appendixes are intended for readers wanting to un-
derstand the details as well as the general ideas.

A brief description this work has been published in
Ref. [46]. The present version of this paper corrects
some typographical errors in the original version and has
been somewhat reorganized (e.g. , moving more to the
Appendixes) and elaborated (especially the section on
analytic results) in order to make it more readily un-
derstandable. In addition we include two effects which
were previously neglected: I —R mixing due to /CD
sphalerons, and a diminution of the electroweak gauge
and Higgs efFects in the broken phase due to mass correc-
tions in the one-loop approximation to the quasiparticle
propagator. The results and conclusion are not signifi-
cantly modified; the discussion of the various uncertain-
ties is more complete and quantitative.

II. CP VIOLATION IN THE STANDARD MODEL

In the minimal standard model, CP violation occurs
because of relative phases between the electroweak gauge

interactions and the Higgs interactions of the quarks. As
shown by Kobayashi and Maskawa [47], if there are at
least three generations of quarks, there can be a phys-
ically meaningful phase which leads to observable CP-
violating effects. The part of the MSM Lagrangian which
involves quarks is

(2.1)

In the "gauge" basis

&G = QI, @QI, + Uit@UR+DRPDz (2.2)

and

(QI K*~Mq~iD~~P+Q'r, M„'*U~P+H c ), . .
2M~

(2.3)

where P is the appropriate covariant derivative, QI are
the left-handed quark doublets (i is the generation in-

dex), U& and D& are the right-handed quarks with elec-
tric charges 3 and —3, respectively, K is the Cabibbo-
Kobayashi-Maskawa (CKM) matrix, M„and Mg are the
diagonal mass matrices of the quarks, and P, = e,i/ . . In
this basis, the Lagrangian has been written in terms of
the fields which are eigenstates of the SU(2)L, gauge in-
teractions, and the CP violation is contained in a phase
in the matrix K, relating the gauge eigenstates to the
mass eigenstates. When a specific parametrization of the
CKM matrix is required, we adopt that of the Parti-
cle Data Group [48]. Note that by redefining the basis,
any one of the three types of fermionic interactions, with
charged or neutral Higgs bosons, or gauge bosons, can be
made purely real. This means that in order for a process
in the minimal standard model to violate CP, it must
involve in an essential way two or more of these interac-
tions.

If either mass matrix Mg or M„has two or more de-
generate elements, or if one or more of the mixing angles
in the CKM matrix vanishes, then with a physically un-
observable change of phases of the quark fields, the CKM
matrix can be made purely real and there is no CP vio-
lation. . Thus if the combination

dc/ = sin(813) sin(833) sin(ei3) siilbci (m~ —m, )(mg —m„)(m, —m„)(m$ —m, )(mi, —ms)(m, —mg) (2 4)

vanishes, CP violation vanishes. The basis-invariant for-
mulation of this statement can be found in Ref. [49].
Furthermore, it is essential for baryogenesis that not only
CP but also C be violated. Because of the chiral nature
of the SU(2) gauge interaction, left and right chiralities
of quarks have difFerent interactions, so that EMSM has
both C-even and C-odd pieces.

The above remarks make it evident that in order for
MSM processes to produce a baryon asymmetry, all 3
quark generations, as well as dynamics which distin-
guishes between chiralities and which involve quark in-

teractions with both neutral and charged bosons, must
play a significant role. In the next section we will de-
scribe how both these elements are incorporated in the
mechanism we investigate.

The "conventional wisdom. ,
" that CP violation origi-

nating from the KM phase is too small to be relevant to

I.e., not only the Higgs VEV but also R'+ or charged corn-

ponents of the Higgs field.
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the observed baryonic asymmetry, results &om arguing6
that the only natural scale for the baryogenesis problem
is the temperature of the electroweak phase transition,
T 100 GeV. One might think that at this temperature
the Yukawa interaction can be treated as a perturbation,
because quark masses are small compared with the tem-
perature. Then, since the baryon asymmetry is a dimen-
sionless number, the quantity (2.4) should be divided by
something with the dimension of (mass) . The natural
mass parameter at high temperatures seems to be the
temperature itself, so that the asymmetry is argued to
be at most

AQ

8 NgT~2

This reasoning has been widely accepted, but, as has
been the case with many "no-go" theorems, proves not
to be watertight when examined carefully. 7

In order to reveal one important point of weakness in
the above argument, it is instructive to consider CP vio-
lation in the K system. Here the CP-violating param-
eter is known to be quite large, e = 2 x 10 3. By anal-

ogy with the above discussion one could say that since
E ++ K oscillations are described by the box diagram,
the typical scale associated with this process is the mo-
mentum in the loop, p M~, leading to the conclusion
e dc~/Mw2 10 . This is, however, wrong by 14
orders of magnitude.

Of course, everybody knows why this "derivation" is
incorrect. The mass of the W boson is not the only scale
of the problem here. There are numerous other scales,
such as the mass of the kaon itself. Moreover, since mlc
is smaller than the masses of the c, b, and t quarks and
m~ m„a perturbative expansion in the quark masses
does not work, so that detailed calculation is necessary.
The box-diagram contribution was found [51],in the orig-
inal KM basis, to be

Im Mg2

Am
syc] s2C2s3c3 sin hgp(m, —m, ) t

22 2 4 2 4 2 . . .
l~

(m ™)E ) &™
8] Cg C3 2m, + 82mt +

W

m t'm &

2 t m2 m2 2 m2 mt2 m2

Here we give a popular version of the more sophisticated
treatment of Ref. [26].

This paper is not the first one to look for and point out pos-
sible loopholes in this argument. In Refs. [26,50] a mechansim
of MSM baryogenesis was explored based on the possible exis-
tence of a Chem-Simons condensate in the high temperature
phase and the decay of nontrivial Suctuations of gauge and
Higgs fields during the first order electroweak phase transi-
tion. There, a measure of CP violation in the efFective action
for the gauge fields in the expanding Universe was found to
be [50]

X 4 ~ 4 4 2rrw
~f

aw
i~

s2s3 sill bmq mmmm ~O
—15

:( ' + ': i)
(2.6)

which is not analytic in Yukawa coupling constants. More re-
cently, in [45] it was observed that for some processes occur-
ring in the hot plasma, Yukawa interactions cannot be treated
as a perturbation neither in the unbroken nor in the broken
phase due to mixing efFects, so that the formal argument lead-
ing to the estimate (2.5) does not hold.

Evidently, the dependence on mixing angles and quark
masses is much more complicated than ins Eq. (2.4).

It is interesting to note that the expression for e con-
tains no dependence on the charge —1/3 quark masses.
How then does CP violation disappear when mg ——m, ?
If the d and s quarks were degenerate in mass, then kaons
and pions would be degenerate, and the expression for
mixing between particles and antiparticles would contain
box diagrams connecting, e.g. , dd with de pairs, etc. , in
such a way that the siam would vanish (GIM cancella-

Sometimes it is said that any CP-violating quantity, in
particular the BAU, must be proportional to d~~ since it
has a basis-invariant representation, the "Jarlskog determi-
nant" [49]. This reasoning is incorrect, however, because
diaz is not the only CP-violating quantity with a basis-
independent representation. Indeed e itself, given in a par-
ticular basis in Eq. (2.7), provides an example of a quantity
besides d~~ with a basis-independent representation, as is
obvious since it is a physical observable.
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tion). While it is surely true that CP violation must
disappear if any pair of like-charge quarks is degenerate
in mass, we see from this example that this does not mean
that CP-violating quantities are manifestly proportional
to all pairs of mass-squared differences. The first term in
a Taylor expansion in mass-squared differences may be
a very poor representation of the dependence on masses,
for physically relevant values of masses.

We can draw two lessons for cosmology from the kaon
example. First, one should look for a process involving
some small energy scale so that perturbative expansion
in the quark masses does not work. This scale should
be of the order of the strange quark mass or less, since
otherwise the contribution &om the strange quark will
tend to cancel the d-quark contribution. Second, the
analysis must be concrete and based on some specific
mechanism, otherwise one cannot know which scale is
relevant.

There are many different energy scales at high tem-
peratures. We shall argue that the most important of
them (from the point of view of CP violation) may be
the thermal momenta p of the quarks. While the typical
momentum in the heat bath is of the order of the temper-
ature, some &action of the particles carry much smaller
momenta and, for them, CP violation can be substantial.
In order to make a real calculation of the effect, one must
choose a mechanism for baryogenesis. In the next section
we discuss some of them, and make a rough estimate of
the asymmetry which can be generated in a particular
one.

III. OVERVIEW OF MSM BARYOGENESIS

A number of schemes for baryogenesis at the elec-
troweak scale have been suggested [16, 21, 22, 26, 25, 52,
53], [27—29, 31—34, 30, 54] (see also reviews [10, 55, 11, 9,
13, 12]). These mechanisms rely heavily on the dynamics
of the first order phase transition [17,57,58] during the
spontaneous breaking of the SU(2)xU(l) gauge symme-
try, which is assumed to occur through the nucleation
of bubbles of the new phase, at a temperature of about
100 GeV . Inside the bubbles, the vacuum expectation
value (VEV) of the Higgs field is nonzero and assumed
to be large enough that anomalous processes with B vio-
lation are switched off. However in the high temperature
phase outside the bubbles, the electroweak symmetry is
unbroken and the rate of B-violating sphaleron reactions
is high, so that a net baryonic number density cannot be
maintained. Hence baryogenesis must be related to the
presence of the bubble wall.

Roughly speaking, the mechanisms for EW baryogen-
esis can be divided into two categories. In the first cat-
egory [26, 52, 53, 27—29], nontrivial configurations of the
gauge and/or Higgs fields (sphalerons or thermal fiuctu-
ations) are supposed to have CP-violating interactions
with the moving domain wall, biasing the anomalous B-
nonconserving processes in such a way that net fermionic
number is produced when these Beld conBgurations de-
cay. In the second class of mechanisms ("charge trans-
port baryogensis" [31,32]), CP-noninvariant interactions
between fermions and the bubble wall lead to a separa-

tion of some CP-odd charge by the bubble wall, which is
then converted to an asymmetry in the baryonic number
by sphaleron processes in the unbroken phase.

In Ref. [45], one of us [MS] observed that if the CP vi-
olation in the interaction of thermal quarks with the bub-
ble wall in the Higgs Beld is strong enough, it could result
in a direct separation of baryonic number in the second
type of mechanism mentioned above, without the need
for separation of a surrogate CP-odd charge. Baryons
inside the bubble survive till the present time because the
rate of B-violating reactions is (required to be) highly
suppressed in the broken phase, while the anti-fermions
outside the bubble (partially) disappear through equilib-
rium B-violating reactions.

In this paper we will elaborate this mechanism [33,
45] in more detail and compute the baryonic asymme-
try in it in the framework of the MSM. This does not
mean that we insist that this mechanism is the best one;
others should be investigated as well. However this is
a good Brst case, since the MSM CP-violation effects
can be explored in a very simple and physically trans-
parent way. If the wall is thin, as suggested by recent,
work [44], this is likely to be the dominant mechanism.
The most important new element of the present work is
the und. erstanding of how the GIM cancellation, present
when quarks are taken to have typical thermal momenta,
can be circumvented in particular regions of momenta.
One such relevant region of momentum is identiBed and
its contribution is estimated. Presumably in the other
mechanisms there may be a similar failure of. the GIM
cancellation when the relevant regions of momenta are
treated suKciently accurately.

Reference [45] both noted the importance of including
thermal interactions with gauge and Higgs particles in
the plasma, and proposed a specific mechanism for pro-
ducing the asymmetry. While our work here is a natural
extension of that work, it differs in several important
ways. In Ref. [45] the asymmetry in refiection proba-
bilities of quarks and antiquarks was estimated, taking a
contribution near the top quark reflection threshold (the
dominant region of phase space) and conjecturing that
O(n, ) loop e8'ects would produce phases which would
cause the net asymmetry to be nonvanishing. In this pa-
per we identify a mechanism which evades the GIM can-
cellation without invoking loop effects, and really calcu-
late the asymmetry in reHection probabilities. We use a
purely quantum mechanical treatment of the scattering,
noting that the ordinary scattering phase shift provides
the nontrivial CP-conserving phase needed to interfere
with the CP-violating phase to give a difference in reBec-
tion probabilities between quarks and antiquarks. Our
treatment of the fermionic excitations in the hot medium
is more exact than that of [45] because we include some
loop eKects in the broken phase [45] which are necessary
to get a quantitatively accurate result. In this paper

As opposed to antibaryons, on account of the known sign
of the present asymmetry.
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we also relate the asymmetry in refiection probabilities
to the final baryonic asymmetry by studying the baryon
number difFusion in the vicinity of the bubble wall (Sec.
V).

IV. ROUGH ESTIMATE OF THE BAU FROM
MSM CP VIOLATION

We have nz/s [Jcz][f,ph]/[entropy], where Jcp is
the baryonic separation current produced by quark inter-
actions with the wall and f,~g is the sphaleron efBciency
in removing the antibaryon excess in the unbroken phase.
Before going to the technical details of the full calcula-
tion in the latter portions of this paper we give a qualita-
tive discussion of CP violation in quark scattering from
the domain wall, ignoring higher order corrections in a, .
This will permit us to estimate the left baryonic current,
Jcs.

Some difference in refiection probabilities between
quarks and antiquarks is possible due to the interfer-
ence between the CP-violating phase in the coupling of
the thermal quarks to the bubble wall, which changes
sign in going &om quarks to antiquarks, and the ordi-
nary (CP-conserving) scattering phase shift, which is the
same for quarks and antiquarks and is nonvanishing even
when bc~ = 0. However how can we expect to "evade"
the GIM cancellation which lies at the heart of the con-
ventional argument that CP violation &om the CKM
matrix is far too small to account for the observed bary-
onic asymmetry? Evidently, an important variable for
the scattering problem is the momentum of the particle
perpendicular to the bubble wall, p. The other essential
scales are the mass, M, of the particle and the inverse
thickness of the wall, a. The component of the momen-
tum parallel to the wall is conserved in the scattering
process and is unimportant in a qualitative discussion

Let us discuss first the most typical situation, when

p T, p )) M, and p )) a. Then the interaction of
fermions with the domain wall is suppressed semiclas-
sically by the factor exp( —mp/a). According to several
estimates [40, 41) a T/(40 —10), so that for typical
quark momenta in the plasma, p T, the light fermions
do not scatter off the wall at all. The only reflection co-
efficient which can be significantly different &om zero is
that for the t quark. It is clear, according to the discus-
sion in Sec. II, that for this region of phase space one
cannot expect any non-negligible CP-violating effect. If
the domain wall is very thin (p/a « 1), the reflection am-
plitude is suppressed only by Yukawa coupling constants
rather than by the exponential factor. Nevertheless, for
p T the light quarks are effectively degenerate due

By working with the quasiparticles of the high tempera-
ture plasma, interactions with gauge and higgs particles are
included and nontrivial CP violation is possible. See Sec. VI.

However parallel components play a nontrivial role in the
dynamics, contrary to the T = 0 situation where no thermal
medium breaks Lorentz invariance, and could be quantita-
tively signi6cant, as discussed in Sec. X and Appendix E.

to the tiny difference between their masses as compared
to their typical momenta, so that their contributions to
the net separation of baryon number, when summed over
all generations, cancel nearly perfectly due to the GIM
mechanism. That is, even if the phase in the CKM ma-
trix means, say, that a d is more likely to renect than a
d, this contribution to the baryonic asymmetry will be
nearly perfectly compensated by, say, the 8 being more
likely to reflect than the s, with the cancellation being
perfect if m, = mg. In this region the "conventional
wisdom" reasoning is correct.

Let us consider now the region of phase space in which
the momentum perpendicular to the wall is low enough
that the interactions of the s quark with the bubble wall
are strong and its re6ection coeKcient does not contain
any powers of Yukawa coupling constants. Roughly, we
have

Jc~ [fraction of phase space] x [asymmetry of 6uxes]

x [CP violation] x [dynamical details] .

The breaking of the GIM cancellation is most profound
in the region of the thermal spectrum in which the 8 and
8 are totally refiected, but the d and d are partially re-
Bected and partially transmitted. The &action of phase
space corresponding to this situation is of order
so that CP violation vanishes when m, = mg, as re-
quired.

Another important factor arises because the contribu-
tion to the baryonic current coming from quarks incident
&om the two sides of the wall would exactly cancel if the
Fermi distributions on the two sides of the wall were the
same. How the distributions near the wall differ from
the equilibrium distribution is not yet understood due to
uncertainties in the physics of bubble propagation and in-
teraction with the quarks. However just from the motion
of the themal medium with respect to the wall, the Bux in
the wall rest &arne of particles of a given energy incident
&om the unbroken phase is generally greater than the Hux
incident &om the broken phase, producing an asymme-
try even for equilibrium distributions. The asymmetry in
the Quxes is thus expected to be & 2v(p/T)ny (1 —n~)
for small wall velocity v but less than nJ;, as it would
be if the waQ carried along all the quarks ahead of it,
eliminating the fiux &om the broken phase.

The natural measure of CP violation is just J
sin(8q2) sin(82s) sin(8qs) sin(bc~). Global fits to deter-
mine CKM parameters place J in the range [59] (1.4—
5.0) x 10 s. Of course, there will be a further depen-
dence on quark masses and dynamical details, but this
can give us a very rough estimate to use as a guide for
our expectations. The analogous estimate of e is just
J, so that for the kaon system the dynamics increases
the ratio of CP-violating to CP-conserving rates by a
factor of 100. An explicit analytic expression for the
additional quark mass and other dynamical dependence
under certain conditions is given in Sec. VIII.

Putting together the factors above and dividing by the
entropy density, s = 2+2N, frTs/45, where N ~ 100
is the total number of particle degrees of freedom, one
anticipates a baryon asymmetry of order
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~ns/s~ (3 —9) x 10 J,phfgy fs„„, (4.1)

where
fdic„accounts

for additional dynamical effects
which will be included in a real calculation. Studies of
the behavior of the expanding bubble wall suggest that v

is in the range O. l—0.9, so the Hux asymmetry factor fs„„
can range from 10 p/T to 1. For the one dimensional
problem, total reBection of the quasiparticles occurs for

p/T 10 . We shall see in Sec. V that f,~h is esti-
mated to lie in the range 10 —1. %'e see, then, that
the CP violation present in the CKM matrix may be suf-
ficient to account for the observed baryonic asymmetry
of the Universe. In any case, the conventional estimate
& 10 must be discarded.

Predicting the sign of the asymmetry requires a quan-
titative calculation. As shall be seen &om the results
given in Sec. IX, the crude estimate given in this sec-
tion is roughly correct in magnitude. Moreover the sign
predicted by the quantitative calculation does agree with
the observed positive sign, corresponding to an excess in
our Universe of baryons rather than antibaryons.

Another region of phase space which a priori might
seem interesting is that in which the c quark and anti-
quark are totally reBected, but the u's are not. However
since t"—u is not the most degenerate like-charge pair, lift-

ing their degeneracy dynamically is less significant than
for the d —8 pair. As could be expected and is borne out
in our quantitative results, the near degeneracy of the
d —s quarks asserts itself in a reduction of the degree of
asymmetry in the scattering of charge +2/3 quarks. We
also note that regions in which only the heaviest, quark
is totally reHected, or none are totally reHected, do not
make important contributions to the separation of baryon
number, since in these regions the dynamics of the d and
s quarks are essentially indistinguishable.

This qualitative discussion can only be considered as a
guide for a real calculation. To be more quantitative, we

must examine in greater detail the mechanism of baryonic
number separation by the domain wall, which requires
finding the correct excitations in the hot plasma, then
computing the reBection coefficients for their scattering
ofF the domain wall. One thus determines the baryonic
current which is produced by a Hux of equal numbers of
quarks and antiquarks on the domain wall, &om either
side. In the next section we imagine that this current
is known and we investigate the connection between this
baryonic current and the present-day ~n/ s After .de-

voting Secs. VI and VII and a number of appendixes to
developing the necessary technology to do the quantita-
tive calculation, we report the results of this calculation
in Sec. IX, confjrming the heuristic estimates presented
in this section.

V. BARYGNIC NUMBER SEPARATION AND
BARYONIC ASYMMETRY

The interactions of thermal quarks and antiquarks
with the domain wall are CP-noninvariant. Nevertheless,
unitarity and CPT constraints relate difI'erent transition
amplitudes in such a way that the net current of any C-
or CP odd-number vanishes in thermal equilibrium (see
Sec. VII and [33]). Of course, there is nothing surpris-
ing in this, since it would be too naive to expect BAU
generation in thermal equilibrium in any mechanism.

A first order EW phase transition, however, provides a
deviation &om thermal equilibrium. In our case the im-
portant manifestation is in the movement of the domain
mall. Because of the interaction with the medium, the do-
main wall is expected to move with a constant velocity,
which is estimated [60,40, 41,61] to be v O.l—0.9. Thus
in the mall rest &arne there is a net Hux of particles and
almost equal Hux of antiparticles Bowing &om the side
of unbroken phase toward the side of broken phase. A
crucial quantity for the mechanism of baryogenesis which
we study is the difference between the Huxes on the two
sides of the wall, viewed &om the wall rest frame. This
difference of Buxes depends on the extent to which the
passage of the wall disturbs the equilibrium distributions
of the quarks. Treatments of the problem [60, 40, 41, 61]
based on a perturbatively calculated Higgs potential have
envisaged a wall which is sufIiciently thick compared to
a mean &ee path that the equilibrium is approximately
maintained. That is, the velocity and temperature of
the medium is essentially the same on either side of the
wall. We present below a calculation of nn(Jc~) in this
case. However recent work (cf., [44]) suggests that non-
perturbative efI'ects may cause the transition in the Higgs
VEV to occur much more abruptly than previously imag-
ined, opening the possibility that the quasiequilibrium
assumption is a poor approximation. We will return to
the consequences of this possibility below.

