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Evaluation of two-loop self-energy diagram with three propagators
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A smaQ moment»~ expansion of the "sunset" diagram with three difFerent masses is obtained.
CoeKcients at powers of p are evaluated explicitly in terms of dilogarithms and elementary func-

tions. Also some power expansions of the "sunset" diagram in terms of difFerent sets of variables
are given.
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The "s»»set" diagram (see Fig. 1) was the object of
investigation in several recent works [1—5]. Such activity
was initiated, certainly, by a rather high precision of ex-
perimental testing of the standard model that sometimes
needs evaluation of two-loop Fey»man diagrams for com-
parison of the theory and experiments.

Most likely, the "s»»set" diagram cannot be expressed
through known special functions of one variable. So for
the investigation of this diagrar» n»merical methods [4,5]
and some approximations schemes, such as expansions in
powers of ps (and possibly logarit&r»s) [1—3], were used. i

In particular in paper [3] a small moment»m expan-
sion of the "s»»set" diagram in terms of the Lauricella
series was obtained. These series are convergent in the
region

~p+ my + mz (ms

where m;, i = 1,2, 3, are masses in propagators. But,
for the majority of aPPlications, mz + mz ) ms for any
mi~ber of masses. Such a situation takes place, for in-
stance, in the course of the evaluation of the self-energy
of the Higgs boson (when mi ——mz ——rrts ——rn~), and
in the course of the evaluation of the contribution to the
Z-boson self-energy due to the vertex Z2WW' (when
my = mz = mar, ms = mz).

The aim of the present paper is to complete the re-
sults of [3] and to obtain a small moment»m expansion
of the "s»»aet" diagram that can be used for all values
of masses, and to evaluate in closed form coefficients at
powers of pz. In addition, we will give some power ex-
pansions of the "s»»set" diagram that are convergent, at
least, in the region

resentation for the function I:

da' p(0', mi, m2)
t
J(p, ms, 0 )I=

(my+nag)i

~ m m:
2

ln
~ +ma~f, (rr~) + p~f~(e~)+f~(~')

(3)

where J is a one-loop "bubble" diagram (see Fig. 2), p
is a spectral function of J,

( (mg + mz) ( (mg —mz) )

Comparing (3) and (5), one obtains the following inte-
gral representation for I:

and functions f;, i = 1, 2, 3, must be defined in such a
way that integral (3) converges.

Representation (3) was obtained in a previous work
[7].2 A very simi&ar integral representation was obtained
independently in the above-mentioned papers [3,4]. An-
other onefold integral representation was given in [5]. An
analogous onefold integral representation for the five pro-
pogator self-energy diagram was derived in [8,9].

One notes that, due to renormalization freedom, the
function I is defined up to a polynomial of the first degree
with respect to p2. So it is sufficient to evaluate the
function

[P [+ms ( (mi+m2) (2)

Obviously, these expansions can be used for all values of
masses if one defines ms as min(mi, m2, ms).

Let I = I(P2, ms', mzm, ms2) be the "s»»set" diagram.
Our main tool will be the following onefold integral rep-

I = do p(o, mi, m2) J(p, o,ms),
(nag+mg )~

where

J(p' " ) = J(J' -) —J(o ")-p'd, (O ") .
dp2

(7)
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See also an old paper by Mendels [6] where the expansion

of the "sunset" diagram in the equal mass case in powers of
p i(p + m ) was obtained.

In [7] representation (3) was derived only for the case mz =
mq, but, in fact, this condition was never used and, for the
general case, representation (3) can be obtained in the same
way.
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FIG. 1. The "sunset" diagram.

The function J can be represented by the power series However,

FIG. 2. The "bubble" diagram.

HlaX
Ps/(l —() + ((ms' —mrs)

0&/&1 0
(10)

Prom (10) one can derive that series (8) converges, at
least, if

IP I+mss ( o

One introduces the dimensionless variables

(k+1 —1)!(k+1)!f p2) t' m', )
l!(2k+1+1)! g o2)

(8)
The proof of (8) is very simple. s One considers the

representation of J through Feynman parameters:

p'f(1 —f) + (m', + (1 —()o'
0 g 2

Expanding the integrand in a powers series with respect
to

p2$(l —() + ((m2s —o')
g 2

and integrating, one obtains (8). These operations are
correct if

(k —1)!k!',' 2'(k, k+ 1; 2k+ 2; u)2k+ 1!

