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Self-adjoint extension approach to the spin-1/2 Aharonov-Bohm-Coulomb problem
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The spin-1/2 Aharonov-Bohm problem is examined in the Galilean limit for the case in which a
Coulomb potential is included. It is found that the application of the self-adjoint extension method
to this system yields singular solutions only for one-half the full range of the Sux parameter, which

is allowed in the limit of a vanishing Coulomb potential. Thus one has a remarkable example of a
case in which the condition of normalizability is necessary but not sufhcient for the occurrence of
singular solutions. Expressions for the bound state energies are derived. Also the conditions for the
occurrence of singular solutions are obtained when the nongauge potential is f/rr(0 (p ( 2).

PACS number(s): 03.65.Bz, 03.65.Ge, 03.65.Pm

I. INTRODUCTION 1m+ al (1 (1.4)

In classical electrodynamics, the scalar and vector po-
tentials are merely a convenient tool for the calculation
of fields. In quantum mechanics, however, Aharonov and
Bohm [1] (AB) gave physical significance to the vector
potential, a result that has led to many theoretical and
experimental attempts [2] to establish the AB effect.

Recently the spin-1/2 AB problem has been of interest
in various branches of theoretical physics. For example
it appears in the interaction between matter and cosmic
strings [3,4]. It also appears in the anyonic theory [5].

The magnetic Hux tube, which shows up in the AB
problem, has been treated in different ways. Hagen [6,7]
chose the physically motivated expression

where
a = —e dr rH(r),

0

1 for spin up,
S =

~

~—1 for spin down,

(1.5}

only the solution singular at the origin contributes to the
radial wave function. This contribution of the singular
solution gives a nontrivial scattering amplitude.

There was another more mathematical approach,
which was carried out by Gerbert [9]. He chose the ex-
pression of the magnetic Hux tube to be

1
H oc lim b(r —R), —

a~o R

1
H oc h(r)—r (1 6)

$1(r, e) = ) fm(r}e* s, (1.2)

he calculated the solutions of the radial Schrodinger
equation in the r ( R and r ) R regions separately.
Upon applying the boundary conditions at r = R in the
R ~ 0 limit, he derived the fact that, for the case

(m[+ [m+a( = —as, (1 3)
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where H is the magnetic field, and used it to examine
the validity of requiring solutions to be regular at the
origin as done by Aharonoz and Bohm [1]. He applied
his method [8] to the spin-1/2 AB scattering problem and
concluded that the elimination of the singular solution
a,b initio is not valid. Using the expansion of the upper
component of the Dirac field

and imposed (1.4) as a normalizability condition. He
then applied the self-adjoint extension [10,11] method to
the partial wave, satisfying (1.4). Since the self-adjoint
extension method gives a one-parameter family of so-
lutions, his scattering amplitude contains a self-adjoint
extension parameter. His results coincide with those of
Hagen when the self-adjoint extension parameter, say 8,
equals s'/4. Thus for 8 = z'/4 only singular solutions con-
tribute to the radial wave function. Subsequently Jackiw
[12] gave some additional insight into the self-adjoint ex-
tension formalism. He proved that the self-adjoint ex-
tension formalism gives a result identical to that of the
renormalization method when the potential is a b func-
tion if a certain relation between the self-adjoint exten-
sion parameter and the renormalized coupling constant is
satisfied. Although Gerbert obtained the condition (1.4)
by invoking normalizability it will be shown that the con-
dition of normalizability is only necessary but not sufB-
cient for the occurrence of singular solutions. This state-
ment can be proved by applying the self-adjoint extension
method to the spin-1/2 AB problem but including also a
Coulomb potential V(r) = (/r
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Recently the spin-1/2 Aharonov-Bob~-Coulomb
(ABC) problem was analyzed by Hagen [13]. He showed
that this system yields singular solutions only for one-half
the full range, which is allowed in the limit of a vanishing
Coulomb potential, namely,

1
/m+a/ &—

2

II. SGLUTIOI$4', QF T~R ABC PRGBLEM
IN THE r g 0 REGION

[mP + Pp;II;]@= E@, (2.1)

In this section the ABC problem is solved in the r P 0
region within the kamework of the Galilean bmit. Qe
start with the Dirac equation

and also obtained the bound state energies where

II; = —i8; —eA;,

1 MP n= 1, 2, . . . ,2 [u —z' + (m+ a(]2
'

where the upper and lower signs refer, respectively, to
the case of regular and irregular solutions.