Let us go to the rest &arne of the wall and assume
that the medium going through it with velocity v has the
same temperature inside and ouside the bubble. Since
Buxes from the two sides are unequal, the unitarity con-
straints do not apply and the asymmetry in reHection co-
efficients can produce a nonzero baryonic current Jc~ (as
well as currents of other t - and CP-odd quantities such
as left and right baryonic numbers, J&~& and JPp). If
B-violating processes are in equilibrium in the unbroken
phase but not in the broken phase, such currents imply
the separation of baryonic number and other numbers.

For small v, we will have an approximately static sit-
uation in the wal1 rest kame, in which each of these
currents, say J&~&, is balanced by an opposite current
through the wall due to an excess of the appropriate den-

sity, in this case I baryonic density. Particle densities
will depend on the temperature and velocity in the usual

This can cease to be true when higher order corrections,
which mix momentum scales and can generate phases which
do not rely on total re6ection, are included. Then it may
happen that in the tradeoH'between minimizing the GIM can-
cellation and maximizing the volume of phase space, another
region can be more important.

In the absence of CP violation the Huxes would be pre-

cisely the same.
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way, but will contain chemical potentials for the various
CP- and C-odd numbers which are nonvanishing in the
broken phase. To determine these chemical potentials,
one must solve the kinetic equations in the vicinity of
the domain wall. We shall write the kinetic equations in
a diffusive approximation, which is valid when the char-
acteristic length scale of the density variation is large

compared with the mean &ee path of the quarks. As
will be seen a posteriori, this condition is satisfied if the
velocity of the domain wall is not too large (v & 0.3), al-
though it would be very nice to find the relation between
Jc~ and n~/s also for large velocities.

Quarks and leptons take part in many processes on
both sides of the wall with many different time scales. In
order to decide which processes must be included in the
equation describing diffusion, one needs to define a rele-
vant time scale and then include processes taking place
on shorter scales than that. Let us follow the evolution of
a particle after it has been reffected from the domain wall
toward the unbroken phase. Its typical distance &om the
bubble wall is given by

V'Dt —vt,

& &n~lt &D~ s', —v s

Bt gnL)
~

0

0 l (nay 1

DLs, -v~ &+I )
(5 2)

Except for t quarks, however this can be neglected since
the asymmetry resides in the charge —1/3 quark sector.

where the first term describes the random walk of the
particle iq the rest frame of the plasma (D is the dif-
fusion coefficient for the particle of interest) and the
second term describes the motion of the bubble wall.
This particle will be trapped by the bubble after a time
t~ D/v2, so one can neglect any process with a char-
acteristic time 7 )) t~ (Of cour. se, B violation must be
included in any case, since if it is absent, no baryonic
asymmetry can be produced. ) The characteristic diffu-
sion time t~ is much smaller than the time scale of the
chirality breaking L —B transitions coming &om inelas-
tic scatterings with Higgs particles, since those are sup-
pressed by small Yukawa coupling constants. However
the /CD sphaleron produces I —R transitions at rate

s( ' )4 300 times larger than the EW sphaleron
rate [62]. Thus even though the EW sphaleron only cou-
ples to L chiral particles and antiparticles, on account of
the action of the /CD sphaleron, we can simply discuss
the total baryonic number, with small modifications in
the diffusion equations as compared to the case without
the /CD sphaleron.

Let n~(z, t) and nr, (z, t) be the densities of baryonic
and leptonic numbers in the rest kame of the wall. We
place the wall at x = 0 and take x & 0 to be the broken
phase where sphaleron processes are switched off. Then
the diffusion equations are, for x ) 0,

but for x ( 0 we have

R ('+I )

-r
D..., -v —, -r) qadi)

(5.3)

where r = gr, »/Ts and I',zg is the rate of sphaleron
transitions per unit time and volume. (The relation be-
tween the rate of B violation and the sphaleron rate can
be found in Refs. [23, 63].) D~ and Dl, are diffusion
constants for quarks and leptons, respectively.

These equations must be supplemented by a number of
boundary conditions. At z -+ —oo (the unbroken phase
far from the domain wall), n~ and ni, ~ 0 because we are
considering the case that the BAU does not exist prior to
the EW phase transition. At x —+ +oo, n~ and nI, must
be finite. The other boundary conditions are specified at
x = 0; we will discuss them later.

We will assume that the velocity of the domain wall
is low enough that some "steady state" solution to the
kinetic equation can be established. In other words, in
the rest kame of the domain wall the densities of parti-
cles are time independent. For x & 0 the only solutions
consistent with the boundary conditions are constants:

(5.4)

For x ( 0 they have the form

According to the argument of Ref. [64], any kinetic equa-
tion written in terms of bare particles should also contain non-
trivial corrections associated with Debye screening of the hy-
percharge. These corrections, however, are absent for Eqs.
(5.2) and (5.3) describing quasiparticles. Precisely on ac-
count of the Debye screening phenomenon, quasiparticles do
not carry hypercharge or any other gauged quantum number,
while they can have nonmero global numbers like baryonic
number and Savor. A physical excitation in the high tem-
perature plasma with the global quantum numbers of a left
quark would, for instance, be actually composed of a left chiral
quark, gluons, electroweak gauge bosons, and Higgs bosons,
such that it is actually an SU(3) x SU(2) x U(1) singlet. This is
discussed further in Sec. XD. Of course, the baryonic charges
of quasiparticles dier from the baryonic charges of the bare
particles. This fact is automatically taken into account in
our approach, since we define the various currents in terms of
quasiparticles (see Sec. VI). We thank S. Khlebnikov for a
discussion of this point.

Actually, this is only in order to enable us to solve the
problem relatively simply. If the velocity is larger, the sects
are presumably larger, but since we find an interesting level
of asymmetry even in this very conservative approximation,
we do not attempt to extend the treatment to large veloci-
ties. That is an interesting and important subject to develop,
however.
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~

= ) C;(; exp(k;x), (s.s)
j = ~(B —B+)

1 ( 8(B++B ) (5.14)
where C; are arbitrary constants, and (, and k, are eigen-
vectors and eigenvalues to be found &om the condition

One of the eigenvalues, say k4, is zero independently of
the parameters. It corresponds to a nonzero density of
the conserved number (B L), —so we put C4 ——0. One can
show that two other eigenvalues kq and k2 have positive
real part and the third one k3 is real and negative. The
latter corresponds to a growing exponent as x m —oo and
is therefore not consistent with the boundary conditions.
Hence, C3 ——0. All three nonzero roots can be found
analytically. They are solutions of the cubic equation

D~D k —v(Dr, + Dgy)k —(D I'+ DI' —-v )k

l = r(L —L+)
1 6 B(L++L )

( ))~
2 I BZ

(s.is)

fe' cos Hd cos 8

j dcos 8
(5.16)

The factor K connects the density in a box to the current
Bowing through one side of the box. Essentially all quarks
are relativistic, including those which are responsible for
our efFect which have small momentum perpendicular to
the domain wall, because even these typically have large
parallel momenta. Thus we have simply

v ( 3I'Dgy i
kg —— 1+

Dgy ( 2v ) ' (5 8)

+-vt' = 0. (5.7)

We shall write down here the relevant roots (kq and k2)
in two limiting cases, when the dimensionless quantity
3DgyI'/v is small or large.

(i) 3D~I'/v && 1. Then

In addition to the above currents arising from nonuni-
formities in particle densities, there is an additional con-
tribution to the baryonic current due to the CP violation
present in the interaction of quarks scattering from the
bubble wall, denoted J~~. There is no such contribu-
tion to the leptonic current, since CP is conserved in the
leptonic sector due to the masslessness of the neutrinos.
Altogether we have then, for the baryonic and leptonic
currents,

( rD, I
k, = 1+

Dr, I v )
(5.9)

(5.10)

Ja = j+ Jcs, (5.17)

Current continuity implies that the currents through the
wall are equal to those in the broken phase where there
is no B or L violation. The currents in the broken phase
are just due to the bulk transport of the charge densities
with velocity v, so that

(ii) 3D~I'/v2 )) 1. Then J~ ——vB+, JL, ——vL+. (5.18)

5v

3DI, ' (s.ii) Next equate the currents Bowing into the unbroken phase
to the total rate of quantum number nonconservation due
to sphaleron transitions:

3r
2Dg 2Dg ' (s.12)

0

vB+ —— vL+ ——— I'(—
2 n~ + nr, ),

which in turn satis6es

(5.19)

( &i ( qsrD j)
(5.13)

In these expressions we have approximated DL, )) D~,
since leptons do not have strong interactions.

In order to de6ne matching conditions at x = 0, one
has to 6nd the total currents for baryonic and leptonic
number at x = 0. Let us denote the densities of baryonic
and leptonic members next to the domain wall, in the
unbroken phase, by B and I . Then, in the absence
of CP-violating efFects, the baryonic and leptonic cur-
rents Bowing through the wall toward positive x mould
be, respectively,

f BBI'( ~sn+ nl. ) = D~
l9X

OL
L |9x

(5.20)

because we require a static solution to (5.3).
From Eqs. (5.18)—(5.20) we learn &

—— v(L+ ——
L )/Di„which when combined with Eqs. (5.15), (5.17),
and (5.18) implies &

——0. Thus L+ ——L and ~&

Similarly B+ —B = Jc~/e; when combined

with B+ ——L+ this gives an equation relating Cq and C2
to Jc~/e. Thus the baryonic number density inside the
bubble
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3 Jcpf ph(p)
GK

(5.21)

with e 1/4 [Eq. (5.16)], p = „g and

5 k2 —kg

3 k2 (1 —Qi/(2i) —ki (1 —(i2/Q2)

(5.22)

( is the matrix whose first and second columns are the
eigenvectors corresponding to eigenvalues kq, k2, respec-
tively, defined by Eq. (5.6). For p )) 1, f,~h(p) = 1 and
for p « 1, f,~h(p) = s p. The physical importance of p is
clear, since it represents the typical number of sphaleron
transitions to which a quark is exposed between the time
it enters the unbroken phase and the characteristic time
at which the bubble of low temperature phase envelops it.
Baryonic number density vanishes when baryon-number
violation is effectively turned off, i.e., p -+ 0. It also van-
ishes in thermal equilibrium, as required, since J~~ ——0
when v = 0. B+ is the net baryon number density in the
low texnperature phase which, when divided by entropy,
gives the desired asymmetry, n&/s

We remind the reader that the relation of Eq. (5.21) is
valid in a quasiequilibrium approximation, and provides
a lower limit for a more general situation. For instance,
if all the quarks were carried along in &ont of the wall,
the sphaleron rate would not matter at all, as long as it
is large compared to the expansion rate of the Universe.

The next sections are devoted to determining J~~.

VI. FERMIONIC EXCITATIONS IN THE
HOT PLASMA AND CP VIOLATION

(6.1)

if all the gauge fields are zero. In other words, the sepa-
ration of any C-odd or CP-odd quantum number is not
possible in this approxixnation.

An even more general statement is true: as long as the
Lagrangian for quarks has the forxn

8 = iL g)L+iR gR+ LM(x)R+ H.c., (6.2)

where M(z) is an arbitrary mass matrix and the opera-
tor 'V is the same for L and B terms, C is not violated.
Since C relates the left quark to the right antiquark, the

The reason that loop corrections modify the assertion that
C is not violated is that they involve interactions of the quarks
with charged as well as neutral components of the Higgs dou-
blet. Furthermore, the EW gauge interaction distinguishes
between L and R in the covariant derivative, providing yet
another source of C violation.

At zero temperature and omitting loop effects. the in-
teraction of quarks with a (neutral) domain wall would
be C and CP conserving. Indeed, the Lagrangian l:
[see Eq. (2.1)] is CP and C invariant for any x depen-
dent Higgs VEV of the form

reHection coefBcients will be the same for left quark as
for right antiquark and separation of baryonic number
(which is odd under C) is not possible. However chi-
ral currents such as axial quark number, 4p„A%, are
C even but CP odd, so that they can be produced by
this Lagrangian, as long as it violates CP. Several ex-
tensions of the standard model have been developed in
Refs. [31—33] making use of this fact to produce a BAU
in the electroweak phase transition.

The case of nonzero temperatures is quite different. In
the high temperature plasma, quarks and antiquarks in-
teract incessantly. Each Bavor and chirality of quark has
a distinct interaction with the Higgs particles in the heat
bath, lifting the degeneracy between them. Interactions
with SU(2) gauge bosons further split L and R chiralities,
and even their common interaction with gluons is dynam-
ically important since it affects their propagation. As is
well known, it is essential to work in the correct basis of
particle states. In standard perturbation theory one sim-

ply takes the quadratic part of the Lagrangian and finds
particle states for it. At zero temperatures and densi-
ties this usually is successful for theories with small cou-
pling constants, since higher order corrections are small.
Fermion masses, for instance, receive corrections of the
form f2my, where f is a Yukawa coupling constant. The
high order correction are small if f « 1. However, at
high enough texnperatures and densities, naive perturba-
tion theory fails even for theories with small couplings.
The reason is that at high temperatures an additional di-
mensionful paraxneter appears, namely the texnperature
T itself. Corrections to masses can be large when the
product of Yukawa coupling and temperature is compa-
rable to the zero temperature mass. In more physical
language this means that the particles appearing in the
tree Lagrangian are not the actual particle excitations of
the problem under consideration. There are many exam-
ples known from condensed matter and statistical physics
in which particle excitations have little in common with
the fundamental particles: phonons, sound waves, plas-
mon excitations, etc.

In order to find physical excitations one usually con-
structs the effective Lagrangian for the theory incorpo-
rating high temperature and/or high density effects, and
then determines a better set of fields for doing perturba-
tion theory. This problem is not very well-defined math-
ematically, since it is not clear precisely what the word
"better" means. In practice, one usually calculates all
mass operators of the theory and constructs fields cor-
responding to the poles of "exact" propagators (usually
defined as an infinite sum of some subset of graphs). One
gets in this way the properties of one-particle excitations
of the medium and can consider the interactions between
them, which will be, hopefully, weak enough. Of course,
if one would be able to solve the problem exactly, the
choice of variables would not matter at all. However,
since we are confined to using perturbation theory for
most problems, the starting approximation is very im-
portant.

Although we can solve the quantum mechanical prob-
lem of quarks scattering from the domain wall of Higgs
VEV without the use of perturbation theory, we still
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must be careful in our choice of particle states, in order
to be able to ignore the (most significant) interactions of
the particles with the heat bath during the course of their
propagation through the domain wall. That is, we must
determine what happens with the fermionic excitations
of the p/asma when they go through the domain wall.
First, we have to define them far &om the domain wall:
outside the bubble, where the symmetry is unbroken, and
inside, where it is broken.

Quite an extensive literature exists on the fermionic
excitations in a hot plasma. For the reader's convenience
we will partially summarize what is known about them
&om the literature, and then describe some additional
properties which, as far as we know, are not discussed
in the literature elsewhere. We work to one-loop accu-
racy in the quasiparticle propagators. This has the phys-
ical consequence of neglecting inelastic scattering of the
quasiparticles, which may not be an adequate description
of the problem, but is at least a first step. Improving this
approximation is quite nontrivial for a number of reasons.
For further discussion see Sec. XD.

A. Unbroken phase

and for the right quarks with charge —1/3,

xo!8T 7f'Ayy T sin 0~ Ko.'~ 2 T
R

(6.8)

L =0 Cq„U= 4U„, D = 4D„, (6.9)

where the unitary matrix 0 diagonalizes the matrix 021 ..

on, o~ =—~, = diag. (6.10)

Since M„&& Mg the matrix 0 is close to one. In the right
sector the mixing is absent and we will use the notation

where the first and the second terms come from the gluon
and weak gauge boson corrections, respectively, and the
last term comes &om Higgs boson exchange.

An important point is that in spite of the fact that
the vacuum expectation value of the Higgs field is zero,
particle excitations in the unbroken phase are some spe-
cific mixture of the initial fields. The physical fermionic
fields (denoted by the bold letters) are three component
spinors in flavor space,

~R = CdU, D ~ (6.11)
Fermionic excitations correspond to the poles of quark

propagators at high temperature. For a review see, e.g. ,
Ref. [65]. We work in Minkowski space and use the
following convention for the tree level Dirac operators:

ZL R =Cd+0 'P (6.3)

where

, (6 4)
o p ((el 1 (~l

kp). ~ Ep)

(6.5)

Note that Lorentz invariance is broken because the
plasma rest &arne provides a preferred &arne. For the
left quarks,

2~~s~
3

3maivT2 ( sin Hiv 1 (M„+KM&Kt) l

(6.6)

For the right quarks with charge +2/3,

with cd & 0 for particles and cd ( 0 for antiparticles, o.,
are the usual Pauli matricies. Then, in high temperature
approximation (~ and [p~ (( T) the one loop fermionic
mass operator in the gauge basis for the unbroken sym-
metry phase is [66, 67)

~I.,R(~ p)

We use cdo to represent any one of the cdr. R. The disper-
sion relation for physical excitations has the form

Cd 0 Cd Cd 0 Cd

Ei —
i

—— p+ —1 —F
i

—
i

=0.
(&) &&).

(6.12)

For each chirality, there are two solutions to this disper-
sion relation. For small momenta the spectra are

u)'(p)g = (uo
~

1+ +, +
7p'

3~o S~o

while for high momenta, p &) cdo, we have

~4 2

~2(p)+ ——p + 2uro ——ln —2,

(6.13)

ur (p) =p 1+4exp
~

—2—2
—1

~

2 = 2 ( p'
~o

(6.14)

The dependence of energy on p is shown in Figs. 1 and 2
for the strange and bottom quarks, in the approximation
of neglecting mixing. Unlike the situation at zero tem-
perature, the eigenstates are split due to their differing
interaction with Higgs particles in the plasma, even whexi

the VEV vanishes. Moreover at every energy there are
two distinct collective excitations having different mo-
menta. This phenomenon is analogous to photon excita-
tions in the plasma: in addition to the usual transverse

2' A8T
R 3

22 sin 8~ KA~ 2 T
+ 7l A~T

9 W

(6.7)

There is no visible difference between the strange and down

quark dispersion relations on the scale of these Sgures, but it
1s noxlvanlshlxlg.
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56-

54-
I

52 .

50-

menta p. As we shall see later, reBection amplitudes for
particles are most substantial in this kinematic range.
At small momenta [see Eq. (6.13)] the energies of the
fermions are close to the mass gap, ~0. Expanding the
Dirac operator for small p and small ~ —coo one obtains
a linearized version of the Lagrangian:

48-
Z~tr = 2tL (Bp —sBtT + Ndp)L. (6.16)

46.

44.

10
4

20 30 40

One can define in the usual way creation and annihilation
operators for the normal (at, a„) and abnormal (at, a )
excitations, so that the part of the field L which annihi-
lates particles can be decomposed as

FIG. 1. Dispersion relation for s quarks in the unbroken
phase, neglecting mixing. The Sgure is essentially identical for
the broken phase, except for the neighborhood of the crossing.

1 d3k
L(z) =

v 2 (2&)'
[a'„(k)e ' +'+'"'u;

+ i (k)
—a~ t+ikx

] (6.17)

Z,tr = Lt(Zr, + Zl, )L. (6.15)

To become more familiar with the properties of the
various excitations, let us study them first for small mo-

70 — ~

I

65 ~

excitations, a longitudinal one also occurs. We will call
the mode labeled + (—) normal (abnormal), respectively.
Note the mass gap which these solutions exhibit. It does
not contradict the chiral invariance of the underlying La-
grangian, but is connected with the breaking of Lorentz
invariance at nonzero temperatures [66, 67]. Higher or-
der corrections to these dispersion relations have been
studied in a number of papers [68, 69]. It was shown
in [68] that the abnormal branch is actually unstable at
momenta p & gT.

The knowledge of the Dirac operator allows us to con-
struct the effective Lagrangian for the fermionic excita-
tions in the plasma. Let us take for definiteness left chiral
fermions and consider one fermionic fiavor. ~s Then, the
effective Lagrangian is

here the two-component spinors u and v obey the equa-
tions

(~k[+k o)u=O, (~k[ —k 0)v =0, (6.18)

and

~~ = ap + s' [k~,

(a(k), at(k') jp ——(2x)sb(k —k').
(6.19)

From (6.18) one can see that the two branches have dif-
ferent relations between their chirality and their helicity.
For the normal branch the chirality and helicity are equal
while for the abnormal branch the helicity is opposite to
the chirality.

In the same way one can construct the effective La-
grangian for the right chiral excitations. We do not write
the corresponding equations for this case; they can be
derived from the equations for the left particles using coo

corresponding to right quarks.
The direction of the group velocity of the abnormal

excitation is opposite to the direction of k, since from
Eq. (6.13) the group velocities of the two branches (v =
~„) ~e

60 ~

k „k
(6.2O)

55 ~

50 ~

45 ~

It is interesting and physically important that for both
branches the magnitude of the group velocity ~ 1/3 as
the momentum vanishes. For large momentum, k ) coo,

the group velocities of both branches -+ 1, as can be
found from Eq. (6.14).

The left baryonic current is

40

FIG. 2. Dispersion relation for b quarks in the unbroken
phase, neglecting fixing.

J = (aa +aa),d3k t t
27r 3 (6.21)

The treatment of right chiral fermions and multiple Savors
is completely analogous.

The part for creation of antiparticles is obtained by ex-
panding the Lagrangian for small u + coo.
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(6.22)

vki) = ufo 6 s ~~~
+ (k, —v~)2 (6.23)

where kq is the component of the momentum parallel to
t (i.e., perpendicular to the domain wall) in the wall rest
kame, and k~I is the orthogonal component. Prom here
one obtains the dependence u = u(k~~, kq, v). Continuing
with this simple example, and taking k~~

——0, one Gnds

the relationship between ~ and k in the wall rest frame,
for the normal and abnormal excitations, respectively:

(6.24)

From the definition of the current (6.22) and these con-
sideratioas, we have for the Hux factor in nonrelativistic

The minus sign in front of the abnormal mode coritribu-
tion rejects the fact that the abnormal excitation moves
in the opposite direction to k.

