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Nonsingular cosmology with a time-dependent cosmological term
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The consequences of the cosmological constant snssts of Csrvslho, Lima, sad Wsgs (A
3PH + 37R ) sre investigated in an extension of the nonsingulsr Ozer-Tshs cosmology. The
considered model describes a closed singularity-kee universe evolving through successive epochs of
pure radiation, matter generation, and radiation and matter. The early phase of the last period is
shown to be s concrete realization of the postslngulsrity radiation ers scenario of Freeze, Adams,
Prieman, and Mottola.

PACS number(s): 98.80.Cq, 98.80.Hw

X. INTRODUCTION

Carvalho, Lima, and Waga [1] have proposed the cos-
mological constant phenomenological ansatz

where p and p are the cosmic energy density and pressure,
respectively, and It the curvature index.

Combining Eq. (3) and the differentiated form of Eq.
(2) one has the energy (= E = pRs) equation

A = 3PH'+ (4)

II. NONSINGULAR MODEL

In a Robertson-Walker»~averse with a perfect-Suid
energy-moment»~ tensor, Einstein's equations with a
variable A give (n = 3/Sz G)

a p=
~

— + ——A(t),
(R) Rz 3 (2)

-" ('+")- R +R R

where P and p are dimensionless numbers of the order
of unity (natural units being used) R is the Robertson-
Ws&er scale factor, and H = R/R is Hubble's constant
(an overdot denotes time &i&erentiation). Equation (1),a
consequence of simple dimensional arguments consistent
with quantum gravity [1],generalizes an earlier form, A ocR, suggested by Ozer and Taha [2] and also by Chen
and Wu [3].

Although the Ozer-Taha (OT) and Chen-Wu (CW)
models postulate the same type of variation for A, the
resulting cosmological scenarios are not similar. In one
case (OT) one has a nonsingular universe with a cold be-
ginning and an early phase transition, in the other (CW)
a singular big-bang scenario. These differences are due
to the model's difFerent initial conditions and the assign-
ment of opposite signs to a certain integration constant.

Carvslbo, Lima, and Waga [1] studied the modifica-
tions introduced by the P term in Eq. (1) on the cos-
mology of Chen and Wu. In this work we investigate the
effect of this term in an extended Ozer-Taha cosmology.

Also from Eqs. (1) and (2),

I
~ 'pp+1—

In the radiation- (p = p/3) dominated (RD) universe
Eqs. (1)—(3) yield (p g 2, p„= so.'A, and Ao a constant)
[1]

g2 + + g ~—2+4P
1 —2P (6)

1-2P R +a(l —P)A R 4+~ (7)

= ' P"R +PAR-1-2P

For Ao & 0, p ( 1, the singular cosmological model based
on these equations was studied by Car~&o, Lima, and
Waga [1]. Here we investigate a scenario obtained by
requiring Ao ( 0 and for which the model is nonsingular.
For simplicity and physical relevance [4] we take p &
0 (tshing P = 0, Ao ( 0, P = h = 1 reProduces the
nonsingular OT [2] model).

A»mverse with a nonvanishing mi~~mum scale factor
Ro at t = 0 arises Rom Eq. (6) if Ao ( 0, P ( z~, and
k ( 2p. Then from Eq. (7), po

—o.(k —p)/Roz so that
po & 0 implies h & p also. Hence Vp ( 2, one has

2 ( p & k = 1, implying a closed universe as in Refs.
[2,5].

Prom Eqs. (4) and (8), the rate of change of the en-
tropy S at temperature T is given by (h = 1, R & Ro)
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dS 3dp
dB dB

1 — . (9)
2a(p —p) ~ 2p(2p —1)(l —p)R,' ~ l

1 —2P I (p —P)R2 4~—

Choosing p = 1 guarantees that dS/dR & 0, thereby
solving the entropy problem of standard cosmology. In
this case Eqs. (1) and (2) give the density parameter
0 = p/aH2 = 1 —P & 1V t.

Thus the equations of the model in the pure radiation
early cosmic phase can be written as

~ 2 Ck pB
1 —P

a 'p „R' (oR„' 4P

(1 —4P)R (1 —2P)R2 —4P (i5)

Let R = R,q & R2 at t = t~z, the time when radiation
and matter were equ~&, i.e., E„(R,~) = E (R,~) = E
where E„(R) = p„R is the radiation energy. Then the
condition that E„was decreasing as R approached R,q
leads to

(
R

a(1 —P) 1 —2P ( Rz —4P)
(io) a2, ~

(1 —4P)ru ) z~ 4p. (16)

(i —P) & PR,'-"
(i 2P)Rs—

~
(i P)Rs —4P)-

with po ——0 and p = p(maxim»m) = a/2Rz at

R = R .= [2(i P)]'~&' —'»R, . -

To estimate Rs note from Eq. (10) that 0 & R & Rs
implying a cosmic acceleration limit in the early Uni-
verse. Such a limit of the order of the Planck mass Mp~ =
G ~~z has been discussed before [6]. T&ing R Mp~
yields Ro ~ 10 ss cm and hence p(maxim»~)& 10 s

kgm 3.

III. RADIATION AND MATTER

In the wake of the pure radiation era, the rest mass
is generated during the period Rz & 8 C B2, say
[2]. Thereafter (R & Rz), we take the cosmic matter
fiuid to be a no»i»teracting mncture of radiation of den-
sity p, and pressureless nonrelativistic matter of density

p (p„+p = p). We also ass»~e that the background
vacu»~ couples to radiation only [2,5]. Hence p = p„/3
and E~ = p~Rs = p „Rs = E~~, where subscript p
denotes present-day quantities.