In the present paper, the ABC problem is analyzed in
the context of the self-adjoint extension method. In or-
der to avoid complications associated with Klein's para-
dox [14] the analysis is performed within the framework
of the Galilean [15] spin-1/2 wave equation. It will be
shown that the ABC system is a striking example of a
case in which the condition of normalizability is a nec-
essary, but not a sufficient, condition for the occurrence
of singular solutions. It will also be proved that the con-
dition for the occurrence of singular solutions does not
coincide with that of normalizability in the more general
case V(r) = (/r~ (0 & p & 2). The sufficiency conditions
are derived when this general potential is included in the
AB system. Before proceeding, it is important to state
somewhat more explicitly the reasoning, which motivates
the use of the Gablean limit. Insofar as nnmerical calcu-
lations are concerned, one clearly expects that limit to be
useful only in a domain in which the binding energy of a
state is much less than the resting energy. For scattering
states a realistic theory must be capable of dealing with
particle creation processes as well. Thus, the reliability of
any wave equation (whether GaLi~ean or special relativis-
tic) is again limited in energy. The essential problem is
that the unbounded nature of the 1/r potential gives rise
to dHRculties related to the Klein's paradox even when
calculating at relatively low energies. The Gab&ean equa-
tion has no such defect and is thus an ideal tool for the
study of the ABC problem.

This paper is organized as follows. In Sec. II the ABC
problem is solved in the r f 0 region. The necessary
conditions for the occurrence of a singular solution are
obt~ned. In Sec. III the self-adjoint extension method
is applied to the restricted subspace obt~~ned in Sec. II.
It is shown that the self-adjoint extension of the Hami&to-
nian gives the boundary conditions at the origin and that
these boundary conditions reduce the possible range of a
for the occurrence of sing~~&~~ solutions. Also the expres-
sions for the bound state energies are derived. In Sec. IV
the condition for solutions singular at the origin is exam-
ined when the potential $/r~ (0 & p & 2) is included in
the AB problem. In Sec. V a brief conclusion is given

= 0'3 (2 2)

pp; = (o'x, scr2),

and s is given in Eq. (1.5). If one takes the Galilean limit

E = M+8',
(2.3)

and includes the Coulomb potential by letting E' ~ E' —~,
Eq. (2.1) becomes

( Z —~, -(D, -'sll, ) & (g& &
I
=o. 24

E
—(Ilg + is112), 2M ) 4 ~2 )

eH = nb(r)/r, —
(2.5)

where e~; = —e~; and eqz ——+l. By using Eq. (2.5) the
Schrodinger equation of Qq is easily derived:

(2.6)

H = Ho+ b(r),
(2.7)

1 (1 - -i 2M(
0 —.V —eA +2M gi

If one decomposes the fermion 6eld as

(2.8)

the Schrodinger equation for yq (r) becomes

It may be worth noting that there is no contradiction
between (2.3) and the use of an unbounded Coulomb po-
tential. In fact, once the free Galilean wave equation
has been derived, any potential consistent with general
Galilean invariance can be considered. The magnetic Hux
tube is speci6ed by
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ds 1 d 2 (m+a) 2M(+ ——+k —as'(r)/r
T'

by

i ( d (m+ a)sl
2M (dr r )l ». (r) (2 1o)

», (r) =0, (2.9)

where k = 2ME, and ys ~(r) is derived from gq, ~(r)
By directly solving Eq. (2.9) the solutions for gq, (r) in
the r P 0 region is derived

(r) = A e*""( 2ik—r) + F
l
m+a+ —+ l2(m+a) + ll —2ikr

( 1 iM(

+B e'""(—2ikr) &™+~&F
l

—(m+a)+ —+ )1 —2(m+a)l —2ikr
l

1 iMg
2 k

(2.11)

(m+ a+ -', )'+ (M(/k)' . , ( 3 iM(
, , (—2'k) ++'Fl + + —+

k
l2( + )+3) —2k

2 k

+ (—2ikr) + F
l
m+a+ —+ l2(m+a)+1) —2ikr

l2m+a +1
+B e'" 2k(mrna) . + ~

t' 1 iM$
(—2ikr) & + &-'F

l

—(mrna} ——+ [
—2(m+a) —ll —2ikr

l

(—2ikr) & + lF
l

(m+a—)+ —+ )1 —2(m+a)) —2ikr
l

(for s = 1),i( . + t' 1 iM( l
2(m+ a)+1 2 ~

(r) = —A e*s"

(2.12)

(r) = A e'""—2k(m+ a) . + ~ ( 1 i'
k(—2ikr) + -'F

l

m+a —-+ l2(m+a) —Il —2ikr
l)