%'e need to transform between the plasma rest frame
and the wall rest frame. i (cu(k), k) is a four-vector, so
that the dispersion relation in the moving frame is easily
obtained from the invariance of (cu(k), k) (1,v)p. De-

noting the wall rest frame variables by (&u(k), k) and the
plasma-rest-frame energy by ~, we have w = p(~ —k t7),
where e is the velocity of the plasma with respect to the
wall. Since the phase space volume is a I orentz invari-
ant, if we denote the Fermi distribution in the plasma
rest frame by n~(~), then in the rest frame of the wall,
where the plasma moves with velocity v normal to the
wall, the number distribution is nF(~ —k t7). Thus in
the wall-rest-frame, particles with momenta in the di-
rection of the plasma have a higher density than if the
plasma were at rest with respect to the wall, as expected
intuitively.

To give a simple example of the frame dependence of
the dispersion relation, let us work in linear approxima-
tion so the plasma-rest-kame dispersion relation is given
by Eq. (6.19), and let v be nonrelativistic. This gives

approximation, but now for a general dispersion relation
and not just the linearized version:

d k ((u —ekr) Ou)

(27r) i T ) Ok
(6.25)

The formal expressions for the left fermionic current in
terms of the effective fields will be

(6.26)

JL ——Ltl o., + Il, (6.27)

and analogous relations for the right baryonic current.

B. Broken phase

In order to determine the properties of the fermionic
excitations in the broken phase one has to calculate the
Dirac operator, which now will be a matrix in the space
of right and left fields. In the one loop high temperature
approximation the Dirac operator is

(El + ZL M
Mt ZoR+ Zsn)

' (6.28)

The mass term M is proportional to the scalar field VEV,
and depends on whether one is considering the charge
+ s (U) or —

s (D) sector:

2g M„2g KMg
M~ Mvv

(6.29)

In high temperature approximation, one-loop corrections
to the oE-diagonal mass term describing left-right tran-
sitions, M, vanish.

In the broken phase electroweak gauge bosons and
quarks have non-zero mass already in tree approxima-
tion so the one-loop contribution to the Dirac operators,
ZL R, of any diagram has the generic form

nr(~~) (+o p, & ex~ \ i (~z~ &)1 —F
(2~)' «»' i I» Ilkl). ~ ~ lpllkl)

d k n~(e~) ka p l(e~ )
I

~
II ( )(2~)' e~ »

'
i, lpllkl ) ~ & I» llkl)

where the + sign is for left fermions and —for right
ones, n~ and n~ are Bose and Fermi distributions, and

We thank G. Baym for pointing out an error in our orig-
inal discussion of the following, and for calling our attention
to Ref. [70], where a detailed discussion of the Lorentz trans-
formation properties of quasiparticles can be found.

~& & ——k + m& + with m~ ~ denoting the appropriate
bosonic or fermionic mass.

In comparison with the unbroken case, the Dirac op-
erator in the broken phase has additional corrections of
the type m~/T and m+/T ln(T/my). Corrections of
the first type do not in8uence quark mixing in the bro-
ken phase and are numerically small in comparison with
the leading Havor independent terms. They reduce the
O'+, Z, and Higgs contribution to u& & compared to the
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unbroken phase, causing the coefficient of the aw 8/8t
term in Z to be multiplied by the factor 1 —„&~, where

M~ is the relevant boson's mass at temperature T. The
coefficient of the nvfr8/Bx term in Z" also receives a cor-

rection, however it is less important than the correction
to the coefficient of u since p/u is 1/8. Thus the net
eKect of these corrections can be described by replacing
Eq. (6.6) for 02& by

2vra, T2 3nn~T'2 ( 4Mgr ) sin Her 1 (M + KMqKt) 4M' )
!

1—
3 8 ( 7rT ) 27 3 M~ ( 7rT )

(6.31)

We have discarded the correction to the sin28gr term be-
cause the correction is suppressed by an additional factor
of sin~8gr since the photon does not get a mass. The dif-
ference between u~ and u& can be discarded because the
Higgs boson and EW gauge boson contributions there are
totally insignificant [except for the splitting between bR
and sR where the splitting will be reduced by the factor
(1 — g )]. Except where specifically noted, corrections
due to the difference between u&~ and uL are not included
in the results reported in this paper. ~s

Fermionic mass corrections in the diagram with a gluon

ZL, R ZL, R + 6ZL, Ri (6.32)

with

loop are comparable in magnitude to the corrections com-
ing from loops containing Higgs boson exchange, which
are responsible for the VEV-independent splittings be-
tween eigenstates. [See Eq. (6.6).] Thus they must be
taken into account and a good approximation to the
Dirac operator in the broken phase is

~Zi„z = 167l'Cl~ d Ir Ay (es) 0' $7 ~ ek(d l 1 5 eg(d )
(2~)' eI p' . E, lail&l) ~ El&ll&l)

16so. dsk n&(lk!) 0' p t'~ l 1F /'cu )
(2~)' l~l p' . E. I~I). ~ Elpl)

(6.33)

where for the left sector we have

2 y2 + M2 + KM2K

For right quarks with charge +2/3, e~&
——k2 + M2, and for right quarks with charge —1/3, e& ——k + Mg.

For sufficiently small momenta, !p!« ~, and small fermionic masses, mz « T, this becomes

2am+ (mT I 1 „fmT'i 1
HEI, z = ' 6 ln

~ ~

—p —— rr. r7+ ln
~ ~

—w+ — ru),3s~ (mp) 2 pm' ) 2

(6.M)

(6.35)

where p = 0.577 is Euler's constant. The expansion in
small fermionic masses is a poor approximation for the
top quark, and the integral (6.33) should be calculated
precisely. Numerical integration shows that the change
due to including a nonzero value of the top-quark mass
in the diagram with a gluon loop is about 10% of the
contribution of the diagram with the Higgs boson loop,
and, therefore, can be ignored. This is not the case for
the light quarks where the Higgs boson contribution is
much smaller than in the heavy-quark sector. For exam-
ple, a nonzero charmed quark mass in the diagram with
a gluon 1oop induces a negative correction to uo in the
broken phase, which is numerically about factor 2.5 times

!
Zi+ZL M

ZR+ ZR] (6.36)

larger than the corresponding diagram with Higgs boson
exchange.

Finding the physical eigenstates is more complicated
in the broken phase than it was for the unbroken phase.
Even ignoring mixing between different generations (for
a discussion of mixing in the broken phase see Appendix
F), the dispersion relation is a quite complicated function
of cu and p:

These corrections were not included in the original version
of this work.

As an example Fig. 3 shows the dependence of u on
p for a 6 quark in the broken phase, neglecting mixing.
For low momentum or small VEV, P, there is a one-to-
one correspondence of the normal and abnormal branches
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VII. QUARK SCATTERING FROM
DGMAIN %FALLS

A. Preliminaries

As we have argued in Sec. IV we expect the most
interesting part of phase space to be that in which the 8
quark is re8ected &om the domain wall. I et us identify
the momenta for which this occurs. We begin with a
static domain wall, and discuss the moving domain wall
later on.

There are two conserved quantities in the interaction
of the quark with the domain wall, namely, the energy,
~, and the component of the m.omentum parallel to the
domain wall. For definiteness we will first consider par-
ticles incident from the unbroken phase. Let us consider
the case when the total momentum is perpendicular to
the domain wall (the discussion of the more general case
is contained in appendix E). Then (see Figs. 1 and
4) at any energy24 u & ul, = 0.502 T, there are 4 s-
quark excitations with different momenta, namely, the
left and right normal and abnormal excitations. At en-
ergies ur, & u & uL

' (the minimum value of the energy
of the left abnormal branch) the normal left chiral exci-
tation is absent and there are just three types of s-quark
excitations: R„, R, and L; however, for each value
of the energy there are actually two distinct I excita-
tions having diHerent momenta. In the unbroken phase,
~I, '" ——0.463 T. In the range w~ ——0.45S T & ~ & uI, '

there are just two excitations, R„and R, while in the
range ~&'" & u & u~ there is only a single type of exci-
tation, the right abnormal one, with however two distinct
momentum states for each energy. As will be seen below
(Sec. VIIF), in order to compute the total baryonic cur-
rent in the one-dimensional (1d) problem it is sufficient

48 8-

48. 6 .

48. 4 - '~~-
r rr

48. 2-

6.75 7.25 7.5

47. 8

FIG. 4. Dispersion relation for d (short-dashed), s (long-
dashed), and b (solid) quarks in the broken phase, focusing
on the region of total re8ection of the d and s. It is the R„
branch of the 6 which is visible in this region. CKM angles
have been set to zero.

to determine the reffection coefFicients for quarks (and,
of course, antiquarks) incident from the unbroken phase,
which become I upon reBection, since all other contri-
butions can be obtained from these. Consistent with
angular momentum conservation, we have the following
possibilities: (i) ~ & ~L, . R ~ L, R ~ L, R

(iii) for u & url '" no processes involving left chiral parti-
cles are possible.

The interaction of the 8 quark with the domain wall is
strongest when it is totally re8ected. To find this region
of u, consider the dispersion curves in the broken phase.
Because of the small value of the s-quark mass in com-
parison with temperature, they look almost the same as
the dispersion curves in the unbroken phase, shown in
Fig. 1, except for a shift in u&~ relative to uL. The only
qualitative difFerence is the absence of the intersection of
the right normal branch with the left abnormal one near
ur = z(uL, +or~), p = z(ug —sr~) 6 GeV. This region
is shown "close up" in Fig. 4. Hence, for

z((dL, +(d~ —m ) (4P( 2(hip+(dR+m ) (7.1)

instead of four solutions to the 8-quark dispersion rela-
tions (as in the unbroken phase) we have in the broken
phase only two, which we can designate left and right
abnormal branches, with momenta about 40 GeV. Since
chirality is not conserved in the presence of the Higgs-
induced mass, the labeling of these states is just a matter
of convention, which we fix by analogy with the zero-mass
case.

Let us consider first what happens in the broken phase
if we send, say, a right normal 8 or s &om the unbroken
phase toward the domain wall, with energy just above the
interval (7.1), case (ii). Helicity is conserved in transmis-
sion, so two transmitted waves are possible: R, with
practically the same momentum as the incident R„, and
another, L, with a much higher momentum, 40 GeV.
The transmission probability for production of the high
momentum mode (L ) is semiclassically exponentially
suppressed by the factor2s exp(xp/a), so that one can
neglect this process. Therefore, only the right normal
excitation will be transmitted to the broken phase when
a right normal excitation is incident. For the same reason
the re8ection probability for producing a left abnormal
state &om an incident A is exponentially suppressed,
since in this case the reffected particle has large mo-
mentum in comparison with the momentum of the inci-
dent particle. In other words, only the re8ection process
R„-+ L and the transmission process R -+ R„have
non-negligible amplitudes. If the energy is well above
(7.1) the reffection coefficient will for all cases be small,
since then the 8-quark mass can be neglected.

Thus we can deduce that in the interval of energies
(7.1), the reffection coefficient for an incident R„squark
is essentially unity. This is because in this energy range
there is no physical R excitation of the s quark in the

Quoted numbers in this section are to clarify the discus-
sion and thus correspond to the figures, which do not include
~&xing —thus they do not correspond precisely to the results
of the real calculation where mixing is included. a is the inverse wall thickness.
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broken phase, so that the transmission process R„~B„
is not allowed, while at the same time the transmission
coefBcient for producing the high momentum L excita-
tion, and the re8ection coeKcient for A m L, are still
exponentially suppressed. This is the part of phase space
where one can expect to have a substantial contribution
to the left chiral current, due to an asymmetry in the
re8ection coefEcients for s, s which can be signiGcantly
diferent from the asymmetry in reBection coefBcients for
d, d as long as the d quark is not also totally reHected.
Thus to be precise, the energy range of interest is

2 (CafL + Cd~ —m ) ( rd ( 2 (rdl + Cd~ —mg),

(7.2)

z (urL, + ur& + mg) ( ur ( ~ (~L + u& + m, ).
Another region in which the reBection coeKcients can

be large, and thus produce a net quark an-tiquark asym-
metry, occurs at a slightly lower energy where there is a
coincidence of solutions to the dispersion relation for sl,
or dL, and b~ excitations, as can be seen &om Fig. 4.
Because of ofF-diagonal pieces in the matrix M [see Eq.
(6.28)], especially mssin82s which mixes b and s, these
levels actually repel in the broken phase, producing an-
other region of total reHection in which an (abnormal) s~
incident from the unbroken phase is reflected to a (nor-
mal) b~ or vice versa. This phenomenon produces the
lower energy region of nonvanishing asymmetry which
mill be evident in the figures of Sec. IX.

The momentum of the s and d quarks in both these
energy ranges is small compared mith uL, and ~~. This
allows one to expand fermionic self-energies with respect
to momentum and keep only the Erst term in p. Thus
the scattering can be described in terms of Erst order
differential equations, as will be discussed next.

B. Basic equations

In Sec. VI we derived the effective Dirac equation
describing the interaction of quark excitations with the
scalar Geld. Let the scalar Geld of the domain wall be

(7 3)

where Pp is the vacuum expectation value of the Higgs
Geld inside the bubble at T = T, , v is the velocity of the
bubble wall, and r is the bubble radius. Letting t = 0 at
the moment of bubble formation at r = 0, f = 0 for neg-
ative argument and f = 1 for positive argument larger
than the wall thickness. For sufBciently large bubbles,
the domain wall can be considered as planar and perpen-
dicular to, say, the x3 axis, and in the rest &arne of the
mall we have the Higgs VEV:

P(x) = PpF(xs) with F(—oo) = 0, F(+oo) = 1.

(7.4)

We will consider the scattering problem in the rest
frame of the wall. In order to solve the problem of reaec-
tion from the domain wall one has to specify boundary
conditions. Particles incident from the unbroken phase
and particles transmitted to the broken phase have a

wave function proportional to

exp( —

isn't

+ i k . z), (7.5)

with ~ ) 0 and & ) 0, while reBected particles have a
S

wave function proportional to

(7.6)

with ~ ) 0 and & & 0. The conditions on & guaran-
i S

tee that the direction of the group velocity has tIie correct
sign.

The equations for antiparticles can be derived &om
those for particles by CP conjugation. They difFer &om
the equations for particles only in one place: everywhere
the CKM matrix K appears, it should be replaced by
its complex conjugate X'. The boundary conditions for
antiparticles are the same as for particles.

The Dirac operator (6.28) is highly nonlocal in space
and time and it is extremely difBcult to solve the Dirac
equation as it stands. For a domain wall at rest the non-
locality in time does not matter very much, since energy
is conserved so that every time derivative can be elimi-
nated by &,

—i ird. The same—applies to derivatives with
respect to the coordinates parallel to the domain wall,
since the momentum parallel to the wall is conserved:

~ ik2, & m ikl. However, the dependence of the
equation on zs is still nontrivial. The following physical
consideration simpliGes the problem substantially. It is
clear that scattering amplitudes should depend strongly
only on ks, being the component of the momentum of the
particle normal to the bubble surface. As we argued in
the discussion of CP violation, we are particularly con-
cerned to treat reliably the regime of energy in which
the s quark is reBected but the d is not. We shall see
that in this regime the perpendicular momenta are small
compared to u, the energy, so that we can expand. the
fermionic kinetic term operator with respect to k3 and
take into account only the first term. (Improvement of
this approximation is discussed in Appendix H. ) This
results in a Erst order diH'erential equation which can be
solved. This kind of approximation is not good at all
for the up quark sector due to the large value of the top
mass. However, as me have argued in the previous section
and shall conErm below, the magnitude of CP-violating
effects in the up-quark sector is not important.

In this paper we solve the scattering problem only for
the case when the momenta of the fermions are normal to
the bubble wall. This simplifies the problem signiGcantly
while giving results which are at least qualitatively appli-
cable. A discussion of the formalism for the general case
is given in Appendix E. %'e mill return to the quality
of this approximation in the discussion of uncertainties
in Sec. X. Henceforth we consider the one-dimensional
scattering problem and denote the coordinate normal to
the mall, previously called x3, simply by x.

The system of equations describing the re6ection of
fermions &om the domain wall is then
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!

(~(1+aL+ pL) +is (1+crL)Bx
'i, t'l, b

l ~UD ~(1+aR + PR) —i & (1+cxR) ] lR P

where L and R correspond to up and down components of
two-dimensional Weyl spinors which have 3 Bavor corn-
ponents. In the plasma rest frame, and neglecting for
the moment corrections due to mass insertions in one-
loop diagrams, the 3 x 3 diagonal matrices n and P are
de6ned as

(7.i4)

Consider Grst the asymptotics of the solutions at x ~
—oo and x -+ +oo. We can write

@(xm +oo) m e(+oo) exp[ip(koo)2:]4p, (7.15)

and

1 1 L, UD
2

&L,U, D — PL, U, D = (7.8)
where p(+oo) are the eigenvalues of the matrix D(+oo)R
and e(koo) is the matrix whose columns are the eigen-
vectors of D(:koo)R:

MUD =0 MUD, (7.9)

with col. UD, MU D and 0 as de6ned in Sec. VI. As in
that section, we use the subscript R to generically de-
note the relevant U or D subscript for the right chiral
states. Expressions for 6nite plasma velocity are given
in A.ppendix C. Aside from a small (but important) cor-
rection due to W+ and Higgs boson masses, and quark
mass insertions in a gluon loop, discussed in Sec. VIB,
the above expressions for n and P are valid in the bro-
ken as well as unbroken phases. For the quantitative
calculations reported below we use the exact expressions
including the change in cr and P in going &om unbroken
to broken phases.

These equations correspond to left chirality particles
incident Rom the unbroken phase (right particles are re-
flected in this case) and right chirality particles incident
from the broken phase (with left particles reflected). If
the sign of the i

& term is reversed one gets the com-
plementary cases. The treatment of both equations is
similar, so we will deal in this section with one equation
only, in the down quark sector to be concrete.

We introduce new variables

O' = R (7.10)

where R is a diagonal matrix

&RLL 0
0 RRRy '

(7.11)

—0 =iDRC,8
Dx

where the Hermitian Inatrix D is de6ned by

((u(1 + nL + PL)
~(1+~R+ PR) P

(7.12)

(7.i3)

The expression for the baryonic current [see Eq. (6.27)]
in terms of these new variables is simply

RLL = (1+nL) ', RRR = —(1+o'R)

In terms of these new variables the equations can be
rewritten in the convenient form

DRe=e p. (7.16)

First we note that at z -+ —oo all eigenvalues of DR
are real and are given by

1 + rrL + pL
p;(—oo)—:pL =(u, t &3)1+ nL,

(7.is)

1+~R+ PRP'(-~) —= PR = -~ 2) 3.1+0!+
(7.ig)

The 6rst three of these correspond to left chiral incident
particles and the last three to reBected right chiral out-
going particles. 6

We cannot write the corresponding analytic expres-
sions for the particle momenta in the broken phase in
closed form due to the mixing of the quark generations.
We denote them as

p;(+oo) = pL, i (3, p, (+oo) = pR, i ) 3. (7.20)

These momenta are not necessarily real due to the fact
that the matrix DR is not Hermitian. Complex eigenval-
ues appear in complex conjugate pairs (see Appendix A).
Physically, a pair of complex conjugate eigenvalues cor-
responds to complete reBection of some particular quark
Bavor eigenstate.

I et us order the particle momenta in the broken phase
in such a way that the 6rst three correspond to prop-
agating modes with positive group velocity or to non-
propagating modes with positive imaginary part (this
will produce a.n exponentially decaying wave function)
and the last three have negative group velocity or nega-
tive imaginary part.

Since ar„R and PL,a are negative and proportional te —~,
for small enough cu the sign of the momenta will change, but
not the group velocity. Thus our asymptotic behavior is cor-
rect for all u.

One can introduce also a scattering matrix (which is
determined by solving the Dirac equation) mapping the
incident onto the outgoing wave function:

(7.i7)
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C. Re8ection and transmission coefBcients

(01
0

rll
r21
r31

(7.21)

and, at x m +oo,

tll
t21
t31
0
0

(7.22)

It is not dificult to relate the scattering matrix V to
the reHection and transmission amplitudes. The wave
function corresponding to the reHection (and transmis-
sion) of a left particle incident from the unbroken phase
of, say, the first favor, has the form, at x ~ —oo,

D. CPT properties of amplitudes

CPT-invariance puts a number of constraints on the
reflection and transmission amplitudes. To find them, let
us write all the equations we have for our problem.

(1) For left particles incident Rom the unbroken phase
we have

l9—41 ——iDRC1.
z

(2) Left (chirality) antiparticles obey

(7.28)

cussed in Appendixes A and G. Let us denote the various
refiection coefficients of interest as follows: (rI &);~ is the
reflection coeScient for left particle of favor j incident
from the unbroken phase, which becomes upon reflection
a right particle of favor i. r&I is the reflection coeS-
cient matrix for right particles incident &om the broken
phase, etc. Thus, for instance, the r" given in the equa-
tion above would be more precisely denoted as r&R.

(0
where r" and t" are the reflection and transmission coef-
ficients to be determined. The overall phase is irrelevant
to us, since we use in the end only the magnitudes of r;~
and t;~.

The wave functions for right-handed particles of the
first favor, incident &om the broken phase, have the
asymptotic behavior, again dropping an irrelevant phase:

(Oy

0—C 2
—iD'RC 2.

19K

(3) Right particles obey

0—4 3 ———iDRC 3.
Ox

(4) Right (chirality) antiparticles obey

t9—44 ———iD'RC 4.
AX

(7.29)

(7.30)

(7.31)

0
tb11

b

(ta

brll
b

r21
b

r31
1
0

(7.23)

(7.24) 4, = eEVCO, (7.32)

where 40 is some constant vector and E is a diagonal
matrix whose entries are exp[i Ipdzj . Evidently, then,

One can see that Eqs. (7.28) and (7.31) as well as
(7.29) and (7.30) are related by complex conjugation.
Therefore, the reflection and transmission coefBcients for,
say, left incident particles are related to those for right
incident antiparticles. Let us find this relation.

