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Large-amplitude isothermal fluctuations and high-density dark-matter clumps
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Large-amplitude isothermal fluctuations in the dark-matter energy density, parametrized by

4=5pDM/pDM, are studied within the framework of a spherical collapse model. For 4) 1, a fluctuation

collapses in the radiation-dominated epoch and produces a dense dark-matter object. The final density

of the virialized object is found to be p+=1404 (4+1)p,q, where p,~ is the matter density at equal

matter and radiation energy density. This expression is valid for the entire range of possible values of 4,
both for 4&&1 and 4((1. Some astrophysical consequences of high-density dark-matter clumps are
discussed.

PACS number(s): 98.80.Cq, 05.30.Jp, 95.35.+d, 98.70.—f

I. INTRODUCTION

In almost all modern cosmological models, galaxies,
clusters, and all large-scale structures develop through
the gravitational instability of small-amplitude, seed den-
sity Suctuations. In most of these models cold dark
matter is an important constituent of the total mass den-
sity of the Universe. There are two basic types of seed
density fluctuations, curvature and isocurvature, ' and in
general, both are expected to be produced in the early
Universe. By definition, the total energy density in an
isocurvature fluctuation is constant; the fluctuation is in
the relative contribution to the total energy density of
different components in a multicomponent system. Im-
portant examples of this type are the fluctuations induced
in the baryons by some dissipative process in a universe
containing both baryons and dark matter, and topologi-
cal or nontopological field configurations such as cosmic
strings or textures. While the amplitude of either type of
fluctuation on large scales is strongly restricted by mi-
crowave background anisotropy constraints, the ampli-
tude of small-scale fluctuations can be large, even non-
linear, at the epoch of last scattering. The spectrum of
small-scale fluctuations do not necessarily have to reflect
the shape of the power spectrum of the primordial fluc-
tuations generated at the inflationary epoch, since the
small-scale fluctuations may well be generated later, e.g.,
during various cosmological phase transitions.

In this paper we are interested in isocurvature fluctua-
tions that enter the horizon before the temperature of
equal energy densities of matter and radiation,
T,&=5.5Qoh eV [2]. We will consider scales much
smaller than the horizon, so the radiation energy density
should be homogeneous.

It is well known [3] that the growth of small-amplitude
isothermal Suctuations is suppressed by the cosmological
expansion, the fluctuations do not grow until after the
equality epoch. However, this is true only in linear
theory. The self-gravity of large-amplitude, nonlinear
fluctuations may become important before T,q, and con-
sequently they collapse earlier. Therefore they are cap-
able of producing very dense objects after they separate
out from the general expansion and virialize.

We refer to these isothermal fluctuations as "clumps. "
Let us specify the density of a dark-matter clump as

~PDM~PDM

where 4 is not necessarily small. For example, "typical"
axion miniclusters [4] will have 4-1. In Ref. [5] it was
found that accounting for nonlinear effects in the evolu-
tion of axions at the crucial epoch when the axion mass
switches on can lead to considerably larger density in
many miniclusters, with 4 in the range 1 to 10 . Dark-
matter clumps seeded by wakes induced by cosmic strings
or by textures also will have e'-1 [6]. Seeded clumps are
particularly interesting in the case of weakly interacting
massive particle (WIMP) dark matter.
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The division of fluctuations into curvature and isocurvature is

strictly true only outside the Hubble radius [1].
Since the clumps may be very dense compared to the back-

ground, we do not refer to them as "perturbations. "
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II. A SPHERICAL MODEL

Let us consider a spherical region of radius r contain-
ing an overdensity of pressureless matter in an expanding
universe. In a spatially flat universe, every overdense re-
gion eventually reaches some maximum size and recol-
lapses. The total mass of matter in the region inside r,
Mtot is an integral of the motion so long as the regian ex-
pands. Since we will consider scales much smaller than
the Hubble radius, we can consider the radiation to be
homogeneous, with its time evolution determined by the
general expansion of the universe, and not by the local
conditions.

The equation of motion for the radius of the region is

8mG
Pz (2.1)

It is convenient to change to the conformal time coordi-

It was pointed out in Ref. [5] that the final virialized
density in a clump has to scale as pz-4 p, . Because of
the dependence upon the fourth power of 4, even a small
increase in 4 is very important. For the same reason, the
final density can be sensitive to the details of the evolu-
tion of the clump in the radiation-dominated era. To our
knowledge, a detailed study of the nonlinear evolution of
large-amplitude isothermal fluctuations has never been
performed. However, it is very important in various phe-
nomenological implications including both direct and
nondirect dark-matter searches. In this paper we consider
this problem.

