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Gauge-independent chiral symmetry breaking in quenched +ED
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In quenched QED we construct a nonperturbative fermion-boson vertex that ensures the fermion
propagator satis6es the Vizard-Takahashi identity, is multiplicatively renormalizable, agrees with
perturbation theory for weak couplings, and has a critical coupling for dynamical mass generation
that is strictly gauge independent. This is in marked contrast to the minbow approximation in
which the critical coupling changes by 50'%%uo just between the Landau and Feynman gauges. The use
of such a vertex should lead to a more believable study of mass generation.

PACS number(s): 11.15.Tk, 11.10.Gh, 12.20.Ds

I. INTRODUCTIGN

The standard model is highly successful in collating
experimental information on the basic forces. Yet, its
key parameters, the masses of the quarks and leptons,
are theoretically undetermined. In the simplest version
of the model, these masses are specified by the couplings
of the Higgs boson, couplings that are in turn undeter-
mined. However, it could be that it is the dynaxnics of
the fundamental gauge theories themselves that generate
the masses of all the matter fields. To explore this possi-
bility, the favorite starting point is to consider quenched
QED [1—9] as the simplest example of a gauge theory
and study the behavior of the fermion propagator. Then
in the ruinbom approximation, it is well known that the
fermion field can have a dynamically generated mass if
the interaction is strong enough; i.e., the coupling o. is
larger than some critical value a . This critical coupling
marks a change of phase and so its value should be gauge
independent. Unfortunately, the rainbow approximation
allows a far from gauge-invariant treatment [10,11]. The
purpose of this paper is to construct a nonperturba-
tive fermion-boson interaction that respects the Ward-
Takahashi identity, ensures the fermion propagator is
multiplicatively renormalizable, agrees with perturbation
theory when a (( 1, and possesses a gauge-independent
critical coupling.

The gauge technique of Delbourgo and Salam, and later
collaborators [12] was developed to solve essentially such
constraints. However, despite formal results on the first
two of these [13,14], their expression in terms of the spec-
tral representation for the fermion propagator has proved
difEcult in practical calculations of the fermion propaga-
tor, for example, Ref. [7]. Consequently, we develop an
explicit construction procedure amenable to straightfor-
ward computation.

VFe start with the Schwinger-Dyson equation for the
fermion propagator. This nonlinear integral equation en-
codes all we can know about the fermion propagator. To
be able to consider this equation alone of the infinite set
of Schwinger-Dyson equations, one for each Green's func-
tion, we must make an ansatz for the fuH fermion-boson
vertex. Quite generally, this vertex can be regarded as

the sum of two components: the longitudinal and tran~-
verse parts. The well-known Ward- Takahashi identity
constrains the longitudinal part. How to satisfy this con-
straint in a manner free of kinematic singularities has
been solved some time ago by Ball and Chiu [15]. That
multiplicative renormalizability constrains the transverse
vertex has also been known for some time [16,14]. How-
ever, it is more recently that Curtis and one of the present
authors [17]explicitly constructed a simple form (perhaps
the simplest possible form) to ensure the multiplicative
renormalizability of the fermion propagator. This ansatz
is called the CP vertex.

Subsequent study has shown that with this vertex the
fermion propagator still has the possibility of a chiral-
symmetry-brea'king phase [18]. Moreover, in dramatic
contrast to the rainbow approximation, the critical cou-
pling required is only very weakly gauge dependent in the
neighborhood of the Landau gauge. However weak this
variation, any gauge dependence shows that the CP ver-
tex cannot be the exact choice. Here, we determine the
constraints on the full fermion-boson vertex that ensures
gauge covariance for the fermion propagator and exact
gauge independence for the critical coupling. The result-
ing vertex involves two @~known functions Wq and W2,
which each satisfy a sum rule and a constraint on their
derivatives. Any choice of these satisfies our fundamental
constraints as long as it correctly matches onto perturba-
tion theory. This construction builds on the CP vertex,
extending the work of Dong, Munczek, and Roberts [19].
Though the discussion in Sec. II of how to ensure the
gauge covariance of the wave-function renormalization of
the fermion propagator is very close to that of Dong,
Munczek, and Roberts [19], to make the extension to
the gauge independence of the critical coupling clear, we
have given all the details of our formulation making our
construction in Sec. III self-contained.

In general, only the position of the pole in a prop-
agator has to be gauge independent. At that value of
the momentnro, when p = mz in Minkowski space (or
equivalently at p = —m in the Euclidean space in which
we work) the fermion mass function has to be indepen-
dent of the gauge. Atkinson and Fry [20] proved this in-
dependence follows kom the Ward-Taacahashi identities.
However, at the critical coupling for dynamical mass gen-
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eration, multiplicative renormalizability imposes such a
simple form of the mass function that this whole func-
tion becomes gauge independent. This is embodied in
our construction.