As we noted in the previous subsection, and develop
in detail in Appendix A, the solution to Eq. (7.28) can
be written in the form

~&
VI.I, VI.R 'lI

4 VRI VRR)
(7.25)

then the reflection and transmission coeKcients are

r" = V~II VRI. )
t" = VI,—I—VI.~V~II,V~I, ) (7.26)

where r and t are the reflection and transmission coef-
ficients for the particles incident fxom the broken phase.
Note that the labeling of which favor is "first, " etc. , is
arbitrary and not related between broken and unbroken
phases, except in the limit of no mixing.

If we denote

C 4
—e'E'V'4,'. (7.33)

However in this expression at x M —oo, the first three ex-
ponentials in E correspond to waves going from right to
left while the last three correspond to the incident right
antiparticles. To make the calculation of the reflection
coefBcients transparent, we wish to return to our conven-
tion in which the first three describe (now antiparticle)
waves going &om left to right. Therefore we introduce
the matrix T, with T = 1, of 0's and 1's w'hich reshufBe
the positions of the eigenstates relabeling the eigenvalues
in the broken phase in the following way:

@4 ——e*T E'T V*T 40, TpT = p . (7.34)
b —1 bVI RVRR t VRR (7.27)

The determination of the scattering matrix V is dis-
Then, when z m +oo the last three exponentials in
TE'T will correspond to the waves transmitted to the
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V V )I TV
VRiVRR)

= (7.35)

we see that the reBection coeKcients for right chirality
antiparticles incident &om the unbroken phase are deter-
mined by the same V which determined the reBection co-
eKcients of L particles incident &om the unbroken phase:

VLL VLR ~ = +RR +RLVLL VLR
—1 m —1 (7.36)

-b —1 % —1r = V~LVLL, C = VLL. (7.37)

broken phase, as desired. If some of the particles undergo
complete refiection &om the domain wall then T g l. If
we denote

and contains nondiagonal pieces when some of the eigen-
values are complex. Prom here one finds

(t") RI.L,
t" —(r") RRRr" = Rl,l„ (7.4&)

(r ) Rile —(t ) RRRt = R—RR (7.42)

which re8ects the fact that one can calculate the bary-
onic current either &om transmission or &om reQection
coeKcients.

Combining CPT symmetry and unitarity one finds the
following relations between reBection and transmission
coefficients:

This means, in particular, that there is no need to sepa-
rately solve all four initial equations; one can solve first
two of them and CPT will fix all other matrix elements.

E. Unitarity constraints

l(rI, R) I RRRIRJ I ——l(rRL) 'I Rr'&IRR

1(&rR)"I'(RRR)"l(Rzr, )"

=
I (rRL)"I'(Rr, r, )"l(RRR)"

(7.43)

(7.44)
From. any of the equations one finds the general state-

ment that the "probability" current (coinciding in our
case with baryonic current) is conserved: namely,

—etRe = 0.
d

dz
(7.38)

From here one can find a number of useful relations be-
tween re6ection and transmission amplitudes. In partic-
ular, the following relation holds true at z m +oo:

Vts' tR ZV= V~R'V=R,

where the matrix Rb is defined by

R' = etRe.

(7.39)

(7.4O)

It is a diagonal matrix when there is no total re8ection

These relations guarantee the vanishing of any C and-
CP-odd currents through the domain wall in thermal
equilibrinm, as will be seen when they are used in the
explicit expressions for currents given in the next section.

F. Baryonic current in terms of reflection coefBcients

One can show (see Appendix D) that the thermal av-
erages of the currents of interest are, for the one dimen-
sional problem:

(1) If we send toward the domain wall an equal number
of left quarks and antiquarks &om the unbroken phase,
with the distribution of quasiparticle momenta given by
the Fermi distribution in the unbroken phase, their con-
tribution to the net baryonic current is

(R) =)L))(RR (~ c) c(I)cc) I(rcR) I)RRrrR ("rR) &RRrr R] )2' (7.45)

where the r's are the reflection coefficients computed with K ~ K'.
(2) The contribution of right quarks and antiquarks incident from the unbroken phase is

dip
(~RL) = ~(rrr(cr c) R(+RR) ((rRL) I)LLrRr(rRL) +LcrRL]). ,2' (7.46)

(3) "Left" particles incident &om the broken phase, now using the equilibrium momentum distributions appropriate
to the broken phase, contribute

cled
(~L~R) = Tr(rrR(» R)cr(&cc) I("LLR) &RRrr R (RLR) +RRRLRI ).2' (7.47)

(4) "Right" particles incident &om the broken phase contribute

(4L) = — Tr(rrr(cr, ")LR(4R) 'I(rRL) ))cc"Rc—("Rc) +ccrRLI).2' (7.48)
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Here nF((d, v)„L „RsL sR are the distributions of the par-
ticles in the rest kame of the wall defined in Appendix D.
Note that only propagating modes in the broken phase
contribute to the asymmetry, so that the trace in Eqs.
(7.47) and (7.48) is taken only over eigenstates having
real pg and p~.

The total CP-noninvariant component of the baryonic
current through the surface is given by

(J ) (JLR + JRL + JLR+ JRL)' (7.49)

It is the same in the broken and unbroken phases, since
baryonic number is conserved in the interaction with the
scalar field. Left and right fermionic currents are not
conserved, and cannot be defined in the broken phase.
In the unbroken phase they are equal to

(J') = (JRL+ JLR) (7.50)

(J")= (J" + J' ). (7.51)

@CD sphaleron transitions violate chirality, so that on
time scales long compared to I'&cD, h 100/T these
currents are not separately conserved, even in the unbro-
ken phase.

In thermal equilibrium with v = 0, all distribu-
tions of the particles have the standard form nF((d) =
[exp((d/T) + 1] . In this limit, using27 Eqs. (7.44),

(~RL) (~LR) (JLR) (~RI.) = f, ~(-)-.(-)

where

nF ((d)
int &2. (7.52)

&( ) =T((& ) '[{")'& " —(" )'& " ]),
(7.53)

thus all C- and CP-odd currents vanish due to the
CPT and unitarity relations between difI'erent ampli-
tudes given in Eqs. (7.44), as expected.

The main quantity of interest for us is A((d), so in
the next section we turn to the problem of finding the
reHection coeKcients. If we are satisfied with the linear
term at small v, we can use the difFerential equation for
v = 0. J~~ will be nonzero due to the difference between
Fermi distributions for the particles incident from broken
and unbroken phases, when v g 0. In fact, however,
keeping the v dependence in the difFerential equation (see
Appendix C) is quantitatively significant for v's in the
expected range, v ) 0.1, as is reported in Sec. IX where
we parametrize the velocity dependence of A;„t which

enters J&& as 6;„t(v) = Ao(l + (v). In Appendix C it is
shown that for JcF, 4;„t(—v) enters.

At small but nonzero plasma velocity v in the wall rest
kame, we saw in Sec. VIA that

[7iF ((d —kRVv) —7LF ((d + kLV~ )

+71(F(d+ kRvS) —7iF'((d —kRVS)], (7.55)

where the terms come in order from J&1., JI.&, J~I., and
Jlb& and v„, vg & 0 are the velocities of the plasma in the
wall rest kame in the unbroken and broken phases. In
general the temperature difFers slightly in going through
the wall and that can be taken into account if quantita-
tively relevant. If the actual distribution functions are
not those of thermal equilibrium, say because the wall
carries along particles in front of it, then the true distri-
butions may be substituted for the equilibrium distribu-
tions we have assumed.

For the quasiequilibrium assumption of equal tempera-
tures and equal velocities, we can make the small velocity
expansion of Eq. (7.55). In this case, contributions from

J&L and J&1 cancel to leading order in the Havor depen-
dence of the fIuxes, leaving

nF((d, v) = ——
exp[T (1 ——")]+ 1

For the various contributions to the current enumerated
in Eqs. (7.45)—(7.48), we encounter different k's. For
instance, for J&1, k = k& is the momentum of the A
quasiparticle incident from the unbroken phase. The
main contribution in this region comes from 8~ or b~
being reBected to 81. or dI, . The Qavor dependence of
the B-quasiparticle momenta can be neglected as it is
a higher order efI'ect, so k is just the momentum of the
right normal branch2 at (d =

2 ((dLs+(dR), which from Eq.
(6.19) is kR —s((de —(dR). For JUL we have right nor-
mal branch excitations incident &om the broken phase.
Thus k for this case has the opposite sign as for JRL.
Moreover since the right branch does not shift in going
from broken to unbroken phase, the magnitude of k is
the same as in the previous case, so k = —k&. For JL &
and Jl& the incident excitation is left abnormal. As we
saw in Sec.VIA the abnormal branches have k opposite
in sign to the group velocity, which must be positive for
particles incident from the unbroken phase and negative
for particles incident from the broken phase. Thus for

J~~ we have k = +kl. Since total reHection occurs at
the value of ~ for which levels cross in the broken phase,
k&~

——k&~. Similarly, for J&R we have k = —k&, where

kL —3((dL —(d). Neglecting the shift in going from the
unbroken to broken phase for the average of uL, and ~R
compared to the shift in that difI'erence, we have froln
Sec. VI B that ((de —(dR) = (1— p ) ((dL —(dR), so that

kL
——2((dL —(dR)(1+ &~). Combining the above with

Eq. (7.52) gives

"Since the range of (d for which A((d) is nonzero is very
narrow and n~ does not change significantly in this range, we
take it out of the integral and evaluate it at the central value
of (d: fd.

Recall that there is no need to distinguish between u& and
ti
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J~F = ' 'nF(u)[1 —nF(ur)](kL —kR)v.2' (7.56)

9a~T"
nF(u)[1 —nF(u)] v.2' 4Q

(7.57)

Inserting the expressions obtained above for kR and kL,
and using (wL, —uR) — &s, gives

We can also consider, as an extreme alternative, the
case when the distribution functions vanish in the bro-
ken phase, corresponding to all quarks (in the relevant

energy range) being swept along by the wall. Now the
v dependence of b,; t (see Appendix C) is of the same
order as the v dependence &om the Huxes. Taking
4;„t(v) = Ep(1+ (v), we find

1
J~F = —[nF(u —kRv„)b„ t,(v) —nF(ur + kl, v„)A;„t,( v)]-

27r

bp t' 3(~L —~R) &

nF(u)
~
2(+ [1 —nF(u)] ~

v,
27r cYJ )

(7.58)

again having expanded for small v.

VIII. SOME ANALYTICAL RESULTS

Some properties of the fermions' reBection &om the
domain wall can be studied analytically. Namely, the
case without fermionic mixing allows an analytical solu-
tion for some specific profiles of the domain wall, while
the real case with mixing can be solved perturbatively in
a thin wall approximation.

A. No mixing

F (z)= 1

1+exp( —az)
(8.1)

the problem can be converted to one which is solved
in, e.g. , Ref. [71]. We do not go to the details of the
derivation and only present the result. The differential

If mixing between different quark fiavors is absent and
the kinetic term is independent of the VEV, 2P then the
quark scattering problem simplifies significantly. We
have just two difFerential equations for the scattering
problem, which can be transformed to the equation for a
hypergeometrical function for some profiles of the domain
wall. For instance, for

(1 + cry + pi 1 + AR + PR l pJ, pR+
2 ( 1+al, 1+aR ) 2

(8.3)

and

M2

(1+nR) (1+nr, )
' (8.4)

There are two solutions to this di8'erential equation.
They are

equations describing the scattering of the fermion on the
domain wall can be written as

. 8)
~
pL+i ~

I —MRR=O,
Bz)

(8.2)

. 8'r
MiL+

I p»+' Bz)

where ML, R = M/(1+ aL, R), and p& R are as defined in

Eqs. (7.18) and (7.19). M in this expression is the Higgs-

induced mass in the broken phase, = Mz p (vEvl& pl
VEV(T)

(VEV(r=O)
Introduce

Lg(z) =exp i
~

+vB ~z F
~

———(u+vB), —(u —~B),1 — VB; —e-. ((pR+ p~) l t'1 i i 2i

2 j q2 a 'a a
(8.5)

and

L2(z) = exp i
(

—V B
)

z F
(

———(cu —.VB), —(v+ y B),1+ VB; —e-. f'(p +Rpl, ) l /1 i i 2i

2 (2 a a a (8.6)

That is, ar, R and pL, R are z independent, as is the case when mass corrections to loops in the broken phase are dropped.
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The right-handed component of the wave function corre-
sponding to these solutions is given by

1 t'„8&
&g(z) =

M I &r, + i~ 14(z).
Mn ( Bz)

(s.7)

Here I"(u, P, p; z) is the usual hypergeometric function,
whose asymptotic behavior fixes the reflection coeK-
cients. The result can be cast into the form

total reflection, with a b~ incident &om the unbroken
phase being reflected as an sI. .

The consideration of this subsection confirms that the
interesting part of phase space is the region where reflec-
tion is substantial. Consideration of the thin wall ap-
proximation, with CP efkcts taken into account, allows
one to be even more specific.

(1+u~l
I ~(~)&1+~r )

(1+nL, I
/rR~L, (' =

I I ~(~)
l 1+(1~)

(8.8)

(8.9)

B. Thin +rail approximation

Many properties of the fermionic interaction with the
domain wall can be seen already in thin wall approxima-
tion. In this subsection we will suppose that the function
E in Eq. (7.4) has the step form

with Il(z) = 8(z). (8.12)

sinh2x(u —y B)/a
~(~) = .

sinh2x(2 + ~B)/a 4 = exp(ip z)40, (8.13)

Now the solution of the Dirac equation for all z & 0 is

for B & 0, and p = 1 for B ( 0.
If the energy of the fermion is much higher than the

barrier height, then

and, forx&0,

4 = e exp(ip z) V4'0. (8.14)

2+M2 ( 2vru i
(1 + )' E )

(s.11)

As expected, reflection &om the domain wall is sup-
pressed by the semiclassical exponent in this case. Note
that this dependence of the amplitude on M can be in-

terpreted as reflecting the perturbative coupling of the
fermion to the Higgs potential. On the other hand, in
the energy region where total reflection occurs (B & 0)
the amplitudes are of order 1. In this energy regime per-
turbation theory in Yukawa coupling constants does not
work.

Complete reflection of some flavor corresponds to the
case when B ( 0. With mq ——150 GeV, m, = 1.6 GeV,
m„= 5 MeV, mb ——5 GeV, m, = 0.15 GeV, and mg ——

10 MeV, T = 100 GeV, and the temperature-dependent
Higgs VEV such that mar(T, ) = 50 GeV, i.e. , VEV=
150 GeV, the regions of total reHection (ignoring flavor

mixing) are (1) for the t quark, ~ & 117.764 GeV, (2)
for the c quark, 47.892 & u & 48.886 GeV, (3) for the
u quark, 47.384 & u & 48.387 GeV, (4) for the b quark,
49.491 & ~ & 52.531 GeV, (5) for the a quark, 48.146 &
ur & 48.237 GeV, and (6) for the d quark, 48.188 & ~ &
48.194 GeV.

It is interesting to note that, contrary to expectations
based on the zero-temperature dispersion relation, the re-
gions of complete reBection are in general limited by some
minimal and maximum values of energies. The reason is
the peculiar dispersion relation of the thermal excitations
in the hot plasma: as p is increased &om p = 0, the en-

ergy of the abnormal branch initially decreases with in-
creasing momentum, as shown in Figs. 1 and 2. We also
note that the region of d-quark reflection lies inside the
region of s reflection, and u quark reflection lies inside
the region of c reflection. The interesting region of ~ is
shown in Fig. 4. As we shall see in the section on numeri-
cal results, the region of ~ in which the momentum of b~
is nearly degenerate with that of sL, or dl. also produces

V =e (8.15)

The reflection coefEcients, which are determined by V
[see Eqs. (7.26) and (7.27)], can therefore be expressed
via the z ~ +oo eigenvalue matrices; e.g. , for incident I
quark by using Ve = 1 we find

—eRL (el I ) ~ r — (el L) el R (8.16)

Now let us consider the propagation of the antiparti-
cles. The corresponding equation for them is

(8.17)

with their eigenvalue problem in the broken phase giving

D'Re = ep .

As demonstrated in Appendix A, one can prove that the
set of p and p are the same. This is fundamentally a
CPT theorem result. We choose a basis in such a way

that pb = p'.
With these simple relations we can investigate in which

ranges of energy CP-violating eg'ects can be important.
Suppose first that all particle modes can propagate in the
broken phase. This means that all eigenvalues are real in
the broken phase. Making then a complex conjugation
of Eq. (8.18) and comparing to Eq. (7.16) one finds that

(8.19)

and, therefore, V = V*. This means that reflection co-

We will suppose that the matrix of eigenvectors and
eigenvalues are known in both the unbroken and broken
phases and that the first three eigenvalues in the broken
phase correspond to the transmitted waves, as has been
our convention. The aim is to determine the scattering
matrix, V. The wave function is continuous at x = 0,
giving the very simple relation
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e=e'T, (8.20)

where

efficients for particles are precisely the same as those for
antiparticles. Therefore, in thin wall approximation, one
cannot expect any CP-violation eH'ects in this region of
the phase space.

The other extreme case is also quite simple. Suppose
that all eigenvalues are complex so that all fermions are
completely reBected &om the domain wall. Clearly no
separation of baryonic number can occur here.

Now, let one fermionic Bavor be reBected while all oth-
ers are transmitted. This means, that, e.g. , pz and p4b are
complex and pi ——(p4s)', Impsi ) 0 (by our convention).
Then, complex conjugation of Eq. (7.16) for particles
does not give (8.18). Instead, we get

pLeLL + ~RRReRL —eLLpL
t4 b (8.23)

Rr Ler r, + pgeRL = eRLpr, ~

tC (8.24)

Now, multiply Eq. (8.23) by the matrix ei& &om the
right and Eq. (8.24) by e&& Rom the left. Then insert
pbL defined by the second equation into the first equation.
The result of these transformations is

order polynomial, which is not generally possible as is
well known. However we can proceed perturbatively in
the mixing and obtain some useful insight.

Rather than deal with the 6 x 6 matrix e, we derive an
equation for the reBection coefficient r", a 3 x 3 matrix.
From the eigenvalue equation [Eq. (7.16)] in the broken
phase, DRe = e p, one can show

T = 1, TpT = p', T $1. (8.21) pr, + MRrrRerrr eir

So we have

V =TV', (8.22)
= err, egr, M Rr, r, + errerrrprrerrr, ir, (8.25)

and reBection coefficients for particles and antiparticles
are di8'erent [see (8.16)). The same conclusion is true also
for the case when two quark flavors are reflected.

It would be nice to have an analytical expression for
the asymmetry covering the whole range of quark masses
and mixing angles. Unfortunately, it does not generally
exist even for the case of the thin wall. Since we have [Eq.
(8.15)] V = e, simply finding the eigenvectors in the
broken phase is sufficient to solve the problem. However
doing this requires finding analytically the roots of a sixth

Then, using the fact [Eq. (8.16)] that the matrix r of
refiection coeKcients for R particles incident from the
unbroken phase can be written r = eRLeLL, we arrive at

rpr, pRr + rMRRRr = M Rr, r, (8.26)

We will solve this equation perturbatively. Let us start
first &om the case without mixing. The eigenvalue prob-
lem for one fiavor, using the linear Dirac equation since

p is small, can be written (see Sec. VII) as

~~(1+&r, + Pr, ) —p(1+ ~r, ) l—M
M ~(1+~R + Pz) +p(1+ ~R) y

(8.27)

The solution, using the notation defined in the previous
subsection, is

(pr, )& (pR)& + (rOMRRR)les + (&oMRRrr)u

(8.31)
pg =vkvB. (8.28)

The reBection coefficient for R ~ L with no mixing is

ro (u + ~B), (8.29)

with the root chosen so that r -+ 0 when M ~ 0.
The physical case with mixing can be solved by per-

turbation theory in mixing angles. Equation (8.26) pro-
vides an ideal recursion procedure for that. For re-
gions of u with Bavor-diagonal total reBection one writes
r = rQ+ br, M = M+ bM, where bM is the nondiagonal
part of the mass matrix M, and defines br order by order
in mixing angles. The expansion parameters are roughly

The procedure is straightforward, and the calculation can
be done with the use of MATHEMATICA or MAPLE. For
the region of u with off-diagonal bR —sr, refiection, one
first rotates the basis and the equations become more
complicated, but present no fundamental problem. r is
obtained in the same way as r with b~~ —+ —b~~. Since
in regions of total refiection ro is complex [see Eq. (8.29)],
r P r Anonzero as.ymmetry first appears in the third
order of perturbation theory, as expected, since mixing

where

(8.30)
These results are for the case that the kinetic term is VEV

independent, i.e., cuL, ——cuL, . More generally, the pL, & which

appear should be replaced by p~L R, the broken phase eigen-
momenta for M = 0.
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between all three generations is essential.
The full expressions are too leagthy to be quoted here;

however, if we make further approximations, valid for
p/ur « 1, we can obtain a more compact result as fol-
lows. We present here the result of the computation of
the asymmetry in the region. where only the s quark is re-
Bected. We shall work in the approximation in which the
velocity of the domain wall is equal to zero and mass cor-
rections to the left-left and right-right transitions in the
broken phase are neglected. Modifications of the result
for more realistic cases is discussed later. Recall that the
quantity 4 in which we are interested is defined by Eq.
(7.53). It is convenient to redefine reHection coefficients
in the following way:

r = rKtotR (8.32)

where M is the diagoaal down quark mass matrix at T,
(recall that M = OKM for the charge —1/3 sector).
The expression for 6 is a bit more complicated in this
basis and contains the matrices K and O. There are two
nondiagonal entries in Eq. (8.33). Namely, the second
term on the left contains the moinenta of charge —1/3
quarks in the unbroken phase rotated by the matrices
0 and K, and the last term contains the rotated matrix
Rl.g. Now let us take advantage of the fact that reBection
of the s-quark occurs at small incident particle momenta,
so that an expansion with respect to p/uo can be used.
In zeroth order in this expansion, RL,I, = BIiIi = 3/2—,
and

(8.34)

One perturbs in the nondiagonal pieces of KtOtpl OK,
which are to a good approximation

3mawr' KtM'K
i6 ~Mw'

(8.35)

In the limit mb, m, &( co, md ——0, r33mb )) m„and
pL

—p& for the b quark « ms (which are actually quite
good approximations as long as mi 150 GeV) the ex-
pression simplifies to

( )
~(~aivT '1

mmmm,

si2s2ssisslnbc'p I
2 3 4 2

= —2 Im r, ,( 8(uM~ ) mmmm.