The clumpiness of the dark matter has important im-
plications for attempts to detect dark matter. Clearly the
signal in direct detection experiments for dark matter is
proportional to the dark-matter density. For the rare
direct encounter with a clump, there could be a huge
amplification of the signal. However, if the clumpiness is
too high, the flux of unclumped dark matter will be too
small for a reasonable detection rate. The rate of WIMP
annihilation contributing to the y-ray background [7,8] is
praportional to the density as well. In the case of
clumped dark matter, there will be stronger constraints
on dark matter from indirect searches. In very dense ax-
ion clumps, Bose star formation becomes possible [9]
(clumps with 4-30 already satisfy the critical condition
for this [5]), which in turn can lead to the formation of
radio sources [10]. Another possible manifestation of
high-density clumps is the phenomenon of microlensing.

To study the structure and evolution of high-density
clumps, a full three-dimensional numerical simulation is
needed. However, for an isolated clump some relevant
physical information can be extracted from a one-
dimensional spherical madel. The spherica1 model
proved useful in studies of the gravitational nonlinear
evolution in the epoch of matter domination when it is
possible to find exact analytic solutions [11]. In the
present paper we generalize this model to include radia-
tion. Although there are no analytic solutions, the result
turns out to be very simple: The final density in a virial-
ized clump is pF =1404 (4+1)p, in the whole range of
possible values of 4, both for 4 &) 1 and for 4 « 1.

nate, d7)=dt/a(t), and then to rewrite this equation of
motion in the comoving reference frame, r =a(r))R&(i))(,
where g is the comoving label of a given shell and R&(i))
measures the deviation of the shell motion from the uni-
form Hubble flow of the background Friedmann
universe. In what follows we shall omit the subscript g
on R(r)), but it should be understood that there is a
separate evolution for each shell.

We shall assume that the scale factor a (i)) satisfies the
Einstein equations for an Qo= 1 universe filled with radi-
ation and pressureless matter:

SmG 4m 6
(pM+p~)a a = pMa

3 3
(2.2)

where a prime denotes d /de. %'e parametrize the radia-
tion and matter energy densities as pz =p,q(a,q/a) and

pl=p, (a,„/a) . The solution to the background equa-
tions, Eqs. (2.2), is

a(i))=a, [2(rI/rl„)+(rtlrt„) ], (2.3)

where q~ =—2m'Gpeqa
q

/3.
The equation of motion [Eq. (2.1)] in terms of confor-

mal time is

GMtot
aR "+a'R '+

gR
4m 6

a p~R =0. (2.&)

M„,=— p, a, [I+qi(j)]gtot 3 eq eq (2.5)

Changing from rl to x =—a la, as the independent vari-
able, we finally obtain

(1+ )d R+ 1+ 3 dR+ 1 1+4 —R =0.
dx 2 d& 2 R

(2.6)

This equation reduces to the Meszaros equation [3] in
the limit of small deviation of the shell motion from the
general cosmological expansion, R =1—5 and 5«1, if
we assume no excess in total mass of the matter, i.e.,
4=0-

d6 3 d6 3x(1+x) + 1+—x ——5=0 .
dx 2 dx 2

The latter is hypergeometric equation, and its growing
mode is 5=50(1+3x/2), implying the well known result
that the growth of small fluctuations is sigaificant only
after the Universe becomes matter dominated.

We have solved Eq. (2.6) numerically, assuming
R (xo)= 1 at some early time, xo ((1. Note that at small

x, the second derivative in Eq. (2.6) can be neglected, and
the solution with initial conditions fixed at x0=0 is
R =(1—3@x/2)'~ =1—C&x/2, where the expansion is

The radiation energy density does not enter this equation
explicitly, but its effect is encoded in the evolution of the
scale factor. We also parametrize the total mass of
matter inside the shell in terms of the excess over the
homogeneous background, denoted as 4(g)=5pstlpM.
The total mass within the region is
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d
p~ = 140p, (1+4)g«l 3g2

(3.1)

where we have set C —17. For the core density, this for-
mula gives p~ = 14040(@o+1)p, , where 40=4(0). The
numerical value of the density at equality is

p,„=3X10 ' (Qh ) gcm . Now let us turn to a few

specific examples.

wou1d be small, this would give a reasonable encounter
rate, and the question of formation and survival of small-
scale clumps within the galaxy is worth further study.