1 iM
+ (-»kr)-+ F

l
m+ a+ +12-(m+ a)+II -2'kr

l2(m+ a) —1 ( 2 k

+8 e'"" (m+ a —z')z +(M(/k)z, (
(—2ikr) & + &+'Fl —(m y a) + —+

l

—2(m+ a) + 3l —2ikr
l

3 iM
4M(m+ a —1)(m+ a —z')z 2 k

+ (—2ikr) i + lF —(m+a)+ —+ l

—2(m+a) + ll —2ikr
l

(for s = —1) .i( . + ( 1 iM( l
2(m+ a) —1 2 k

Either A~ or B must be zero by the condition of normalizability except in the subspace

where F(a)c)Z) is the usual conffuent hypergeometric function. By inserting Eq. (2.11) into Eq. (2.10) one obtains

where

s=1, m= —N —1,
s= —1, m= N, —

a=NeaP,

(2.13)

N is an integer, (2.14)

0&P& 1.
It is easy to see that Eq. (2.13) is merely a different description of Eqs. (1.3) and (1.4). From Eq. (2.11) and (2.12) it
follows that » (r) and y2 (r) cannot both be chosen to be regular solutions when the condition (2.13) is satisfied.
The next section will analyze the ABC problem by the self-adjoint extension method and obtain the result that the
condition (2.13) is necessary but not sufficient for the occurrence of a singular solution.

IH. SELF-ADJOINT EXTENSION

In Sec. II it was shown that » (r) and g2 (r) cannot both be chosen as regular solutions when the condition
(2.13) is satisfied. This means that the Ha~etonian of » (r),



H = Hs+ b(r),2Mr

1 d 1 d
H (m+ a)2 2M(

r2

(s.1)

is not a self-adjoint operator. In order for the Hami&tonian to be a self-adjoint operator, the domain of de6nition of
Hs has to be extended to the deficiency subspace of Ho~ — ~ i, — iv, which is spanned by the solutions of the
differential equations:

d2 1 d (m+a)2 . 2 2M(+ ——— +i% X+df' r dr r r

This means that the boundary condition at the origin

(3.2)

lrn+nl
( ) ) h ( ) [ I I)vn+nl

( I)] (3.3)

where A is the self-adjoint extension parameter, must be required for yi ~(r). To treat both cases of Eq. (2.13)
simultaneously an expression for yi, (r), which is different from Eq. (2.11) is more convenient; namely,

(r) = A e'""(—2ikr)l + lF
(

/m+ a/+ —+ [2(m+ a/ + 1/ —2ikr
f

1 iM$
2 k

1 iM$ ~+B e'""(—2ikr) l + lF
(

—/m+ a/+ —+ [1 —2/m+ a/[ —2ikr
f2 k )

(s.4)

Note that A~ and B~ are the coefficients of the regular and irregular solutions, respectively. By inserting Eq. (3.4)
into the boundary condition (3.3), the following relation between the coefFicients A and B is derived:

P( 2;I,) l~+~IA —
( 2,y)

—l~+~IB 1 ( hm „i—21~+~1)2AM(
1 —2)m+ a(

(3.5)

Note that the coefficient of B diverges as iim, ~o ri 2l~+ l, if (m+ a~ & 2. Thus B~ is zero if [m+ a) & 2, and the
condition for the occurrence of a singular solution is [16]

/m+a/ & 2 . (3.6)

Since this is a subspace of Eq. (1.3) and (1.4), or equivalently Eq. (2.13), it is seen that the condition of normalizability
is only a necessary condition for the occurrence of singular solution. So let us restrict ourselves to the subspace (3.6).

Since the bound states are obtained in the positive imaginary region k, one can derive the bound state from Eq.
(3.4) by changing k m i /2MB, where B = —s is the bound state energy:

(r) = A e "(2/2MBr)l + lF()m+ a~ + 2 + gM/2B()2(m+ a(+ l)2+2MBr)

+B e ~ "(2/2MBr) l + lF( [m+ a[—+ 2 + gM/2B$)1 —2)m+ a([2V 2MBr) . (3.7)

However, Eq. (3.7) is still not guaranteed to be a bound
state. In order to be a bound state, y+ (r) must be
normalizable at large r. This condition gives the relation

r(2[m+ a~+1)
I'([m+ a[+ —,

' + gM/2')

I'(1 —2(m + a[)
I'(i —)m+ a[ + QM/2B()

By inserting Eq. (3.8) into Eq. (3.7), the bound state is
then obtained

yi (r) = JV W ~ (2/2MBr), (3.9)
1

where N is a normalization constant and W i,(z) is the
usual %hittaker function.

Another relation between A and B is derived by
inserting Eq. (3.7) into the boundary condition (3.3):

A(2v 2MB)l + lA —(2/2MB) l + lB = 0 .

(s.10)

Thus the bound state energy in ixaphcitly determined
from Eqs. (3.8) and (3.10) by the secular equation
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I'(21 + [+1)
I'(-', + [m+ a[+ gM/2B()

+),(2g2MB) l-.-l ~('-2~™+a~)

r(-,' —
~

+a~+ gM/2Bg)
=0.