(8.36)

where all masses are taken at high temperature and r, is
the reBection coefBcient for the strange quark given by
Eq. (8.29).

The dependence of this result on quark masses has a
simple physical interpretation. Let us work in the basis of
r, where the bubble wall presents a diagonal barrier, i.e.,
the basis of zero temperature physical quarks. The main
contribution to the amplitude for s + s, i.e., the contri-
bution which is present even when mixing angles are zero,

In terms off, Eq. (8.26) for the reflection coefficients is

rKt 0~p~OK —p~r+ rKt Ot RI I.OKMR~ gr = I,
(8.33)

The path in which an intermediate d is reBected makes
a negligible contribution as long as the d is not totally
reBected, since then rd md and is thus very small com-
pared to rb. Note that as long as the b is not totally
reBected, rb is purely real. From standard perturbation
theory, the amplitudes A(z in j) are just the relevant mix-
ings divided by the level separations. Thus from Eq.

3 T2(8.35) we have, e.g. , A~s;„,~ is M~, m2si2, divided

by the level seParation, m, . From A(g in b) A(b in d)
3 T22we have ( s g, ) mis2ssise', divided by the 2-

3 and 1-3 level splittings. Some care must be taken
to determine them, using Eqs. (8.35), but one finds

1/m&, which is anyway the naive guess when
PS Sl

the momentum of the bottom quark is small. Therefore
the relevant portion of the amplitude for s quark reflec-
tion is

~ 3'lro'wT l m mg s2sslss122 S 2 4

~C '+C C

( 16')Miv ) m, mb
(8.38)

where c is a coastant of order l. Taking the absolute
value squared of this, minus the corresponding quantity
with 6'~~ m —b~~ for the antiparticles, then produces
the form seen in the actual analytic result above. Of
course to get the overall coeKcient and do the sum over
Bavors requires the real calculation outlined earlier ia this
section.

This heuristic derivation is useful for realizing that the
quark masses which appear in the denominator of (8.36)
are just the usual level-splitting denominators in pertur-
bation theory. It shows us that as long as the levels are
split by m, jms, so that there is a region in which the
s but not the d quark is totally reBected, the asymmetry
is actually enhanced by a near-degeneracy in the levels,
since that increases the intergenerational mixing which is
essential to the asymmetry. Clearly, when the masses of
the 6 and s quarks go to zero, perturbation theory breaks
down and Eq. (8.36) does not hold. Furthermore, we see
from yet another point of view how the total re6ection
of one or two quark eigenstates is crucial to obtain a
nonvanishing asymmetry: had there been no total reBec-
tion, the only phase in (8.38) would have been the CP
violating phase b~~, and there would be no asymmetry
in rates, as is familiar from 8 physics, where the neces-
sary interference is between a CP violating phase and a
strong interaction final state phase shift. In the case at
hand, the only source of a phase shift to interfere with

we call r, . When there is total reBection the reBection
coefEcient has unit magnitude but a nontrivial phase, so
r, = e' ". However the incident s quark actually is a
mixture of the broken phase eigenstates which we could
call db, sb, bb. Thus there are additional contributions to
the amplitude for s + s comiag from "paths" in which
another quark is present as an intermediate state. CP
violation is first encountered when one considers paths
such that, for instance, the bb component of the s re-
Bects, and is projected back onto the s via a d. Thus we
have an amplitude which is of the form

ib„ + 4(8 in b}rb+(b in d}~(d in a).
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the CP violating phase is the phase shift which devel-

ops when the reQection is total, as is evident Rom Eq.
(8.29). The resultant asymmetry is proportional to the
product sinb~~ sinb„, and the shape of the upper peak
we will see in the numerical results re6ects the shape of
the function sin b„:—Im(r, ) as the re8ection phase shift
moves &om 0 to vr.

Taking into account the mass corrections to the leR-
left part of the Dirac operator, discussed in Sec. VIB,
requires one to replace m2 in Eq. (8.36) with

16a,M~~ f n T 11
3+2n~T2 ( m, 2y

(8.39)

This is because the dispersion relation, when modified for
this correction, can be rewritten in its original form with
that substitution. The correction due to bosonic masses
in the broken phase can be incorporated by replacing o.~
in Eq. (8.36) with u~(1 — Tw).

For nonzero but small velocities the result increases
by a factor [(1 —v/3)(1+ v)]s for Jg& and JLs& while
for JL& and J&1 the same factor appears with v -+ —v,
due to the velocity dependence of the coefficients nL, ~
and PL, R (see Appendix C). For physical quark masses,
the analytic result presented here reproduces the exact
nuznerical result in the region of the upper peak for which
Eq. (8.36) is applicable, to about factor-of-2 accuracy.
Keeping terms of order p/u is necessary to do better
than this.

The total asyznmetry also includes a contribution at
a slightly lower energy &om 6 ~ s re8ection which is
comparable in znagnitude to this contribution and of the
opposite sign. Thus as parameters change, the sign of the
total predicted asymznetry can change as shall be seen in
the next section, and for a quantitative description we
must do the full calculation.

We see that the asymmetry in the up-quark sector is

suppressed by a factor of roughly, ',' ~ 10 and is

therefore numerically unimportant, as argued heuristi-
cally in Sec. II.

IX. NUMERICAL RESULTS FOR K

The analytic results of the previous section are help-
ful for our comprehension, but we wish to go beyond a
perturbative expansion in the mixing, in particular not
to miss level-crossing phenomena, and also to investigate
the dependence of the result on wall thickness. This must
be done nuznerically.

In this section we present the results of our full compu-
tation of the baryonic asymmetry current. We solve nu-
merically the one-dimensional quantum znechanical scat-
tering problem for the thermal Dirac equation (6.28) us-
ing the methods described in Appendixes A and B. We
neglect the shift in the broken phase kinetic term due
to mass corrections for thermal S'+ and Higgs boson.
The differential equation is solved twice, once using K
and once using K'. As described in Secs. VIIC and
VIID, this enables us to deterznine all the re8ection and
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FIG. 5. Dependence of E on cu, in GeV, for the "canon-
ical" choices of masses and mixing angles, and wall velocity
v=0.

While T, and Mw(T, ) are not precisely known, from (8.36)
one sees that it is the ratio Mw(T, )/T, which is important.
This ratio is constrained to be near 1/2 from the requirement
that the sphaleron rate in the low temperature phase is sufB-
ciently suppressed.

transmission coefficients which we need, for particles and
antiparticles of both chiralities, incident from either the
broken or unbroken phase. We can then determine the
various contributions to the baryonic current, using the
formulae of Sec. VIIF. In this section we present our
results for this current.

We take as our "canonical" values of parameters: mq ——

150 GeV, m, = 1.6 GeV, m„= 0.005 GeV, mg ——5 GeV,
m, = 0.15 GeV, mg ——0.01 GeV, 8g2 ——0.22) 823 ——

0.05, si3 —0.007, sin(bc') = 1, M~(T, ) = 50 GeV,
T, = 100 GeV, si and inverse wall thickness [see Eq. (8.1)]
a = T/10. Our result is proportional to sinbcp. As we
shall illustrate with a series of 6gures, the total asymme-
try current depends sensitively on some quantities, and
little on others. Figures 5—8 shows A(u) as a function
of u in the range of ~ for which the total asymmetry is
non-negligible, for several choices of masses and mixing
angles.

For the canonical values of the masses and mixings, the
region of total reflection of the s, found in the section on
analytical results, is ~ = 48.15 —48.24 GeV. This can
be seen to coincide with the region of the upper pair
of peaks in Fig. 5. The "notch" between them, &om
cu = 48.188—48.194 GeV, is the region in which both the
8 and d is totally reQected. As can be seen &om Fig. 4
and was discussed in Sec. VII, the broad peak of opposite
sign at lower u corresponds to a region of ~ in which
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the momentum of the bR becomes degenerate with the
momentum of the 81, or dI. somewhere in its traversal
of the bubble wall, inducing resonant level crossing and
total reiection to an 8 or d quark.

The interpretations we have given above of the peaks
are borne out by their dependence on the quark masses
and t KM parameters, as seen by comparing the various
6gures to one another. The width and positions of the
upper peaks are very insensitive to changes in the mixing
angles, or to changes in any masses other than m, or
mg. By contrast, the position, width, and shape of the
lower peak is very sensitive to the mixing angles and m&.

The height of the upper peaks is given to within 30'Fo

by the thin wall analytic expression (8.36), and varies
qualitatively correctly as the relevant masses and mixings
are varied.

In the regions between the peaks, the asymmetry is less
than 10 is, consistent with zero given our numerical
precision. This confirms our expectation that the asym-
metry is negligible except in a region in which either the
8 or the d, but not both, is totally re8ected.

The character of the lower peak is sensitive to the
top mass and the intergenerational mixing, particularly
823 Moreover it has the opposite sign and the same order
of magnitude as the upper peaks. Thus as m& and 823
are varied, the sign of the total asymmetry, integrated
over ~, can change. This can be seen by comparing Figs.
5, 6, 7, and 8. The integrated asymmetry, b, is shown in
Fig. 9, over the ra,nge 90 & mq & 250 GeV. For mq ——90
GeV, the sign of the asymmetry current is negative, then
changes to positive [for positive sin(bc~)] for larger m&.

Its magnitude increases by a factor of 4 in going from
m& ——150 + 210 GeV, and decreases by a factor of 2

(50) in going from mq ——150 -+ 130 (110) GeV. Figure
10 shows the sensitivity of the integrated asymmetry to
6 23 which is far from "perturbative" in the physically
interesting region, due to growth of the lower peak. On
the other hand, for values of sin(8is) & .Ol, the baryonic
current is linear in sin(8is), so we give no figures for that.

0.0002 i a a I « i s I I I I I I 1 I I I I I

47.9 48 48.1 48.2
u(cd)

s I &
1'

48.3

FIG. 7. Dependence of A on ~, in GeV, for m~ ——210
GeV and the "canonical" choices for the other masses and
the mixing angles, and v = 0.

One can crudely estimate its width and location in analogy
to the argument used for the upper peak, as follows. Since it
occurs on account of the level crossing of the sL, and b~ dis-

persion curves, one can approximately use Eq. (7.1) replacing
the mass of the s quark with the fixing-induced contribution
of the 5 quark, so that the width of the peak is nab sin(8q3).
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We have checked that when charge +2/3 sector masses
are made degenerate, e.g., m„~ m„ the asymmetry also
vanishes. This occurs through a reduction in the size of
the asymmetry for all tu

ss Wh. en mg -+ m, the notch
between the upper peaks grows until there is nothing left,
with the magnitude of the asymmetry inside the peaks

staying approximately constant and the magnitude of the
negative peak vanishing like m, —m&. %e give also, in
Fig. 11, the dependence of the total asymmetry on mp,
mainly for its conceptual interest, since the value is well

enough known to not be a major source of uncertainty. It
is interesting however that had the bottom mass been 2
GeV lower, CKM CP violation would have been insuK-
cient to account for the BAU in this mechanism, at least
for 3 generations.

An important result, shown in Fig. 12, is the rel-
ative insensitivity of the asymmetry current to a, the
inverse thickness of the wall, for wall thickness up to

(20 GeV) 1, and then strong increase for large wall
thickness. As previously noted, the result does not vanish
for zero wall thickness. Furthermore, as could have been
anticipated, the positions of the peaks are independent
of a. A thick wall enhances the asymmetry, although the
quantum mechanical approach becomes invalid when the
wall thickness is greater than the quasiparticle scattering
length.

Modifying the expressions for aL, ~ and PL, ~ to cor-
respond to their 6nite velocity expressions, given in Ap-
pendix C, we can rerun the program to have an idea of
the dynamical effect of finite wall velocity. The left bary-
onic asymmetry increases as v is increased, as shown in
Fig. 13. Using the linear approximation to the dispersion
relation, the asymmetry reaches a maximum at v = 0.25,
where b„ t is a factor of 4 greater than at v = 0. We
cannot trust the results of the linear approximation for
larger v, because the value ofp/u corresponding to the re-
gion of total reflection increases rapidly for v 0.25, with

p/u &0.4 for v &0.3. However blindly using the small
p/ur and high-T approximation formulas, even outside
the region where they can be trusted, suggests that 6;„&
may not continue to increase, and may even decrease, for
v & 0.3. Thus although the 6gure suggests that 4; t will
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FIG. 10. Dependence of b„.„& (in GeV) on sin(833). 0—

If m is varied from 0.005 to 1.4 GeV the asymmtery de-
creases by a factor of 6, although neither a linear nor quadratic
dependence on mass difFerences provides a perfect 6t over this
entire mass region, as is not very surprising.

-ixio s
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FIG. 11. Dependence of b;„q (in GeV) on m3(T = 0), in
GeV.
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continue rising for larger v, that may be misleading and
further work is necessary to know what actually happens
for larger v. For v & 0.25 we can use the linear approx-
imation 6;„q(v) = b,o(1 + (v) with Ao ——2.3 x 10
GeV and ( = 12. We remind the reader that for nonzero
v, J&R& is determined by the usual equations but with 4
determined using —u (see Appendix C).

As noted in Appendix E, a remnant of GIM cancel-
lation between the asymmetry for s(a)~ ~ d(d)L, and
that for s(a)~ -+ s(a)1, suppresses the total asymmetry
by a factor 10 —10 in comparison to the asymmetries
in individual fIavor channels. Figure 14 demonstrates

FIG. 14. Dependence of 4 on u, in GeV, for the indi-
vidual re6ection s~ —+ dl, . Also shown is the sum of this
asymmetry and that for sR m 81., which is practially equal
and opposite, so that the sum is 2—3 orders of magnitude less
than the individual asymmetries.

this point, for "canonical" masses, mixing and v = 0,
by showing the individual 8R -+ dL, vs 8R -+ dL, asym-
metry, and the sum of it plus the 8R m 8I, asymmetry.
If there is some mechanism which we have not incorpo-
rated in this calculation which lifts this degeneracy, e.g. ,
by a Qavor-dependent modi6cation of Bux factors, then
the result could be 2—3 orders of magnitude larger than
we Gnd.

The quantitative results presented in this section raise
some interesting questions. Firstly, how does the sensi-
tivity to m& and mt, arise, given that the heavy quarks
might be expected to decouple &om the scattering of the
light quarks7 Since at least three generations are required
for there to be CP violation, it is clear that they cannot
decouple altogether, but one would like to understand the
mechanism through which they exert their influence. Sec-
ondly, how do the properties of the charge +2/3 quarks
manage to affect the CP violation in the scattering of the
charge —1/3 quarks'? For instance we could have removed
the KM phase Rom the charge —1/3 sector and put it in
the charge +2/3 sector, where one might have thought
that it could not affect the scattering of the charge —1/3
quarks at all, and would have transferred the effect to
the +2/3 reflection coefficients, which on account of the
larger splitting between c and u might have produced
a bigger effect. Of course this does not happen, since
the physics must be independent of the convention as
to which sector contains the KM phase. Moreover an
appropriate measurement at the ti.me of the EW phase
transition could have determined that the baryonic asym-
metry was in the charge —1/3 sector. Similarly, it must
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be 4 the case that if two quarks of the charge +2/3 sector
were degenerate in mass, the asymmetry in the reflection
coefficients in the charge —1/3 sector would disappear.
But how do these consistency requirements on the scat-
tering get enforced? Appendixes F, G, and H, are de-
voted to developing the technology necessary to answer
these questions. Using those techniques one can see that
heavy quarks do not participate significantly in the scat-
tering, but do participate in the fixing of the eigenstates,
and play their crucial role this way. The independence
of the convention as to which charge sector contains the
KM phase arises because it is the change in the rela-
tive phases of the eigenstates when the bubble wall is
traversed which matters, and this is independent of con-
vention. It is nonvanishing in the charge +2/3 sector,
just much smaller than for the charge —1/3 sector Lik.e-
wise, the masses of the charge +2/3 quarks play a role
in fixing the charge —1/3 eigenstates, both in the broken
and unbroken phases.

X. PREDICTION FOR nn je AND DISCUSSION
OF UNCERTAINTIES

A. Prediction

In Eq. (5.21) we found the relation between the left-
baryonic current and the ultimate baryon number density
in the low-temperature phase: n~ =

s J~J f,~i,(p), in
quasistatic approximation. %e have given in the previous
section our results for 6;„t, which determines this cur-
rent, in the one-dimensional problem. From it, we might
attempt to estimate the current corresponding to the full
3D problem. As explained in Appendix E, this cannot
be done reliably. Instead we divide the one-dimensional
current by the one-dimensional entropy corresponding to
the known particle content at the temperature of the EW
phase transition:

73%T
8g g —— ——76.44T,

3
(10.1)

and insert a factor fs~ as a reminder of this source of
uncertainty.

The results for b„q shown in the figures of the previous
section must be multiplied by sin bc~. We can reexpress

sindhi~

in terms of J —= sin(8iq) sin(8is) sin(82s) sin(bc& ),
in order to reduce the overall uncertainty due to CKM an-
gles and phase, since this combination is relatively better
constrained than the individual angles and phase. The
"one-sigma" range on J, (1.4 —5.0) x 10 s, obtained from
a global fit [59] to data, allows us to replace sinbc~ in
&In~ by

the asymmetry in the Huxes from broken and unbroken
phases, and have considered two extreme models of this.
In the 6rst, the only deviation &om perfect equilibrium
comes &om the nonzero velocity of the plasma with re-
spect to the bubble wall, taking it and the temperature to
be the same on both sides. In this case, using Eq. (7.57)
to find J~~ &om 4;„t and taking mq ——150 GeV, and
otherwise "canonical" values as defined in the previous
section, we obtain, to leading order in v,

3 12
na/s =

73
Jcs

5
f. hfsn

=(2 —8) 10-' '
v f.,& f»

=(1 —4) x10 v. (10.3)

For the other extreme of no flux from the broken phase,
we use Eq. (7.58) to determine Jc~ from 6; t and find

n~/s = (3 —9) x 10 v f,zh(p) fsD. (10.4)

B. Sphaleron efBciency factor, f,sa(p)

The sphaleron efficiency factor f,zh(p) depends a lot
on whether the wall perturbs the fermionic distribution
functions in its vicinity. Recall that if the quasiequi-
librium approximation employed in Sec. V is valid,

The range in the parentheses reflects the uncertainty
in J, the product of sines of CKM angles. Letting mq

be 135 (180) GeV multiplies the above results by about
2/3 (2). We shall discuss other sources of uncertainty
below.

First, however, let us note that comparison with the
observed asymmetry, n~/s (4 —6) x 10 ii, is quite
encouraging. Not only is the magnitude in the right ball-
park, the sign is correct as well. This is highly non-
trivial, given the intricate dependence of b, (~) on quark
masses and mixing angles as discussed in Sec. IX. How-
ever until a number of uncertainties in our calculation
and in the theory of the electroweak phase transition are
removed, and quasiparticle behavior in that environment
is better understood, this result can only be taken as in-
dicative that minimal standard model physics can be re-
sponsible for the observed baryon excess of the universe.
We now turn to a discussion of the factors f,~h and f3D)
and a critique of the calculation which we have done to
obtain 4; g.

(10.2)

%e have seen that the final asymmetry is sensitive to

And, we checked, it is.

To be precise, only the sign of the product B sinb&& is
actually measured at present, vrhere B connects quark matrix
elements to hadronic matrix elements for the K meson. If it
is positive as is generally believed to be the case, then J is
positive and our prediction has the same sign as observation,
namely, a baryonic, not antibaryonic excess. Fortunately, the
sign of sinb~y can be separately determined experimentally,
given the correct set of measurements [72].
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f,i,h(p) = 1 when p = g » 1, while for p ((
1, f,&h(p) = sp. In order to estimate p we need rather
detailed knowledge of the high temperature environment:
the sphaleron rate, velocity of the domain wall, and, to
estimate D~, the mean &ee path of the quasiparticles.

Assuming the wall does not disturb the quark distri-
bution functions, which is correct for walls thicker than
a typical mean &ee path, the rate of sphaleron transi-
tions in the unbroken phase directly enters the expression
for the 6nal baryonic asymmetry through the function
f,ph(p), with p = „g and I' = 9I',„/T . Only two es-
timates of the sphaleron rate in the unbroken phase have
been made [73—75] so far. In the first, an attempt was
made to analytically compute the rate of sphaleron tran-
sitions, taking some sphaleronlike configuration (namely,
the standard instanton in Ao ——0 gauge at t = 0) with
a fixed size and half integer topological number, and
then integrating over the size of this configuration. This
yielded the estimate [73]:

(10.5)

It is not clear how reliable the analytical calculation is,
since the corrections to it are not under control.

In Refs. [74, 75], lattice simulations of the sphaleron
transitions were performed. A lower limit was found to
be38

(10.6)

The actual sphaleron rate may be much larger than this
lower limit, and to 6nd it with better accuracy much
larger lattices and larger values of the lattice coupling
Po must be used. In addition to the usual lattice arti-
facts (finite spacing and finite-size efFects) which make
it difficult to accurately estimate the sphaleron rate on
available computers, there is also a subtle problem con-
nected with the renormalization of the Debye screening
mass in three dimensions. This problem, however, is not
supposed to affect the inain conclusion of Ref. [75].ss

We shall take I',~h ——10 + T for our estimates below,
although given the many uncertainties and inadequacies
of the existing estimates, the actual value may well wind
up outside this range.