Another astrophysical outcome of very dense axion
clumps can be the possibility of "Bose star" formation in
axion miniclusters. The Bose-Einstein relaxation time in
the minicluster due to axion self-interaction is smaller
than the present age of the Universe with 4 & 30 [5,9].

A. Axion miniclusters

Fluctuations in the density of axions can be very high,
possibly spanning the range 154510 [5,12]. Even with
4 as small as 1, the density in miniclusters which form
out of these fluctuations can be as much as 10' times
larger than the local galactic halo density [4]. Using Eq.
(3.1), we obtain pz-9X10 ' Q h gcm for 4=1.
With 4 »1 this result must be multiplied by 4 /2.

The typical mass of an axion minicluster corresponds
to the total mass in axions within the horizon at T-1
GeV when the inverse axion mass is equal to the Hubble
length: M, -10 Mo. The present probability of a
direct encounter with a minicluster is small; the en-
counter rate is 1 per 10 years with 4=1. Although the
signal in an axion detector [13] from a close encounter
would be enormous, it might be a long wait with a weak
signal between encounters if a major fraction of the ax-
ions are part of miniclusters.

There should be some miniclusters with 4 in the range
10 & 4 & 1. These collapse during the matter-
dominated epoch and have larger radii than those with

1 which collapsed in the radiation-dominated epoch,
so the probability of an encounter with a clump with
4&&1 can be larger. From the point of view of direct
searches, even miniclusters with density contrast of order
two times the average with respect to the galactic halo
density are important. Such miniclusters form just prior
to the moment of galaxy formation and started with
4-10 . For 4&1 the expected time between en-
counters is given in terms of the number density of
clumps, n, the geometric cross section of the clump
o.-R,&p~p and the virial velocity v as

1 1 pr' R clump

nov 4 pH v
(3.2)

where pH is the halo density, and R„„ /U is the time the
Earth spends inside the minicluster. The factor of 4
appears because the number density of miniclusters with
4((1 is suppressed in our model [12]. A minicluster
with N && 1 would require the initial misalignment ang1e
0 (which is uniformally distributed in the range 0 to 2m)

to be finely tuned to the mean misalignment angle to an
accuracy M/8= 4/2. Using Eq. (2.9), we finally obtain

)=4X10 yr . (3.3)

Note that the miniclusters discussed so far appear if
the axion field is uncorrelated on scales larger than the
Hubble radius at T-1 GeV. However, miniclusters with
%&&1 can appear from primordial density fluctuations
generated by inflation without the suppression factor of

If this is the case, then ~=4 X10 yr. Since 4

B. Accretion by a point mass

The density profile in the halo accreted by a previously
formed clump can be calculated in the approximation of
secondary infall onto an excess point mass of mass m. In
this case 4(g) =m /M, where M =4np, a, g is the mass
of the background dark matter within the shell with the
label g. Substituting this into Eq. (3.1) we find

p F = 140p, ( m /M )" . (3.4)

This can be translated into pF as a function of r since M
has to be understood as the mass of dark matter residing
within r. The result is pz ~r, the same power law
one usually obtains for secondary infall in the matter-
dominated era [14]. However, Eq. (3.4) is valid regardless
of the time when collapse actually occurs.

C. Cosmic strings

We can apply Eq. (3.4) for clumps of dark matter seed-
ed by loops of cosmic strings so long as the peculiar ve-

locity of a loop is suSciently small. Since the string loop
is not a point object, this formula breaks shown in the re-
gion of small M. Namely, when the given shell turns
around at x„=0.7M/m, the loop size ls has to be small-

er than the physical radius of the shell, r„= „xR„(a, ,
for Eq. (3.4) to be valid. This gives the restriction
M~3m p p,'q" ——Mc, where m =pl+. %e can con-
sider M& as the mass of the core region. The correspond-
ing maximum density which can be achieved in the core
is pc —15+@p, /Mc. This value of the core density
could be many orders of magnitude larger than the densi-