1 d spy d ln(l tL)

kt(k+1)'d "

(see, for instance, [11]).&om the last formula, after some
elementary try~formations, one can obtain

(k —1)!k!
sag(k, k+ 1; 2k+2; 1 —zy)

2 + 1

1 1 d d" q~~ d" ~ ln(xy)
k!(k+1)tz"-s dh dy" dye —' y(l —zy)

'

Substituting (13) and (15) in (6) and integrating by
parts with respect to z, one finds

I = n4(mg + ms)s ), , fs(y, A),
lc&2

(mg + m2)2x— '7

g 2

p'
z =—

(mg + m2)2'

m2
y= (1,

(mg + ms)2

= m1 22
(mg + m2)'

' (12)

where functions fs(y, A) are defined by

f ( A)
d" a+a d" ' f(y A)

gyk dtyle —1 y

j:n these variables, using the definition of the Gauss
hypergeometric function 2Eq, one can rewrite (8) as f(y, A) = lny+ dz —Q(l —z)(1 —Ay) .ln(zy) d

e 1 —

Ryder

2 ) - I. a (k —1)'k'
(2k + 1)!

x2F&(k, k+1; 2k+2; 1 —&y) . (13)

(i8)

The integral in (18) can be easily evaluated and we
obtain for f (y, A) the explicit expression

f(y, A) = lny— ~A (1+~A& f 4y & 2~A '! & 4~A & ( 2~A &
ln i ln

I

—Sp I + Sp ~

—Sp
y (1—v A) &(1 —v A)~) ( 1+ ~A) ( (1 —~A)2) I 1 —~A)

+ (2A —yA+y) 6 4y ) ( t —c l ft —ll (t —1)
I
+ sp

I I

—sp
I

2yg(1 —y)(A —y) E(1 —V A) ) E 1 —'t) Et ——.')
(1—t l /1 —t & (1 —t21 t'1 —t21

+sp
I e I

—Sp
I I

+ sx
I I

—sx
IEl - &&

Another proof was given in [10].
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where Sp(x) is the Spence function (or dilogarithm),

1+ ~A
)1—

C = 1
[2A —y(A+ 1) + 2/A(1 —y)(A —y)].

y(1 —A)

(20)

Formulas (16), (17), and (19) give explicit expressions
for coefficients at powers of p2 in a Taylor expansion of
"s»»set" diagram. But formula (19) seems too compli-
cated. Fortunately, in almost all applications m~ ——m2

(that is, A = 0), and, just in this case, formula (19) sim-

pli6es considerably:

1
f(y o) = ln y+ Clq(2 arcsin ~y) (21)

gy(1 —y)

where Clz(e) is Clausen integral.
In conclusion, we will derive two series expansions

for the "s»~~et" diagram for the case of three difFerent
masses, when direct use of explicit formulas (16), (17),
and (19) is difficult due to the complexity of formula (19).

First, one substitutes the decomposition (8) in (6), ex-
pands the integrand with respect to A, and performs the
integration. Then, after some elementary transforma-
tions, one obtains

(! +!+~+i)!(!+!+.+2)!r(~+,)) (, +!:+!)!r(,—i),
(mq+mz)z . ~

- n,!(2k+ I+a +5)!1(j +k+l+n+ z) ) l!j!I'(—2)
e7 1

(22)

The above-mentioned operations are correct if condition (13) is valid for all tr ) (mq + mz) . This means that
series (22) converges, at least, at region (2).

The s»r» over n can be evaluated in terms of finite sums. But the corresponding expression is too cumbersome to
be useful. So, if it is desirably to have a closed expression for coeKcients at A~y'z", it is preferable to use another
series expansion for I: namely,

I =m (mz+m2) ) . I'(j+ —)2j! 2 [k k+1 I' j+k+-,'

. (k+ I)!(k+ 1+1)!(j+k+ I —I)!,+, 1

, ; k! (k+1)!I!(1+1)!I'( +k+1+ —,')

where

h, It = g(j +.k + I) + g(k + I + 1) + @(k+ I + 2)

Q(j + k +—I + z) —f(l + 1) —@(I+ 2) .

In order to prove (23), it is sufficient to write the func-
tion zEq in (13) as a power series with respect to y and
ln y, to substitute this series in (6), and to perform the
integration.

These operations again are correct if condition (11) is

'~

valid for all oz ) (mq + mz)z. So the region of conver-
gence of series (23) is not less than one defines by formula
(2).

A large momentum expansion for the "s~~n~et" diagram
also may be derived from integral representation (3). But
in this case the results of [3] seem quite exhaustive and
so further investigations of this problem are»n~ecessary.

The author is indebted to A.I. Davydychev and B.A.
Smi~nov for interesting discussions and comments.
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