The parameter p also depends on the velocity of the
bubble wall which has about one order of magnitude un-
certainty [60, 40, 41, 61] v 0.1 —0.9, and on the quark
difFusion constant, D~, which has never been calculated.
Roughly speaking, D~ is the quark mean &ee path which
has been estimated to be A 4/T [40, 41] based on
strong interaction scattering cross sections. Another sim-

See Sec. V.
Estimates of the prefactor for the sphaleron rate in the

broken phase difFer by many orders of magnitude [76—78].
The values of e in Table 4 of Ref. [75] must be multiplied

by the factor 4.4, due to an arithmetic mistake in Eq. (50),
which should be replaced by N(t) = 0.01K

J. Ambjorn and M. E. Shaposhnikov (in preparation).

ilar estimate of the mean free path comes from the cal-
culation of the damping rates of the quasiparticles [68,
69], A (0.15g,T) i = 5/T. Yet another estimate can
be had by taking the viscosity of a 5-Bavor quark-gluon
plasma as determined in [79] and dividing by the typi-
cal energy density. This gives A 4/T. In Appendix I
we discuss the specific case of relatively low momentum
quasiparticles and include the effect of Debye screening.
We conclude that D~ (3 —5)/T and A (4 —25)/T.

Combining the above results gives

1(l
—3+i/ 2

As can be seen, one can get either no suppression of the
baryonic asymmetry, or 4 orders of magnitude of suppres-
sion. In the latter case, MSM baryogenesis seems practi-
cally impossible, unless there is a fourth family of quarks.
Clearly, a more precise determination of the sphaleron
rate in the unbroken phase is of crucial importance.

We also recall to the reader that our derivation (Sec.
V) of the relation n~ =

s Jcr f,zh(p) assumed almost-
equilibrium conditions, while in fact if the domain wall is
much thinner than a typical mean &ee path this may be a
poor approximation. In the extreme case that quarks in
front of the wall are at rest with respect to it, with a void
immediately behind the wall, then one has simply nJ3 ——

J~J /r. , from the definition of r. ( 1/4, see Sec. V). In
this case the spahleron rate only needs to be greater than
the expansion rate of the Universe to do the necessary
job. While we do not advocate this extreme example
as a good description, it does serve to emphasize the
necessity of understanding how the bubble wall aKects
the quark distribution functions in its neighborhood, in
order to determine the magnitude of the final asymmetry.
Clearly, a treatment which goes beyond the quasistatic
approximation is needed.

To summarize this section we have seen that it is rea-
sonable to suppose that there is no signi6cant suppression
from f,~h(p) However . there could instead be a huge sup-
pression. We can take 10 4 ( f,~i, & 1. From Appendix
I we have also seen that the e8'ective collision length of
the relevant quasiparticles may be as large 25/T, al-
though a value as small as 4/T cannot be ruled out.

C. SD versus 1D prediction, fsD

We have developed the technical tools for carrying out
the quantum mechanical (QM) scattering problem for ar-
bitrary p~~ (see Appendix E), but this calculation is sub-
stantially more work, and requires solving other problems
6rst. The contribution coming &om the region of p~

~

& p~
is much more sensitive to the issue of the asymmetry in
the Quxes than is the small p~~ contribution, because the
velocity perpendicular to the wall is much smaller in this
case. In addition, we should improve our approximation
methods, especially the high-T expansion, in order to ob-
tain a valid Dirac operator for large momentum particles
and to deal with large velocities of the plasma with re-
spect to the wall rest frame.

Even if the Dirac operator we have obtained here were
valid under the more extreme circumstances encountered
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in the full SD problem, it would be difficult to reliably
deduce even the order of magnitude of the 3D result,
Rom the 1D results obtained so far. This is because the
level crossing structure is quite different in the two cases,
and one needs R —R and L —L reflection amplitudes
as well as the L —R and R —L axnplitudes required in
the 1D case. These complications appear as likely to
give an enhanced result as a decreased result since, for
instance, the residual GIM cancellation xnentioned in Sec.
IX seems to be lifted for at least soxne of the kinematic
regions relevant to large p~~. Therefore for the time
being we must retain the uncertainty factor fsD, which
we believe is in the range4~ (10 s —10+s).

D. Other uncertainties in the calculation of J~p

One source of uncertainty is the calculation of the ther-
xnal Dirac operator in Sec. VI. We used and even ex-
tended the state-of-the art calculations of the quark prop-
agator, which are done in 1-loop, high-temperature ex-
pansion. However one can think of various effects which
are clearly physically important and which are not in-
cluded in this approximation. Simply going to higher-
loop approximation and to higher order in mass inser-
tions could make a quantitative difFerence in the predic-
tions, given their strong sensitivity to the small splittings
between eigenstates. Moreover, lattice studies suggest
that nonperturbative effects may be very important. We
can expect that these effects could also modify the propa-
gation of the fermionic quasiparticles and their inclusion
could modify the result for b„ t, although we have not
identified any effect of this sort which would modify the

When p~~
——0, with the approximations of the present

work, the degeneracy between the momenta in the unbroken
phase of sr, and dL, is almost perfect: (p, —pq)/(p, + pg)10, due to the dominance of the thermal inertia when p
is small. This degeneracy in the Bux factors determines the
extent of GIM compensation between the individual asym-
metries in the final result, causing the p~~

——0 asymmetry
summed over Savors to be 10 times a typical individual
asymmetry. A number of efFects might lift this, either asso-
ciated with the full treatment of large p~~, or coming from
nonperturbative efFects on the propagation which we have
not taken into account. In our numerical study of the one-
dimensional system (see Sec. IX), the asymmetries in the
individual processes are found to be quite large, of the order
of 10 for v = 0.25. Thus the net contribution could be 2—3
orders of magnitude larger than when the cancellation men-
tioned occurs. To minimize the proliferation of symbols, this
possible source of enhancement will be included in fso, even
though it may also appear in a more complete treatment of
the 1D problem.

In the first preprint version of this paper we had not yet
included the efFects of +CD-sphaleron-induced I —B transi-
tions, nor the effects of mass corrections to bosonic propaga-
ters in the broken phase. When these are included, the naive
estimates of fso which we attempted then break down, and
must simply be discarded. See Appendix E for details.

result by more than numerical factors of order 1.
Related to working to lowest nontrivial order in cou-

pling constants in obtaining the quasiparticle propagator,
is our purely quantum-mechanical approach to ferxnion
scattering &om the doxnain wall. This neglects non-
difFractive collisions of the fermions on the particles in
the plasxna which occur while they are scattering &om the
domain wall in the Higgs VEV. While this effect is tech-
nically of a higher order (2-loop), we must ask whether it
is physically unimportant or not. One can neglect the in-
Quence of these processes, provided the efFective collision
length A;„,~ of the quarks in the plasma is much larger
than the bubble wall thickness a ~ and smaller than the
imaginary part of the xnomenta of totally re6ected parti-
cles, in the broken phase.

The first requirement, that the quasiparticles can scat-
ter through the wall without having a collision, depends
on the wall thickness. Because of uncertainties in the ef-
fective potential, the wall thickness is poorly known. For
instance, using a perturbative calculation of the effective
potential yields a wall thickness of (10 —40)/T [61, 40,
41], while recent work including nonperturbative effects
in the unbroken phase indicates that the wall may be
much thinner than this, 1/T [44]. Evidently, if the
wall is as thin as the latter estimate, our calculation is
valid, but if its thickness is 40/T, our calculation can
only be considered an indication of the possible order of
magnitude of the asymmetry. For a thick domain wall,
a better approximation to the problem would be consid-
eration of the plasma in the background of a (slowly)
varying uniform scalar Beld.

The second requirement for the validity of our quan-
tum mechanical approach, Im(pt)A large compared to 1,
arises because we. specify boundary conditions at infinity
in which the coeScient of the growing exponential is set
to zero while the falling exponential is kept. This is not
physically sensible if there is a collision at a distance A

from the wall, with Im(pq)A not large compared to one.
From the discussion in Sec. VIII, one can see that in the
region of s-quark total refiection, Im(pq) m, so that
for this region at least, the condition is not met. This is
an aspect of the present calculation which must be im-
proved before the result can be considered quantitatively
reliable. However if it is the fIavor-decoherence length,

AFD ', A;„,~, which proves to be the relevant quan-

tity, there may be no problem with our method since
m, AFD 200. Unfortunately, improving the calculation
to systematically include these effects seems quite non-
trivial, since one must also include at this order emission
and reabsorption of thermal quanta during the scatter-
ing itself. We have not found a convincing method for
estimating the consequences of these effects. Since they
are formally of a higher order in a„ including them may
not qualitatively change the conclusions.

E. Effect of a fourth generation

Presently feasible experimental measurements are gen-
erally insensitive to a possible fourth generation of
quarks, unless there is a large difference between the t'
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and b' masses. This is not the case for the baryon asym-
metry produced in the MSM. If there is another genera-
tion, then the relevant GIM cancellation will be between
the second-most-degenerate pair of generations, namely,
the second and third generations. Then the 8 —6 degener-
acy will limit the magnitude of the CP violation. Taking
the analytic thin-wall result of Eq. (8.36) as a guide, sug-

gests an enhancement over the 3-generation prediction by
a factor

4 2 2(mi l t' ms
&~

s»»4»4
mb' 812823813

(10.8)

where we used the fact that b, (ur) is nonzero over a range
m, (ms) in the two cases, respectively, and replaced

2

all CP-violating sines by 1. For " = 10, and tak-

ing the ratios of the sines of the mixing angles to be
1, this produces an enhancement by a factor 103. It

would appear to be unnatural for the contribution of a
fourth generation to be very much less than this, at least
given our present inability to account for quark masses
and mixings, so that we can consider three-generation
results to be a lower bound on the baryonic asymmetry
produced in the MSM. If re6nements in the theory of
MSM baryogenesis signi6cantly lower the prediction in
comparison to observation, it could signal the existence
of a hitherto-unsuspected fourth generation.

XI. CONCLUSION

Of course a fourth generation neutrino must be heavy
enough to not have in6uenced too much the Z width.

We have shown that the baryonic asymmetry of the
Universe may be a natural consequence of the CP vi-

olation present in the minimal standard model. Within
our present treatment of this problem we have found that
the MSM prediction is very sensitive to quark masses and
mixings, for instance, changin. g sign for mq & 110 GeV
and increasing by a factor of 8 when mq increases &om
130 ~ 210 GeV and for mq ——150 GeV and a plausible
choice of wall velocity (v = 0.25) we found

na/s (0.1 —10) x 10 v fli, i, fsD.

The range re8ects the experimental uncertainty in J, the
product of sines of CKM angles, and in the asymmetry
in the Hux factors. Varying mq &om 135 to 180 GeV
would introduce a factor 3 to 2. The greatest uncertain-
ties in this prediction come &om dynamical aspects of
the electroweak phase transition which are still unclear.
To remove the uncertainty from the fIux factor requires
knowing the quark distributions in the vicinity of the
wall, specifically, understanding how the passage of the
wall afFects these distributions. The sphaleron conversion
efliciency, f,~h, is 1 if the rate of sphaleron transitions in
the unbroken phase is large compared to the typical time
the quarks remain in the unbroken phase before being
overtaken by the expanding bubble of low temperature

phase. While f,~i, may be 1, it could also be as small as
10, in which case the known CP violation of the MSM
is inadequate to explain the observed BAU. fsD is very
hard to estimate. We believe it lies between 10 —10+;
it also depends sensitively on the ftux asymmetry.

While the present result can be considered only a pre-
liminary indication of the true prediction, the possible
consistency in magnitude with the observed n~/s
(4 —6) x 10 ii is encouraging. The sign of the prediction
is very sensitive to quark masses and mixing angles, but
is correct when these quantities lie in their experimen-
tally allowed ranges. Many of the uncertainties which
affect the magnitude of the 6nal asymv-". try, such as the
sphaleron efBciency and the effect of the bubble wall on
the quark distributions in its neighborhood, and our sim-
pli6ed quantum-mechanical treatment neglecting inelas-
tic effects, do not affect the sign of the prediction. Thus
it is heartening that the prediction of the sign is correct,
because this is likely to not change as the calculation is
improved.

In any scenario of electroweak baryogenesis the Higgs
potential must be such that it produces a strongly 6rst or-
der phase transition, and such that sphaleron transitions
after the phase transition are suppressed. When non-
perturbative effects are better understood in the MSM,
this should imply a 6rm upper bound on the Higgs boson
mass [80,44]. ln addition to the LEP experimental lower

bound, there is a theoretical lower bound resulting &om
requiring the T = 0 vacuum to be stable, which for a
MSM Higgs boson is actually more stringent:

mH ) 75+ 1.64(mi —. 140), (11.1)

in GeV, for 130 & mi . 150 GeV [81]. Combining the
theoretical bounds will either exclude, or precisely pre-
dict, the mass of the MSM Higgs boson, if the minimal
standard model with no extensions whatever can be re-
sponsible for the baryonic asymmetry of the Universe.

If the upper bound &om requring the sphaleron rate
in the low temperature phase to be small enough is vi-

olated, it does not mean that electroweak baryogenesis
must be rejected or that the mechanism we have devel-

oped in this paper cannot be responsible for the BAU. It
could instead indicate, for instance, that the Higgs sec-
tor is more complicated than in the MSM, so that the
upper bound on the Higgs boson mass is relaxed. The
real test, eventually, of whether the phenomenon we have

discussed is responsible for the observed. baryonic asym-
metry of the Universe, will be in its quantitative compar-
ison with the measured sign and magnitude of the BAU.
Once the d.ynamical aspects of the EW phase transition
are well enough understood, this can be done.

Our work underlines the importance of a reliable and
precise observational determination of nn/p, which fixes

n~/s 7n~/n~ The most rec.ent comprehensive anal-

ysis [82] quotes the range 2.8 x 10 io ( n~/n~ (
4.0 x 10 . However many aspects of the determina-
tions of the primordial abundances are complex and con-
troversial, and the true uncertainty may be larger than
refIected in these error bars. For instance, if the pri-
mordial He abundance, Y~, proved to be 0.228 + 0.005
as claimed in Ref. [83], i.e., below the big bang nucle-
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osynthesis (BBN) "lower limit" of 0.2M, some change
in determinations of D and D+ He or in the simple,
homogeneous BBN theory would be necessary for self-
consistency, since we know now that there are three light
neutrinos. Such changes could cause the prediction for
n~/s to move outside the (4—6) x 10 range. For in-
stance, using only Yj ——0.228+0.005 and three neutrinos
would lead to [82] n~/s = 2 x 10

If the minimal standard model is responsible for baryo-
genesis, we will be able to use a well-determined value for
n~/s to quantitatively test our understanding of the dy-
namics of the electroweak phase transition. This could
eventually be as powerful a test of our dynamical under-
standing, as nucleosynthesis has been for later stages of
cosmology. Conversely, anticipating the day when the
physics of the electroweak phase transition can be con-
sidered understood, one can even imagine being able to
constrain the particle content, masses and mixing of the
MSM on account of the sensitivity of the BAU to these
quantities. As noted in Sec. X, a fourth generation would
characteristically increase the asymmetry by a large fac-
tor in comparison to the 3-generation prediction. Just as
the theory of nucleosynthesis, combined with measure-
ment of the relative abundances of primordial nuclei, led
to the correct conclusion that there are three light neu-
trinos, we xnay one day be able to rule out the existence
of a fourth generation, or infer properties it must have,
by comparing the observed baryonic asymmetry to the
predicted one.
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APPENDIX A: THE SOLUTION OF THE
DIRAC EQUATIGN

In spite of the fact that the problem of finding the
re8ection coe%cients can be given a transparent formu-
lation, as discussed in Sec. VII, it is not so easy to solve.
In this appendix we will describe a method suitable for
high accuracy numerical solution.

First we note that the problem we want to solve is a
problem with boundary conditions rather than a Cauchy
problem. Vfe should be able to separate incoming and
outgoing waves, exponentially rising and decaying func-
tions. There are many dMerent scales, and there is no
way to separate thexn looking at the numerical solution
for the wave function.

The linear character of the differential equations is very
helpful. The following trick converts the boundary con-
dition problem to the Cauchy problem. Let us look for

solutions of Eq. (7.12) in the form

@(z) = e(z)E(z)V(z)4„ (A1)

where @o is a constant vector, e is a matrix constructed
from the eigenvectors of the matrix D(z)R,

D(z)Re(z) = e(z)y(z), (A2)

F2
1+exp( —ax)

(A4)

There is no serious motivation of this particular choice of
the domain wall structure. It resembles, however, soxne
basic features of the expected behavior of the scalar field
near the domain wall. Namely, when z —+ oo,

I" -+ 1 —
2 exp( —ax),

so that the parameter a can be identified with the ef-
fective Higgs boson mass in the broken phase, while, for
x M —oo,

Z ~ exp(-a~~~/2), (A6)

incorporating the expectation that the effective Higgs bo-
son mass in the unbroken phase is generally sxnaller than
in the broken phase. The other advantage of this choice
is that, for it, we can find the reBection and transmission
coefBcients analytically for the case without mixing (see
Sec. VIII) and compare them with the numerical solu-
tion, checking in this way the correctness of the nuxnerical
calculations.

In order to get an equation for V let us consider in
more detail the properties of eigenvectors and eigenvalues
of the matrix D(z)R on the real axis. One can show
that for any real x the set of eigenvalues p obeys the
following properties. We have either 6 real eigenvalues
or 4 real eigenvalues and 1 complex conjugate pair or 2
real eigenvalues and two conjugate complex pairs or 3
conjugate complex pairs.

The proof. The equation for determining the eigen-
values of the xnatrix DR can be written in the form
det(DR —y) = 0, where y here is any one of the eigen-
values, not a matrix. It can also be written in the form
det(RDB —Ry) = 0, since det R g 0. The equation
for the complex conjugate of the eigenvalue has the saxne
form, due to the Hermiticity of the matrices RDR and
R: det(RDB —By') = 0. Therefore the set fy} coincides
with the set {y'), proving the statement.

This fact has a transparent physical meaning: if all

y(z) is a diagonal matrix of eigenvalues of the matrix
D(z)R,

X

E = exp
~
i dzy(z) ~,)

and z0 is some arbitrary point. Here z is a complex vari-
able.

We shall suppose that E(z) is an analytic function of
the complex variable z in some region of the complex z
plane including the real axis. Most numerical studies we
have done are based on the following choice of the domain
wall profile:
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eigenvalues are real, all particle states can propagate in
the background of the scalar field P(x), while if two eigen-
values are complex then those states cannot propagate,
etc. From this result one can derive the following orthog-
onality conditions for the eigenvectors. Let us denote by
e; the eigenvectors of the matrix DR, and define the ma-
trix e = (ei, ..., es). It is easy to see that if p, g p. , i f j,
the vectors e; and e~ are orthogonal in the following sense:

Ape

/iz
(A18)

—= eR A, —= A—R f,
dZ dZ

(A19)

One can also find the equations for the evolution of eigen-
vectors and eigenvalues:

et.Re; = 0. (A7) where

Therefore, if e,.Re, g 0, then p; is real and given by A,;=0, A~ =—
/

fR Re/),, (A20)

etRDRe;
p$

e,- Re;
(AS)

If, for some i and j, p; = p', then e,.Re; = 0 and e.Re~ =
0. However, generally speaking, etRez g 0.

It is convenient to introduce also another eigenvalue
matrix f obeying the equation on the complex axis

fRD = pf (A9)

One can easily see that eigenvalues defined by Eqs. (A2)
and (A9) are the same. To prove it, we notice that the
eigenvalues of the problem Eq. (A2) can be found from
the equation

det(DR —pI) = 0, (Alo)

and the eigenvalues of the other one &om the equation

det(RD —pI) = 0. (All)

Taking into account the fact that detR g 0, one sees
that the roots of (A10) and (All) are the same. There-
fore, one can choose a basis in which the matrices p a,nd p
are identical. The important property of the matrices f
and e which motivates the introduction of f is that they
are orthogonal everywhere in the complex plane in the
sense that

V(zp) = l. (A21)

One can see that the matrix A is singular when p, —
p~ =

0; therefore the complex contour should be chosen in
such a way that A is regular everywhere along it. The
advantage of this formalism is that we have explicitly
separated the waves corresponding to the diferent Ba-
vors and helicities. The other helpful feature is that
these equations are local in the sense that the matrix
V changes only in the vicinity of the domain wall, pro-
vided all Im p;(+oo) & a/2. In this case the exponential
tail of the domain wall is stronger than the exponentially
rising functions appearing in the complete reQection case.
If some Im p, (+oo) ) a/2, then the equation for V does
contain an exponentially rising term and it is dificult
to achieve high accuracy. The formalism for treating this
case is described in Appendix G. It was necessary for the
numerical analysis of the charge +2/3 sector in the re-

gion of momenta in which the c quark is totally re8ected
but the u is not.

It is easy to find the eigenvectors and eigenvalues of the
operator DR far &om the domain wall in the unbroken
phase. Eigenvalues are given by (7.18) and (7.19) and
the matrices e and f are just unit matrices.

It is convenient to choose the initial condition for the
matrix V:

fRe = diagonal matrix.

This follows &om the relation

(A12)

pfRe = fRep

A convenient normalization is

fRe = R. (A14)

f =Tet, (A15)

where

T'=1, Tp'T=p.

Then, the equation for V has the form

(A16)

(RE) fR EV— — (A17)

On the rea1 axis, where the operator D is Hermitian,
f and e can be related as

Then, choosing zo to lie on the real axis and far from
the domain wall (zp -+ —oo), if one can determine the
asymptotic value of the matrix V for z -+ +oo on the
real axi.s, all re8ection and transmission coeKcients are
determined as shown in Sec. VII.