ty at equality. However, as we see from Eq. (3.4), pF is

much greater than p,q only in the case when the mass of
the string loop is larger than the mass of the accreted
dark matter. Consequently, with gradual loop decay due
to emission of gravitational radiation, the dark-matter
clump will adiabatically expand and diminish in density.
This process of clump expansion will continue until
m M. Since in the gravitational field the product rm is
an adiabatic invariant for each dark-matter partic1e,
where r is the effective radius of the orbit, we conclude
that in any clump for which M & m initially, the present
density will have the same order of magnitude, p-10 p,„.
Dark-rnatter clumps seeded by wakes induced by long
segments of moving cosmic strings or by textures also
will have 4-1 (see [6)), and correspondingly the same
virialixed density, p —10 p, . %hile this density is

suf6ciently high to be significant in applications such as
annihilation of dark-rnatter particles, it is too small to
cause microlensing, as we show below.

Cold dark-rnatter accretion onto string loops both in
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the matter- and radiation-dominated eras was also con-
sidered in Ref. [15],however, only in the linearized limit
of Eq. (2.6), i.e., Eq. (2.7).

D. WIMP annihilation

4X 10
(harv) =

2
ctn sec

nxh'
(3 6)

If we consider a large region of (possibly) clumpy dark
matter, such as the galactic core or spheroid, we must
sum up the fluxes from each individual clump. As a re-
sult, instead of M in Eq. (3.5) we have to substitute gM„„
where g is the mass fraction of all clumps to the total
mass M«, in the region. For example, using p-10 peq
we obtain, for the central spheroid (M„,=10 M~ ),

Ir =gQzh m2o cm sec (3.7)

where m2o—=mx/20 GeV. This has to be compared to

In the case where the dark-matter particle species is a
stable weakly interacting massive particle (WIMP) such
as a very massive neutrino or a supersymmetric particle
(photino, Higgsino, or scalar neutrino), the WIMP's can
annihilate, contributing to the y-ray flux. This places
severe constraints on the dark-matter density near the
center of the galaxy [7,8]. Clumped dark-matter annihi-
lation is even more eScient, and places a very strong lim-
it on the clumpiness as a function of the WIMP proper-
ties [6].

For the y-ray flux on Earth from WIMP annihilation
in the clump, we can write

) (3.5)
2 2

4~rom~

where ro is the distance from the Earth to the clump
(ro =8. 5 kpc is the distance to the center of the Galaxy),
mz is the particle mass, and M is the mass of the clump.
Since the particles are nonrelativistic, both in the clumps
and at the epoch of cosmological freeze-out of the
WIMP's, the thermal average of the cross section in Eq.
(3.5} is directly related to the cosmological abundance

the observed upper limit to the y-ray flux in the direction
of the galactic center [7],I =4X10 cm sec

K. Gravitational microlensing

Two conditions must be satisfied for the clump to cause
gravitational microlensing [17]. First, the mass of the
clump has to be in a range near 0. 1Mo. Second, the
physical radius of the clump has to be smaller than the
Einstein ring radius, RE =2&GMd where d is the
eff'ective distance to the lens (typically d-20 kpc). The
second condition restricts the density of the minicluster
to be p&10 p,q/QM &, where M

&
——M/0. 1MO. If

the lensing object is a clump of noninteracting cold dark
matter, it has to be formed from a density fluctuation
with 4&20.

Dark-matter clumps seeded by string loops or textures,
which were considered in Ref. [6], are in the appropriate
mass range; however, they have 4-1. Axion miniclus-
ters can have 4 & 20; however, they are too light. While
it is possible to invent models where both conditions are
met for some of the clumps (one example could be an ax-
ion model with an extremely small, but nonzero, value for
the u-quark mass), it is hardly likely that a substantial
amount of the dark matter has evolved into clumps cap-
able of lensing. On the other hand, anticipating
significant numbers of microlensing events (for the first
positive reports see Ref. [18]}in the future, it is not ex-
cluded that some of them could be caused by the clumps
in such classes of models (especially if collisional relaxa-
tion is significant}. The corresponding light curve will be
diferent from the massive compact halo object
(MACHO) event since clumps are extended objects.

When our paper was almost completed we became
aware of the paper Ref. [19]where Eq. (2.6) was studied
in detail, however, again for the case which corresponds
to 4&&1.
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