Thus for R & Rs, Eq. (4), with A given by Eq. (5)
(p = k = 1), integrates to

0 &P & b,„«1.
Now we consider Eq. (12) when b„= p„/p &) 1,

i.e., in the early radiation and matter phase. The first
term contributes neghgibly to b„be caeu,sfrom Eq. (13),
3p(l —4p) & b „(( l. Also, by condition (16),
~R„~/R s P &) 1 for R (( R ~. Hence

aar(l —P)R' 4P

(1 —2P)R4-4P ' (18)

Thus, either ur & 0 and p & 4 or u ( 0 and 4 & p ( 2.
However, the latter case implies Rz & 0, p ( 0 for Rs &
R & R4c, [see Eq. (15)] and must therefore be excluded.

In the model of Ref. [2] one approximately has p„R
constant or RT constant for R ( R,~ in the radiation
and matter»»averse. An important consequence of this
feature is that primordial nucleosynthesis in cosmologies
of the OT type [5] proceeds as in the standard model.

Here the radiation density in the radiation and matter
»mverse is given by Eq. (12). Clearly if the third &u-

dependent term in tLis equation is dominant it might
lead to approximate 1/R dominance of p„. We therefore
investigate when, if at all, this term dominates over the
other two terms.

We first consider Eq. (13) with u) & 0 and p & 4. As-
suming the present Universe is matter dominated (MD)
leads immediately to a strong constraint on P: viz. ,

demonstrating the domin Luce, when R &( R,~, of the
~-dependent term in Eq. (12).

It is interesting to note that provided p is not neghgibly
small (more precisely not much smaller than b „), aud

p„/p »1, which would expectedly hold when R « R,~,
then one can si»»&arly show that the ur-dependent term
in Eq. (14) for p„ is also dominant when R &( R,q.
Thus, in the early radiation and matter phase p and
p„redshift at the same rate, which is the basic posti~1ate
that underlies the decaying vacu~~~ cosmologies of Preese
et al. [7). Specifically one finds

3pp pRs a(1 —p) (
(1 —4P)Rs (1 —2P)Rs Rs-4P (12)

mr here

(1 —2p)R2p „( 3p1+(d =
! &~p- !a(i —p) E i —4p) ' (13)

aParR2 4P Pp (19)
(14)

comprising the same relation between p and p„as Eq.

b„z
——p~/p ~ being the present ratio of radiation-to-

matter energy density. Hence

Pp „Rs
(i —4P)Rs

a(1-P) t' P~R,' 'P l-
+ 1+

(1 —2P)Rz ( (1 —P)R2 +') '—
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(7) of Freese et al. [7], where a parameter x replaces P.
However, in contrast with Ref. [7],one cannot take P -+ 0
in Eq. (19) because its derivation assumed that P is not
vaulshingly small. [Letting naively P -+ 0 in Eq. (19) one
concludes erroneously that p = 0 in the OT model. One
notes that the result (19) has no counterpart in the OT
cosmology where P = 0 and the first and third terms on
the right-hand side (RHS) of Eq. (14) do not contribute
to p„.]

From Eqs. (15) (with p p„), (18), and (19) now
follow the Freese et aL [7] results:

where P & b„~ && 1.
Other predictions of the present work that can be read-

ily obtained are the bounds t„& H„and 0 ( qz
for the age of the Universe and the deceleration param-
eter respectively. In the singular cosmology of Carvalho,
Lima, and Waga [1] P is a &ee parameter that can be
adjusted to produce t„)H& and q„( 0.

We have also ex'.mined the consequences of the pro-
posed cosmology for the classical low redshift cosmolog-
ical tests. The results agree with the Einstein —de Sitter
model.

and

t&/2(~-0)

IV. PHASE TRANSITION

Pp. aP
P 4(1 —P) st2 ' (21)

valid in the early radiation and matter universe. Ob-
serve that Eq. (21) is independent of the parameter ~.
We also note that the dependence of p on t 2 in Eq.
(21) has been widely discussed [7,8], with P being model
dependent. In the present model 0 & P & h„„.

Equations (20) and (21) reproduce the baryon-to-
photon ratio and nucleosynthesis constraints of Ref. [7].
Specifically, it was shown there [7] that nucleosynthesis
requires P & O.l. This is satisfied in the present model

I

dE 2 2

dR
= 2a(l —P)+3PR p —3(1 —P) p, (22)

so that on using Eq. (12) one has

We consider, finally, the matter generation period
Rq & R & R2. For R & R2 Eq. (15) implies R & 0
if ~ & 0 and P & 4, in contrast with R & 0 for R & Rq
as previously noted. Thus the appearance of rest-mass
ushers in decelerated expansion.

In addition, from Eqs. (4) and (5) with p = k = 1,

Rg

3 R [(1 —P)p —Pp] dR = 2a(1 —P)(R2 —Ro) —Eg

(1 P)F. , a—(1 —P)(I 4P)R,F(~—)
1 —4P 1 —2P

(23)

where, by condition (16),

u)R2 4~
F(td) —= 1 — "

2 4p &0.
(1 —4P)R', 'P (24)

V. CONCLUSION

We have introduced in this paper a nonsingular cosmo-
logical scenario that exhibits features of both the Ozer-

Hence the integral in Eq. (23) is negative, implying that
3p/p & 3P(1—P) ~

&& 1 [9,10] for some values of R in the
interval (Rq, Rs). This period, during part of which the
pressure becomes small or negative, is then a phase tran-
sition era separating the pure radiation and the radiation
and matter epochs.

Taha [2] and the Freese et aL [7] models. Since these two
models refiect, as already remarked in Ref. [7], "different
points of view, " e.g. , they difFer markedly in their initial
conditions, their present synthesis is interesting. A par-
ticularly noteworthy aspect of the proposed cosmology is
that it satisfies the nucleosynthesis constraint of Freese
et aL provided the Universe today is matter dominated.
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