Even in the case without total reQection it is useful
to integrate the equation for V along a complex con-
tour, due the physical phenomenon of level crossing. In
spite of the fact that 4(z) is an analytic function in the
same region of the complex z plane as the potential is
analytic, including the real axis, the matrix V has dif-
ferent analytical properties. For example, if at some z,
some of the eigenvalues of the matrix DR are degenerate,
the eigenvectors corresponding to those eigenvalues are
not uniquely defined and, in general, are singular at this
point. Purthermore, eigenvalues of the matrix DR have
branch cut singularities on the real axis for the case of
the complete re8ection of some fermionic Bavor. There-
fore, the equation for V has singularities of various types
at the points where p and e have singularities. Of course,
these singularities would be canceled in the expression
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for V, but this fact does not help when solving for V.
So, our strategy is to solve the equation for V on some

contour in the complex plane of the variable z, lying in
the region of analyticity of the function F(z). The initial
and final points of the contour lie on the real axis, far
from the domain wall. For example, for the function F
in Eq. (8.1), a suitable contour is

b cosh(cz)
(A22)

(etRe);;. (A23)

One can check that this is also true in the broken phase,
at least when the mass of the fermion is not much larger
than its momentum, which is the region of interest.

Having decided which waves are allowed in the broken
phase, let us relabel the eigenvalues p in such a way that
the first 3 eigenvalues at +oo correspond to transmitted
waves. This relabeling causes cobimns of the matrix V,
and rows of the matrix e, to be interchanged:

4 = eEV@p ——ePPEPPV@p, (A24)

where the matrix P with the property P2 = 1 "resh»+es"
the eigenvalues in the desired way. If we denote

VIL VL,~i~
(+RI VRR p

(A25)

then the re8ection coefficients are determined by Eqs.
(7.26) and (7.27).

where b ) a/s to avoid singularities of the function F,
and c is an arbitrary number. The function 4 at the
end point does not depend on the choice of contour, on
account of the analyticity. However, the function V as
well as the normalization of the eigenvectors can depend
on the contour. Nevertheless, observables, such as the
baryonic current, are, of course, contour independent (see
below).

Suppose now that we have chosen some contour and
have calculated at the end point the matrix V as well as
the eigenvector matrix and eigenvalues, taking for defi-
niteness the case of particles incident from the unbroken
phase. In order to find the refiection amplitudes, we first
must decide which eigenvalues correspond to acceptable
boundary conditions and which must be excluded. For
complex eigenvalues it is simple: the exponentially dying
wave function (Im p ) 0) can exist in the broken phase

(+oo), while the coefficient in front of the exponentially
rising wave function (Im p ( 0) must be equal to zero.
The situation with propagating waves (real eigenvalues)
is more complicated. In order to decide which one is
allowed in the broken phase, one should calculate the
group velocities corresponding to the various eigenval-
ues. Those with positive group velocities at z -+ +oo are
acceptable transmitted waves, while those with negative
group velocities correspond to waves traveling in &om
+oo and must have zero coefficient in the solution. In
the unbroken phase the sign of the group velocity corre-
sponding to the eigenvalue p, is the same as the sign of
the matrix element:

APPENDIX 8: NUMERICAL INTEGRATION

Even taking an optimistic view that the asymmetry
could be as large as sin(OI2) sin(ebs) sin(82s) sin(bc')
10 4—10 in the most favorable regions of energy, it is
clear that very precise calculations are required. Fur-
thermore we wish to investigate the dependence of the
result on many parameters including quark masses and
mixing angles and the wall thickness, and we must de-
termine the asymmetry as a function of energy with a
fine grid spacing in order that the integrated asymmetry
be accurately determined. Thus an integration method is
required which is at the same time efficient and accurate.

We have used C++ as a programming language, in or-
der that complex numbers and matrices could be treated
as natural units while retaining the benefits of C. We
adopted the Burlirsch-Stoer integration algorithm de-
scribed in Ref. [84], although we wrote our own programs
in order to use C++ functionality and the customized
matrix manipulation procedures we required. The rou-
tines in Ref. [85] we mimicked were ODEINT, BSINT,
MMID, and RZEXTR. The Burlirsch-Stoer method is well
adapted to our situation: most of the nontrivial variation
occurs in a range which is small compared to the full in-
tegration range, so that an adaptive stepsize is required,
while rational function extrapolation enhances the pre-
cision in a minimal number of steps. We checked, by
comparing our numerical results with the exact analytic
solution for the case with no mixing (see Sec. VIII),
that the actual precision of the numerical integration was
what it was supposed to be, even when the precision was
required to be 1 part in 10

We require re8ection coefficients to be known, typi-
cally, with an accuracy of one part in 108, in order to
be able to take differences between the quark and anti-
quark sectors, sum up over all the fiavors, and still have
a result which is accurate to one part in a thousand or
better. Depending on the energy and other parameters,
we could achieve a final precision on the total asymme-
try at each energy of one part per mil by running our
integrations at a precision of 10 —10 . We verified
that our results are independent of the precision of the
integration, at this level, under these conditions.

An extremely important check of our results was to
verify that they are independent of the complex contour
chosen. We integrated along the complex contour

b cosh(cx)
(B1)

and varied b between 1 and 100 and c between 0 and 2.
We also checked that the result does not change as the
initial and final points of the integration, (x;, z ),
are varied. 4s For routine use we took x;„=—60/a and
x = +30/a, where a is the inverse wall thickness in

It is essential to begin and end the integration on
the real axis, but the contributions of the segments be-
tween z;, x and z(x; ), z(x „) can be represented
analytically.
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GeV. When the mass and mixing parameters are such
that there is level crossing, one cannot allow the contour
to be too close to the real axis, or the kernel of the diKer-
ential equation becomes singular. However even in these
cases we veri6ed that we couM vary 6 and c each by fac-
tors of 5 without changing the 6nal asymmetry by more
than one part in a thousand, the typical precision of our
numerical calculation for the overall result, as discussed
above.

The continuity with u of the asymmetry, shown in the
6gures of Sec. IX, testi6es to the quality of the numerical

integration, since roundo8' and many other types of errors
would be uncorrelated in the runs at each diferent ~, and
would therefore show up as jitter in the cu dependence.

APPENDIX C: VELOCITY DEPENDENCE OF
THE REFLECTION COEFFICIENTS

The equation describing the re8ection of left fermions
(incident from the unbroken phase) from the moving do-
main wall, in the rest kame of the plasma, for small
momenta of fermions is

!
(~(l + nl, + pL, ) +i—(1+aL, ) M[p(z+ vt)] & (L't

Ba sMt[p(z+ vt)] (u(1+nR+ pn) —iss (1+a~)) (&)

where I and B correspond to the upper and lower com-
ponents of two-dimensional Weyl spinors which have 3
flavor components. p = 1/v 1 —v2, t is time and v is the
velocity of the domain wall. Positive v corresponds to
the wall propagating into the unbroken phase, as is the
case physically. The 3 x 3 diagonal matrices a and P are
defined to be

iB/Bt, rather than a c number. It is more convenient
to solve this equation in the rest &arne of the domain
wall, where the energy of the fermions interacting with
the classical scalar field is conserved. In order to go to
the rest &arne of the wall one can make the standard.
I orentz transformation of coordinates z m p(z+vt), t ~
p(t+vz) together with the transformation of spinor fields:

1 1 ~I.,R
2

nr„a = 2pr„z = —
3

Due to the explicit time dependence of the Higgs field,
the energy ~ in this equation is a time derivative: ~ +

(C3)

with Al, = (z+")4, An = (~ „")4. Now, keeping only
the linear term in space derivatives (which is correct for
small enough momenta of incident fermions) one obtains
the equation

((u(1+ nL, + pL, ) +i ss (1+ nL, ) M(z) & (L I

~(1+am+ Pz) —i —,'.(1+aa) ) (&) (C4)

with

aL, = nL, (1 —3v —2v')(1 —v),

Pl, = 2nl, (1+v) (1 —v),

and

a~ = aR(1+ 3v —2v )(1+v),

PR = 2nR (1 —v) 2 (1 + v) .

The consideration of right particles incident &om the
unbroken phase goes along the same lines. Now, one
can solve these equations by the methods described in

the paper and in the Appendixes. The only important
difference is that the re6ection coeKcients entering JRL
and JLR are obtained &om the same equations with v +
—v. It is necessary to solve for V twice, with D(v) and
D( v) since when v—g 0 parity relates the equation for
right particles to the one for left particles with v —+ —v,
modifying Eqs. (7.28) and (7.30).

For the case of incident R particles (whose reBection
contributes to the left baryonic current) and v & 0.4, some
momenta become so large that the tech~~ques of Ap-
pendix G are required. One must also take care not to
leave the regime of applicability of the approximations
which have been made in obtaining Eqs. (Cl), (C2), and

(C4). For instance, a small p with respect to the wall,
corresponding to 8-quark re8ection, may come &om a
plasma-rest-&arne momentum which is large, for large
enough v. In practice we can safely work to v 0.25
with these approximations, for the case of interest.
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APPENDIX D: FLUX FACTORS IN
ONE DIMENSION

0
0

~11
~21

&.")
(D2)

where g1 is the normalization factor to be determined
later. Then the current is

j = l~~l' (&») + (r'&RRr)11 ~

The normalization factor g should be chosen in such a
way that we have just one particle in the initial state. To
find it, let us consider the initial left Bux in the unbroken
phase. According to Eqs. (6.27) and (6.25) it is given, in
the one-dimensional case we are considering, by

dk1 1
27l (Rr,L, ) gg

(D4)

Comparing (D4) and (D3) one finds gq
——1/(R»)~~.

Now, integrating the result (D4) with respect to the mo-
mentum of the initial fermion and changing the integra-
tion variable from dkq to ~ we arrive at Eq. (7.45).

The calculation of the Bux factors in the broken phase
is precisely the same, with the obvious substitution R ~
R, and we do not present it here. This amounts to as-
suming that the distribution functions of the quarks in
the broken phase are just the equilibrium therxnal distri-
bution functions of the broken phase. For a sufficiently
slow bubble wall this is a good approximation.

We have found the Bux factor for the one-dixnensional
problexn. In the real three-dimensional problem, one

The calculation of the Bux factors is a bit nontrivial
in this scattering problexn, since we deal with quasipar-
ticles rather than particles. This means that we must
take care regarding such things as wave function normal-
ization, etc. Let us first fix these factors for left chiral
particles incident from the unbroken phase. We recall
that the current of interest is

j = CtRC.

This current is conserved (8 j = 0) so that we can find
it wherever it is most convenient, e.g. , at z -+ —oo. If we
send a quark of the first Bavor toward the domain wall,
then the initial wave function is given by

must integrate over the coxnponents of the momentum
parallel to the surface. As is argued in Appendix E, the
reBection coefficients may strongly depend on the paral-
lel components of the momentum, and the solution of the
exact equations is required. We do not attexnpt to solve
here the problem of parallel motion. Instead, we will just
use the one-dixnensional entropy of the plasma when we
estimate the final baryonic asyxnmetry.

APPENDIX E: PARALLEL MOMENTA

In the xnain body of the paper we deal with the case
in which the momenta of the fermions are perpendicular
to the domain wall. In this appendix we construct the
formalism for the more general case and discuss the inBu-
ence of parallel momenta on the asymmetry. Evidently,
when p~~ g 0 angular momentum can be conserved in
the scattering while at the same time L —L and R —R
reBection can occur, in addition to L—R and R—L reBec-
tions. Thus the matrix equations will be 12x 12 instead of
6 x 6. In the familiar situation without a plasma, one can
Lorentz boost to a p~~

——0 frame where the problexn can
be reduced to one involving just L —R and R —L reBec-
tions. However Lorentz invariance is lost in the plasma,
so that a trivial boost in the direction parallel to the do-
main wall does not produce the problem we have already
solved and the additional R —R and L —L amplitudes
are physically important.

The study of the new problem can be divided into
steps. The Grst step is the construction of a formalism
allowing one to compute the reBection coefficients in this
more complicated case. The second step is the deriva-
tion of the general expressions for the asymmetry cur-
rent, assuming that the refiection coefficients are known
as a function of the energy and p~~. The third step is the
kinematic analysis to determine in which part of phase
space the asymmetry can be substantial. We do not pro-
ceed in this paper to the final step of actually computing
the reBection coefficients for finite p~t quantitatively.

Reaection coeR,cients. Here we will construct a
transformation which allows the problem to be studied
by the one-dimensional methods given above. We shall
work in the approximation in which the component of
the momentum perpendicular to the surface is small (the
region relevant to CP violation), while the component
of the moxnentum parallel to the wall is arbitrary. At
first order in derivatives with respect to z, the coordi. nate
normal to the wall, the Dirac equation is

(4f (1 + AL, + pL, ) + (to 3 &
—0'pj's) (1 + o!I,) (Ll

~t ~(1+o'R + PR) —(~0'3 gz apj))(1+ oR) ) (&) (E1)
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where p~~ denotes the momentum parallel to the wall,
i.e., transverse to z. Now although pq is small, the to-
tal momentum need not be small so a and P cannot be
simplified as in Eq. (7.8). We must use

move somehow the matrix o .
p~I froxn these equations.

We introduce an analog of the spinor Lorentz transfor-
mation, which is different for the left and right sectors:

(E2)
AEAC'=0, O'=A '4, (E4)

~L„a
p &p)

(A, o&
( 0 A~) '

where AL, and AR are given by
(E3)

(E5)

Note that the spinors L, B here have 2 components for
each of the three flavors. In the pI~

——0 case the equations
decouple and we could reduce to a description in which
L, R have just one component for each flavor. Here that
will not be possible.

We want to find some transformation to the new vari-
ables in which this equation has a diagonal form in the
unbroken phase, so we can apply the methods which have
been already developed. In other words, we want to re-

AI. = exp(2o . nOI, ), A~ = exp(2o' nO~), (E6)

The equation in terms of the new variables is

Here n =
p~~/~p~~~ is the direction of the momentum par-

allel to the wall, and OJ. and OR are matrices in flavor
space to be determined. One finds

~(~(1+ nL, + pL, )/~L + io.,&~(1+ nL) AL, MAR & (L'(
ARMtAL, ~(1 + c('R + /3R) /vR —'i&s s~ (1 + ~&) ) & R) (E8)

where

pL, ,R = (1 —vL ~)
' = chOr„R-Z/2

In a sense, vt, R is the velocity of the Lorentz boost, and
pI, R is the analog of the usual p factor.

As we see in this more complicated case the equa-
tions for the upper and lower components of the two-
dimensional (for each flavor) spinors L, R do not decouple
and one must solve the complete system of 12 difFerential
equations. (Note that for the vacuum case where a and
(9 are zero the equations do decouple, as expected from
Lorentz invariance. ) To keep the analogy with the one-
dimensional case it is convenient to "reshuRe" the rows
and coulums of the matrix K' in such a way that its first
6 rows correspond to particles moving from left to right
and the other 6 to particles moving in the opposite di-
rection. After this reshi~fRing, in full analogy with the

one-dimensional case, one can introduce mat;rices D and
B,

(

R++ 0
0 R (E10)

so that the equation for nonzero p~~ has the form (7.12).
We do not solve this equation in this paper.

Flux factors. Suppose that the reHection coefFicients
are determined from Eq. (E8) and are now functions of
energy ~ and parallel momentum p~~. Let us take for
definiteness an initial particle in the unbroken phase of
type i [i is the index according to Eq. (E8)j and compute
the baryonic lux coming from its interaction with the do-
main wall. We denote the matrix of reflection coeKcients
by r(p~~, u)z, or r for short. Now, using the analysis of
the one-dimensional case contained in Appendix D, one
obtains, for the asymmetry current, summed over all final
states,

(J) = f ","tr(rr'r(R'r'r) '((r)rB r —(r)rR r]), (El 1)

where r denotes the matrix of antiparticle reflection coef-
ficients, and n& is the Fermi distribution for the incident
particle as in Eq. (6.25). The same equation can be
derived for particles incident from the broken phase.

Phase space analysis. We would like to determine
in which regions of phase space the reflection of strange
quarks can be substantial. To find this, one must deter-

mine the region of energies, u, and momenta parallel to
the surface, p~~, for which the 8-quark excitations exist in
the unbroken phase but not in the broken phase, or vice
versa.

Consider first; the case when the parallel momenta of
the incident particles in the unbroken phase are large,

p~~ )) ~o. For this region of phase space the dispersion
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~' = (k['+ 2~,"',
while in the broken phase we have

Q2
~d = )k( +2(us +m, .

(E12)

(E13)

One can make a Lorentz boost in the direction parallel to
the wall and remove pt ~

&om the problem, as done above.
In this frame the dispersion relations are again (E12) and
(E13) with the substitution ~k~ -+ kq and id ~ id /p .
Since uL & uL ) u~, there are additional forbidden
regions, depending on which chiralities are under con-
sideration, which are not present for the p~~

——0 case
analyzed previously, making it dificult to estimate the
contribution &om this region.

Let us turn now to consideration of the case p~~ (( uo.
We can ask what &action of 8 quarks are totally re6ected
due to level crossing as was discussed for p~~

——0 in Sec.
VII. The L —R and R —L level crossings occur for

lpl = —', (&uL, —(uR) - 6 Gev. (E14)

Simple geometry gives the Bux coming &om particles sat-
isfying this condition. If the reHection coefficients depend
only weakly on p~ I, then the contributions &om L—R and
R —L s-quark total reHections give JsD = s ~p~ JiD
5 x 10 T JqD. This provides a rough estimate of the
minimal contribution of this region of phase space; how-

ever, we should not place much confidence in it as a real
estimate. Studying the differential equation (ES), it is
far from clear that we are justified is assuming a weak

p~~ dependence of the 6's. Moreover neglect of the L —L
and R —R scattering amplitudes cannot be justified, but
their contribution cannot be determined without going
much farther toward the solution of these equations than
we have.

Range of validity of the Dirac operator. The
actual values of uo and T of interest are ufo 50
GeV and T = 100 GeV. From the dispersion relation
(E12), one sees that the condition for the validity of the
high-temperature expansion (u —

~p~ && T2) is only
marginally satisfied for the large p~~ relativistic kinemat-
ics. Thus the dispersion relation needs to be obtained in
a more suitable approximation before one can accurately
describe the physics of the 3D problem.

APPENDIX F: MIXINC IN THE
BROKEN PHASE

Our purpose in this appendix is to give the reader a
feeling for the qualitative differences between the eigen-

relations for normal quasiparticles have the same form
as the familiar Lorentz-invariant dispersion relations for
massive particles but with a modified effective mass. In
the unbroken phase we have (Sec. VIA)

states in the broken and unbroken phases, and especially
for the effects of mixing. We will therefore restrict the
discussion here to the case of p ~ 0, and make a per-
turbative expansion in the scalar field VEV, P, dropping
quadratic terms. The mixing in the broken phase for the
charge —

s sector is then described by the matrix OLi (D
for down), where

16o. ~2
(F1)

32g, g
Dl, = '

MgDR) DJi = D~.
3 6gw 0'

(F3)

The mass gap in the broken phase is QLD for DL, and

16a,g
4)D = OD- M~9&~0' (F4)

for DR
The equations for the up quarks can be written in the

same way and we present them for completeness. The
mixing in the up sector is described by the matrix 0
where

Op i AL, + M„ iOU
16o'e4
9&wa'2

The particle eigenstates are related to the initial fields by

UL, = O~ UL„U~ = — M„OU UL„
32g, g

3 6gw 0'
(F6)

32g, g
Ul, = '2 M„U~, Uir = U~.

6gwa'
(F7)

The mass gap in the broken phase is ~L2U for UL, and

16os4
~U U 9 2 u0'.~0 (FS)

for U~.
It is important to notice that the mixing matrices of

quarks in the broken phase differ &ore the correspond-

where urL, and urR are given in Eq. (6.10) and (6.11)
above, and it is henceforth understood that when the
notation R is used, one must substitute, e.g. , ~U or uD
for uR, as appropriate. cr = 246 GeV is the zero temper-
ature VEV. The particle eigenstates45 are related to the
initial fields by

Dl, ——ODtDL,„, D~ ——— ' MgKtODtDL,
32g, g

3~6gw 0'

In the original version of this paper we did not distinguish
between broken and unbroken u's and thus this complication
was overlooked.

Note that physical states in the broken phase do not carry
any Sxed chirality, so that subscripts I and R have nothing to
do with actual chirality and are merely labels to distinguish
the two distinct states.
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ing matrices in the unbroken phase. Note also that the
change of mixing between unbroken and broken phases
in the down sector is considerably larger than in the up
sector, due to the fact that masses of up quarks are larger
than masses of down quarks. This reveals the mechanism
by which degeneracy in one sector inhibits CP violation
in the other, independently of the convention in which
sector CKM phases occur. It is the reason that CP-
violating effects are most profound for scattering in the
down quark sector.

A.PPENDIX C EQUATXGNS IN TERMS DF
OBSERVABLES

As we discussed in Appendix A, the equation for the
scattering matrix does not contain exponentiaDy rising
terms only if the imaginary parts of the particle momenta
in the broken phase are small enough: ~imp;~ ( a/2.
While this inequality holds for the charge —1/3 quarks
for all energies, for zero wall velocity, it breaks down for
the top quark, since its mass is quite large in the bro-
ken phase, and also for the change —1/3 sector when
the wall velocity becomes larger than 0.4. Therefore,
under these circumstances the equations should be mod-
i6ed. The idea is quite simple. It is obvious that all
physical reflection and transmission amplitudes must be
perfectly 6nite independently of the top quark mass or
mall velocity. In other words, if we would write equations
for the scattering amplitudes themselves, there would be
no exponentially large terms floating around.

Let us concentrate on the problem of left quark re-
flection and choose the contour in the complex plane for
which at x ~ +oo the 6rst three eigenvalues of the ma-
trix DA correspond to the transmitted wave. In par-
ticular, Im p;(+oo) ) 0 for i = 1, 2, 3. We denote the
eigenvectors by

PL ——P, , i=1,2, 3, PR ——P, , i=4, 5, 6.