(3.11)

Although Eq. (3.11) is too complicated to evaluate the
bound state energies, its limiting feature is interesting.
First, in the A ~ 0 or oo limit, bound state energies are
explicitly determined as the poles of the I function:

M 2

lim B=- n=1 2
2 [n ——,'+ )m+a)]2'

(3.12)

M 2

lim. 8 =—
2 [n —

2
—~m+a~]2

IV. CONDITIONS FOR SINGULAR SOLUTIONS
WHEN (/rP POTENTIAL IS INCLUDED

In this section yet another example is given, which il-
lustrates that the conditions for singular solutions does
not coincide with those of norxnalizability. &~~tead of the
Coulomb potential one includes a more general potential
g/rP in Eq. (2.9).

Having already shown that the self-adjoint extension
method gives the same conditions for singular solutions
as the method used in Ref. [13],here one uses the latter
approach. To this end, Eq. (2.9) with a $/rP potential is
divided into

d 1 d m
, +-——,+k,' g, , (r) =0 (r &R), (4.1a)dr2 r dr r2

dl 1 d 2 (m+ a)s 2M(+ ——+k'— X, ()=0df' 7' dT' T

These coincide (as expected) with Eq. (1.7) of Hagen
[13]. Another interesting limit is the case of vanishing
Coulomb potential. In the ( ~ 0 limit a bound state
energy is explicitly determined from Eq. (3.11): where

(r & R), (4.1b)

2 I'(1+ fm+ a[)
il'(I —

I + I)
(s.is)

ko = 2M(s —UR),

k = 2M@,
(4.2)

which is the Galilean limit of Gerbert's [9] bound state
energy. In fact Eq. (3.13) coincides with Gerbert's result
when

t'E My ~ M&—2I + I P eqA= —2(
f

/m+a/ tan( —+ —
f

l,E+ M) k l, 4 2&

(3.14)

and the relativistic relation k = E —M is used.

and Ug is the constant potential (/RP.
One easily obtains gq (r) for r & R region, since it

must be regular at the origin. Thus,

,, (.)=C Z~ l(~,.). (4.3)

Although the analytic solution of Eq. (4.1b) cannot be
found easily, we can evaluate the solution by an expansion
about the origin. The Srst few terms are

Xi, (r)=&

ilss' lrn+al(1 I +...) + B iver —lna+nl
(

1 y + sMc s—p+(
{2—~)(2-I -2l~+~l)

(0 & p & 1),
A e'~ rl~+~l I 1+ I& ~

— +.. . +B t. ~ &-l~+~l i 1+ 2M/
2-~~ ~2—~+2l~+ l ~

~
~~

~ ~
~~ ~2-~~ ~2—~—2l +

(1 & p & 2), (4.4)

where A and B are the coefBcients of the regular and
irregular solutions, respectively.
By using the usual matching conditions

one gets the relation between A and B In the limit.
of small R it becomes

lim [g~ (R+s) —yg, (R —s)] = 0,
(4.5)

hm+ h& ~(R+ s) X&,~(R s)l +4~(R) ~

A~ /m/ + [m+ af + as
B /m/ —/m+ a/+ as

+g(R—21~+~1+2—
p)

for 0&p(2.
(4.6)
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From (4.6) one gets the conditions for Che singular so-
lutions:

(4.7)

Thus, except for the trivial case p = 0 the conditions for
sin~~&~~ solutions do not coincide with the normalizabil-
ity condition ]m+ a] & 1.

V. CONCLUSION

The self-adjoint extension method has been applied
here to the spin-1/2 ABC problem. It was shown that the
self-adjoint extension method yields ]m+ a] & 2 as the
condition for the occurrence of singular solution. This
is in agreement with the results of Ref. [13],which were
obtained by a difFerent method. It has also been shown
that the condition of normalizability is necessary but not
sufBcient for the occurrence of singular solutions. Expres-

sions for the bound state wave function and bound state
energy have been derived as well. For the A -+ 0 and oo
limits, these bound states have been seen to coincide with
those of the regular and irregular cases, respectively, of
Ref. [13].Also the g -+ 0 limit of the Gahiean version of
the bound state energy of Ref. [9]was obtained. Finally it
was found that the condition for the existence of singular
solutions is ]m+ a] ) 1—p/2 when the general nongauge
potential $/r~ is included in the A.B problem. This result
implies that for a gas of such parCicles the discontinuities
in the second virial coefBcient [17] are shifted from inte-
ger values of n for the Coulomb potential to n 6/2 values
(n is an integer). As in the Coulomb case the transition
point has no dependence on the strength of the potential.
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