In order to simplify the notation we write an equation
for the scattering matrix V in the form

0 = (R—E) fB E-,
OZ

OT = —t ORLt",
Bz

(G5)

Ot" = OLLt" —r ORLt",
i9Z

b b
b

b b—~LL~ ~ ~RR + ~I R ~ ~RL~ )
Oz

(G7)

b b b= —t ORLE' —t ORR)
Bz

with initial conditions at x -+ oo

r" =rb=0, t" = t'=1. (G9)

The important point is that not all of the reflection and
transmission coeKcients are observable. If, for instance„

p3 and ps are complex, we cannot have the third Sa-
vor in the broken phase since it cannot propagate there.
In other words, only the quantities (rs);~, i,j = 1, 2,
(t );~, j g 3 and (t");i, i g 3 have direct physical
meaning. %e will not change physical quantities if we go
to another set of matrices defined by

~(QJ I OL,n
l~

E fIRL fI BR)
Some of the elements of the matrix 0 can be exponen-
tially large. Using the equation for V and expressions for
transmission and reflection coeKcients through V [see
Eqs. (7.26) and (7.27)j we get a set of nonlinear equa-
tions:

(
&2 = exp

)

—Im pL, dz
(
r exp

~

Im pItdz (, Bq ——r",

(
T2 = t exp ]

Im padz [, Ti = exp
I

—Im pldz
I
T'

)
(Gll)

Now, the equations for these new variables do not con-
tain any exponentially large terms at all due to our sign
convention: +~LR —&2~RL&2, (G14)

i9B2 = —ImpLR2 + .R2ImpR + OLLB2 —R2ORR
i9Z

OB1
~2~RLT1 )

i9Z

19T1
ImpLT1 + DLLT1 +2~RLT1)

Bz

(G12)

(G13)

i972 = +T2ImpR —T2~RL&2 —T2~RR
Bz

where
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0 = (—RE') fR —E',

( Z

E' = exp
~

iRe p(z)dz
~

.

(c16)

biguous. For any Gxed energy we had just one momen-
tum corresponding to it. This fact is lost when one treats
the dispersion relations exactly. For example, at second
order in the momentuxn, the dispersion relation looks like

We have checked that these equations give precisely the
same values for the re6ection coeKcients as the scattering
matrix formalism, which is a good check of the correct-
ness of the numerical integration schemes. We also used
them for scanning the up-quark case, but no significant
asymmetry was found there. This was expected since for
the up quark sector the change in mixing angles in going
from the unbroken to the broken phase is substantially
smaller than it is for the down sector.

The equations in this form are quite convenient and
allow one to integrate out particles with momenta large
compared with soxne typical scale. For example, for up-
sector re6ection one expects that an interesting effect
can appear only near the c-re6ection threshold, since at
higher energies the momenta of the c and u quarks are
nearly degenerate. Near the c threshold the momentum
of the t quark is huge, and the approximate solution to
Eqs. (C12)—(C15) is

(Rz) s, ——(R2)g3 —(Tg) 3j —(Tz)gs —0, (c17)

APPENDIX H: QUADRATIC APPROXIMATION

In the low moment»m approximation to which we con-
fined ourselves in other sections, the relation between
energy and momentum of the quasiparticles was unaxn-

with other equations unchanged. In this approximation
the equations for physical re6ection amplitudes do not
contain either the momentum of the t quark nor the
eigenvectors corresponding to it. Nevertheless, the t
quark does not decouple completely since it in6uences
the structure of other particle eigenstates through the
mixing. Formally, the t quark must be taken into ac-
count at the stage at which one solves the equation to
determine the eigenstates and eigenfunctions.

The same kind of procedure can also be used to inte-
grate out the b quark. In the region of 8-quark re6ection,
the momentum of the 6 quark is large compared with
other particle momenta. In a sense, rapid oscillations of
the wave function are equivalent to exponential suppres-
sion. This observation actually works quite well, as can
be checked by solving the equations for re6ection coeffi-
cients in terms of observables, throwing away the b quark
as in Eq. (G17) but keeping it in the equations for e, f,
and p. This procedure gives essentially the same result
for the asymmetry as obtained by our standard proce-
dure.

We can understand the strong dependence of the asym-
metry on the top quark mass as follows. The xnass of the
top quark contributes to the mass gap of the left chiral b

quark. Changing the top mass therefore changes the mix-
ing among the charge —1j3 left chiral quarks, and thus
in6uences the properties of the light 6avors indirectly,
through the mixing in the physical eigenstates.

1 p~ = ~p+ —p+3 3(dp

so that if cu & yg4pp there are two solutions for the par-
ticle momenta. Physically, this xneans that there are
two quasiparticle excitations degenerate in energy but
not in momentum, one of which corresponds to the nor-
mal branch and the other to the abnormal one. If the
energy is close to the mass gap, then the momentum of
one of the excitations is small, and it is this excitation
whose scattering off the domain wall we have considered.
The other value of the momentum corresponds to the
abnormal branch and is not small: p ~p. If we leave
aside the question of the stability of the abnormal exci-
tations at such high momentum (in Refs. [68, 69] they
are argued to be unstable), then the scattering problem
is much more complicated than we had before. Instead of
3 possible initial and 3 possible final states, we have now
6 initial and 6 final states. The three additional states
are the high xnoxnenta excitations corresponding to the
abnorxnal branch. On the other hand, if ~ & zzup, the
momenta are coxnplex so that particles with these ener-
gies cannot propagate even in the unbroken phase and
their wave function must be zero everywhere. Actually,
in the region of energies corresponding to s-quark total
re6ection, u lies well below uL, for the 6 quark, so that
the b quark actually is absent in the initial states. (Note
that this is not the case in linear approximation. )

As we discussed in Appendix G, particles with large
xnomenta decouple &om the low-momentum s and d
quarks. This justifies the use of the linear approxima-
tion in the paper: in spite of the fact that we treat s-
quark excitations in the wrong way, as having very short
wavelength rather than zero amplitude, the b quark de-
couples &om the equations for the scattering matrix in
either case, so that it is immaterial which method we
use. The in6uence of 6-quark properties on the asym-
metry is due to its effect in Exing the initial physical
eigenstates in the light sector, which we do correctly no
matter what approximation is used for the b quark in the
differential equation. The linear approximation is xnuch
faster to numerically integrate, so that is our method
of choice. We present, however, for the sake of com-
pleteness, the method which one can use for xnore com-
plete analysis of the system. In particular it would be
useful if one wished to study an intermediate range of
momenta: large enough that linear approximation is in-
adequate, but small enough that the decoupling is not
complete.

Let us expand the fermionic mass operators in the mo-
menti~m, up to second order terms in p. The change

p —+ i & gives then an equation
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8x Ba(«( s )2+ bi, i s + cL, s2 . s~t aR(ss )'+ bRi ~ + cR)

where

3&us 3~2 ( ~ j
and corresponding equations for the right quarks. Let
AL R and BL R be the momenta of the left and right
particles in the unbroken phase. They are solutions to
the quadratic equation

0.
@'s =

~

i——&R
I /aR@R,(Bx )

(H6)

aL, Rp ~L,Rp cL,R —0.2 (H4) Now, the equaiton for thee variables have the same form
as in the usual case,

Let us introduce new variables, which correspond to par-
ticle excitations in the unbroken phase with momenta

AI,R) BL,R. i —O' = DBC,
. 19

Bx

(H5)
where the operator D and matrix B are Hermitian and
defined by

RedL,

IdL I'—iImdL,

ldL I

0

0

iImdL,

IdL I'
—RedL,

ldL I'

0

0
Red~
Id~I'—LImd~
Id~i'

o

0
iImd~
Id+I'—Red~
Id~I2

(H8)

( AL, Redl.
—XALImdL

Aat

1 ~t 1

—BLRedL
ARRedR

—~&RImdR

1 ~ 1

iARImdR

BRRedR —)

(H9)

1
dL, R = ~L R + 4aL RcL R

aL
(Hlo)

The conserved baryonic current is given by the usual ex-
pression

J~ = CtRC. (Hii)

Now these equations can be solved with the help of for-
malism described in Appendixes A and G.

APPENDIX I: D AND SCATTERING LENGTH
OF THE QUASIPARTICLES

One might think that with such a degree of concur-
rence among the estimates for the scattering length listed
in Sec. X that we can be rather confident that A (4—
5)/T. However when one considers the calculations lead-
ing to these estimates, one sees that the scattering length
in those discussions is that of a particle with the typical
momentum T, while we need the scattering length of a

qu, asiparticle, with relatively low momentum. The quasi-
particles are gauge singlets when viewed at a scale longer
than some screening length, given by the inverse Debye or
magnetic mass. Moreover at least in the one-dimensional
problem, the quarks which produce the asymmetry, and
thus the quarks whose diffusion length is relevant to de-
termining f,~1,(p), have energies considerably lower than
the thermal average. Let us therefore investigate whether
the scattering length obtained in the references quoted
above is a good approximation to the actual difFusion
length which we require.

The difFusion of the quasiparticles is clearly a three-
dimensional phenomenon, so we must consider the gen.—

eral problem in which the quarks incident on the domain
wall have nonzero @II. We first must decide whether, in
the full three-dimensional problem, the quarks carrying
the asymmetry current will have relatively low energies,
as is the case for the 1D problem. Since we know that
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the pt of s quarks which reflect is in all cases low (see
Appendix E), the only way these quarks could have an
energy typical of the thermal medium would be if they
have p~~ )& uo. However quarks with this large value of

p~~ see a bubble thickness of (p~~/pi)a which may be
much larger than the expected mean free path 5/T of
quasiparticles having typical thermal energies. If this is
the case, these particles will experience many inelastic
collisions in the scattering process and the purely quan-
tum mechanical description of their scattering would be
inapplicable. In fact, on account of the loss of quan-
tum coherence, the contribution of such particles to the
asymmetry should be very much reduced, since CP vio-
lation arises because of the difference in phases between
hc J and the quantum mechanical scattering phase shift,
which changes sign in going &om particles to antiparti-
cles.

Thus the particles whose scattering contributes to the
asymmetry current have p~~ and pt &

2 (urL, —~R) 6 GeV
(see Appendix E), so the mean free path which is rele-
vant to estimating the D~ which enters p, is the mean
free path of a quasiparticle with physical4s (energy, mo-
mentum) (50, 6) GeV. Denoting the typical energy of a
collision mate by E T and doing the angular average,
one finds (s) = 2tuE.

Now we need the e8'ective Lagrangian governing the
quasiparticle interaction. On account of Debye and
magnetic screening of the color of the quasiquark,
the propagator appearing in the matrix element is
(q2 —M2„„„;„)i. Taking the Debye screening length
as a lower limit to this scale, Mscreening MD

g T, and assuming the coupling constant to(Ny +2Nc )

be just the ordinary /CD coupling appropriate for this
energy scale, leads to [79j

& ~!(s) (s)"- M4 (S~T2)2' (II)

where we have made use of the fact that the squared
momentum transfer is less than (s)/2 and thus is small
compared with MD. Now summing over quark and gluon
collision mates, and noting that crqg —40qq~ we 6nd

9
ncr = crqz(nz v + —ns) & 0.013T.

The standard estimate of the mean &ee path in a gas is

(I2)

(I3)

where 6 denotes the average speed of the particle whose
mean &ee path is being computed and V denotes its av-
erage speed relative to other particles in the gas. The
diffusion coefficient for a gas is

6A
D = —.

3
(I4)

Taking the average speed of quasiparticles to be 1 while
taking 6, the average speed of the the low-momentum
quasiparticle which is diffusing to be 1/3, gives a
low and thus conservative estimate D~ & 3/T and
A&25/T. Hopefully this discussion has revealed that
the problem of estimating A and D~ require real un-
derstanding of the nature of the quasiparticles and their
short- and long-distance interactions. Thus estimates of
these quantities must be regarded as highly provisional.
In the following we use the ranges D~ (3 —5)/T and

(4 —25) /T.

See Sec. VI for a discussion of the physical momenta of
the quasiparticles. On account of averaging over all directions
of incidence of its collision mate, the magnitude of the quasi-
particle momentum is in any event irrelevant to estimating
the average s of its collisions.

Their calculation included all tree level diagrams.

Another reason that the true D& and A may be larger than
this estimate is that in modeling the efFective Lagrangian we
reduced just the range of interaction but not the efFective
coupling, as compared to the fundamental Lagrangian.

[1) A.D. Sakharov, Pis'ma Zh. Eksp. Teor. Fiz. 5, 32 (1967)
[JETP Lett. 5, 24 (1967)].

[2] V.A. Kuzmin, Pis'ma Zh. Eksp. Teor. Fiz. 12, 335 (1970)
[JETP Lett. 12, 228 (1970)].

[3] V.A. Kuzmin, A.Yu. Ignatiev, N.V. Krasnikov, and A.N.
Tavkhelidze, Phys. Lett. 7BB, 436 (1978).

[4] M. Yoshimura, Phys. Rev. Lett. 41, 281 (1978); 42,
476(E) (1979).

[5] S. Weinberg, Phys. Rev. Lett. 42, 850 (1979).
[6] S. Dimopoulos and L. Susskind, Phys. Rev. D 18, 4500

(1978).
[7] A.D. Dolgov and Ya.B. Zeldovich, Rev. Mod. Phys. 53,

1 (1981).
[8] E.W. Kolb and M.S. Turner, The Early Universe

(Addison-Wesley, New York, 1990).
[9] A.D. Dolgov, Phys. Rep. 222, 309 (1992).

[10] M.E. Shaposhnikov, Phys. Scr. T3B, 183 (1991).
[11] M. Shaposhnikov, in 1ggI Summer School in High En

ergy Physics and Cosmology (World Scientific, Singa-
pore, 1992), Vol. 1, p. 338.

[12] N. Turok, Technical Report No. IMPERIAL-TP-91-92-
33, 1992 (unpublished).

[13] A.G. Cohen, D.B. Kaplan, and A.E. Nelson, Annu. Rev.
Nucl. Part. Phys. 43, 27 (1993).



818 GLENNYS R. FARRAR AND M. E. SHAPOSHNIKOV

[14] G. 't Hooft, Phys. Rev. Lett. 37, 8 (1976).
[15] G. 't Hooft, Phys. Rev. D 14, 3432 (1976).
[16] V.A. Kuzmin, V.A. Rubakov, and M.E. Shaposhnikov,

Phys. Lett. 155B, 36 (1985).
[1?] A.D. Linde, Phys. Lett. 70B, 306 (1977).
[18) F.R. Klinkhamer and N. S. Manton, Phys. Rev. D 30,

2212 (1984).
[19] D.A. Kirzhnitz, Pis'ma Zh. Eksp. Teor. Fiz. 15, 745

(1972) [JETP Lett. 15, 529 (1972)].
[20] D.A. Kirzhnitz and A.D. Linde, Phys. Lett. 72B, 471

(1972).
[21] M.E. Shaposhnikov, Pis'ma Zh. Eksp. Teor. Fiz. 44, 364

(1986) [JETP Lett. 44, 465 (1S86)].
[22] M.E. Shaposhnikov, Nucl. Phys. B287, 757 (1987).
[23] M.E. Shaposhnikov and A.I. Bochkarev, Mod. Phys.

Lett A.2, 417 (1987).
[24] J.-F. Grivaz, Orsay Technical Report No. LAL 92-59,

1992 (unpublished).
[25] L. McLerran, Phys. Rev. Lett. 62, 1075 (1989).
[26] M.E. Shaposhnikov, Nucl. Phys. B299, 79? (1988).
[27] N. Turok and J. Zadrozny, Phys. Rev. Lett. 65, 2331

(1990).
[28] N. Turok and J. Zadrozny, Nucl. Phys. B358, 471 (1991).
[29] L. McLerran, M.E. Shaposhnikov, N. Turok, and M.B.

Voloshin, Phys. Lett. B 256, 451 (1991).
[30] M. Dine, P. Huet, R. Singleton, and L. Susskind, Phys.

Lett. B 257, 351 (1991).
[31] A. Cohen, D. Kaplan, and A. Nelson, Phys. Lett. B 245,

561 (1990).
[32] A. Cohen, D. Kaplan, and A. Nelson, Nucl. Phys. B349,

727 (1991).
[33] A. Cohen, D. Kaplan, and A. Nelson, Nucl. Phys. B373,

453 (1992).
[34] A. Cohen, D. Kaplan, and A. Nelson, Phys. Lett. B 294,

57 (1992).
[35] A.I. Bochkarev, S.V. Kuzmin, and M.E. Shaposhnikov,

Phys. Lett. B 244, 275 (1990).
[36] A.I. Bochkarev, S.V. Kuzmin, and M.E. Shaposhnikov,

Phys. Rev. D 43, 369 (1991).
[37] N. Turok and J. Zadrozny, Nucl. Phys. B369, 729 (1992).
[38] S. Myint, Phys. Lett. B 287, 325 (1992).
[39] M. Pietroni, Nucl. Phys. B402, 27 (1993).
[40] M. Dine, R. Leigh, P. Huet, A. Linde, and D. Linde,

Phys. Lett. B 283, 319 (1992).
[41] M. Dine, R. Leigh, P. Huet, A. Linde, and D. Linde,

Phys. Rev. D 46, 550 (1992).
[42] J.E. Bagnasco and M. Dine, Phys. Lett. B 303, 308

(1993).
[43] P. Arnold and E. Espinosa, Phys. Rev. D 47, 3546 (1993).
[44] M.E. Shaposhnikov, Phys. Lett. B 316, 112 (1993).
[45] M.E. Shaposhnikov, Phys. Lett. B 277, 324 (1992); 282,

483(E) (1992).
[46] G.R. Farrar and M.E. Shaposhaikov, Phys. Rev. Lett.

70, 2833 (1993).
[47] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49,

652 (1973).
[48] Particle Data Group, K. Hikasa et cL, Phys. Rev. D 45,

Sl (1992).
[49] C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985).

[50] A.I. Bochkarev, S.Yu. Khlebnikov, and M.E. Shaposh-
aikov, Nucl. Phys. B329, 493 (1990).

[51] J. Ellis, M.K. Gaillard, and D. Nanopoulos, Nucl. Phys.
B109, 213 (1976).

[52] M. Laursen, J. Ambj yarn, and M.E. Shaposhnikov, Phys.
Lett. B 197, 49 (1987).

[53] M. Laursen J. Ambjgrn, and M.E. Shaposhnikov, Nucl.
Phys. B316, 483 (1989).

[54] V.A. Kuzmin, M.E. Shaposhnikov, and I.I. Tkachev,
Phys. Rev. D 45, 466 (1992).

[55] A.N. Tavkhelidze, V.A. Matveev, V.A. Rubakov, and
M.E. Shaposhnikov, Usp. Fiz. Nauk. B 156, 253 (1988)
[Sov. Phys. Usp. 31, 916 (1988)].

[57] A.D. Linde, Nucl. Phys. B216, 421 (1983).
[58] A.D. Liade, Rep. Prog. Phys. 47, 925 (1984).
[59] Y. Grossmann and Y. Nir (unpublished).

[60] S.Yu. Khlebnikov, Phys. Rev. D 46, 3223 (19S2).
[61] Bao-Hua Liu, L. McLerran, and N. Turok, Phys. Rev. D

46, 2668 (1992).
[62] L. Mclerran E. Mottola, aad M.E. Shaposhnikov, Phys.

Rev. D 43, 2027 (1991).
[63] S.Yu. Khlebnikov aad M.E. Shaposhnikov, Nucl. Phys.

B308, 885 (1S88).
[64] S.Yu. Khlebnikov, Phys. Lett. B 300, 376 (1993).
[65] O.K. Kalashnikov, Fortschr. Phys. 32, 525 (1984).
[66] V.V. Klimov, Yad. Fiz. 33, 1734 (1981) [Sov. J. Nucl.

Phys. 33, 934 (1981)].
[67] H.A. Weldon, Phys. Rev. D 26, 2789 (1982).
[68] V.V. Lebedev and A.V. Smilga, Ann. Phys. (N.Y.) 202,

229 (1990).
[69] E. Braaten and R.D. Pisarski, Phys. Rev. D 46, 1829

(1992).
[70] G. Baym and S.A. Chin, Nucl. Phys. A262, 527 (1976).
[?1] L.D. Landau and E.M. Lifshits, Quantum Mechanics

(Nauka, Moscow, 1974).
[72] Y. Nir and H. Quinn, Phys. Rev. D 42, 1473 (1990).
[73] P. Arnold and L. McLerran, Phys. Rev. D 36, 581 (1987).
[74] J. Ambjprn, T. Askgaard, H. Porter, and M.E. Shaposh-

nikov, Phys. Lett. B 244, 479 (1990).
[75] J. Ambj@rn, T. Askgaard, H. Porter, and M.E. Shaposh-

nikov, Nucl. Phys. B353, 346 (1991).
[76] D.I. Diakonov, Y.Yu. Petrov, and A.V. Yung, Phys. Lett.

130B, 385 (1983).
[77] L. Carson and L. McLerran, Phys. Rev. D 41, 647 (1990).
[78] J. Baacke and S. Junker, Mod. Phys. Lett. A 8, 286S

(1993).
[79] G. Baym, H. Monien, C. Pethick, and D. Ravenhall,

Phys. Rev. Lett. 64, 1867 (1990).
[80] K. Kajantie, K. Rummukainen, and M. Shaposhnikov,

Nucl. Phys. B407, 112 (1993).
[81] M. Sher, Phys. Lett. B 317, 159 (1SS3).
[82] T. Walker, G. Steigman, D. Schramm, K. Olive, and H.—

S. Kaag, Astrophys. J. 376, 51 (1991).
[83] B.E.J. Pagel, E.A. Simonson, R.J. Terlevich, and M.G.

Edmunds, Mon. Not. R. Astron. Soc. 255, 325 (1992).
[84] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T.

Vet terling, Numerica/ Recipes (Cambridge University
Press, Cambridge, England, 1986).