Our results have to be compared with earlier work.
For example, Rembiesa [21] and Haeri [8], using the pre-
viously mentioned gauge technique, construct fermion-
boson vertices that make the fermion propagator itself
gauge independent. This is, of course, at variance with its
behavior in perturbation theory and consequently with
the renormalization group in the weak-coupling limit.
Rembiesa [21] then went on to find that the critical cou-
pling for mass generation with such a vertex is strongly
gauge dependent, being given by o. = z'/(3 + (). In
complete contrast, Kondo [22] finds a gauge-independent
coupling as here, but at the expense of using a vertex
that has singularities. The construction presented here
aims to overcome these deficiencies.

where q = k —p and S~(p) can be expressed in terms
of two Lorentz scalar functions, F(p2) the wave-function
renormalization and W(pz) the mass function, so that

The bare propagator S&o(p) = 1/(P —mo), where mo is
the constant (bare) mass. In quenched /ED, the photon
propagator is unrenormalized and so is given by its bare
form

& -=&',.(q) = —, a +(&-1) ","
l

q„q„&

( )
q~qgp

4

II. THE FERMION EQUATION

The Schwinger-Dyson equation for the fermion propa-
gator Ss (p) in /ED with a bare coupling e is displayed
in Fig. 1, and is given by

d4I
iS~ (p) =i' (p) —e p"Sy(k)

xF"(k, p)b, „„(q),

q"I'„(k,p) = S (k) —S (p) . (2)

We can simplify Eq. (1) by making use of the Ward-
Takahashi identity, Eq. (2),

where the transverse part b,„„(q)is defined by this equa-
tion and ( is the standard covariant gauge parameter.
I'"(k, p) is the full fermion-boson vertex that must sat-
isfy the Ward- Takahashi identity

SF'(p) = S~ '(p) + ie p"S~(k)I'"—(k, p)b, „„(q)+ ie g ——ie'( Sp (k—)S~'(p) . (3)

The third term on the right vanishes, as it is an odd integral, and we are left with

d4k d4k
S» (p) = S~ (p)+ie p"Sp(k)I'"(—k, p)A„„(q) —ie $ Sy(k—)SJ,, (p) . (4)

To solve this equation we must make an ansatz for the
full vertex I'"(k,p). Our aim is to construct a vertex
that automatically embodies as much of the physics of
the interaction as possible. Following Ball and Chiu [15],
we first write the vertex as a sum of longitudinal and
transverse components:

I (k, p) =r",(k, p)+r,"(k,p) . (5)

To satisfy Eq. (2) in a manner free of kinematic singular-
ities, which in turn ensures the Ward identity is satisfied,
we have (following Ball and Chiu)

4 J
FIG. 1. Schwinger-Dyson equation for the

fermion propagator. The straight lines repre-
sent ferxnions and the wavy line the photon.
The solid dots indicate full, as opposed to
bare, quantities.

This was not noted in Ref. [18] as pointed out in [19],who better remembered Ref. [20] of [23] than the authors.
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and

1~ 1 1

2 F(k ) ( )

1 ~ 1 1 ) 1
2 (F(k2) F(p2)) k2 —p2 '

AI(k') AI(p') l
( F(k2) F(p2) ) k2 —p2 '

(7)

q„r",(k, p) = o, r" (p, p) = o . (8)

Ball and Chiu wrote down a set of eight basis vectors
T,"(k,p) for the transverse part [15], that ensures these
conditions, Eq. (8), are satisfied:

8
r" (k, p) = ) r;(k2, p2, q )T,."(k,p), (9)

provided that in the limit k ~ p, ~;(p, p2, 0) are finite.
Our aim is to determine the full vertex by requiring the
multiplicative renormalizability of the fermion propaga-
tor and the gauge independence of the chiral symmetry
breaking phase transition. Since the longitudinal part of
this vertex is specified, Eq. (6), this amounts to deter-
mining the transverse part and hence the 7; of Eq. (9).

r~r(k, p) = a(k', p')q~+ b(k', p')(g+ p)(k+ p)"
—c(k,p )(k+ p)", (6)

where

Of the eight basis vectors T,-", four have even numbers of
p matrices and four have odd numbers.

It is here that we make three simplifying assumptions.
First, we demand that a chirally symmetric solution
should be possible when the bare mass is zero, just as
in perturbation theory. This is most easily accomplished
if only those transverse vectors with odd numbers of p
matrices contribute to r~&(k, p). Then the sum in Eq. (9)
involves just i =2, 3, 6, and 8. The corresponding vectors
are

T2" (k, p) = (p"k q —k"p q)(g+ gt)

Ts"(»p) = q'7" —q" 4
T."(k p) = ~"(k' J')— (k—+ p)"(8 W)-

Ts"(»p) = ~"p"k—'~ p+ p" P —k" 8, (1o)

where as usual a = e2/4w.
The fermion propagator is determined by the two func-

tions F(ps) and AI(ps). We can project out equations
for these by taking the trace of Eq. (4) having multiplied
by P and 1 in turn.

On Wick rotating to Euclidean space,

where 0'~~ =
2 [p~)p~].
1

The second assumption is that the functions v; mul-
tiplying the transverse vectors, Eq. (9), only depend on
k and p but ~ot q . This allows the angular integra-
tions in Eqs. (1) and (4) to be performed. Third, we
assume that, in the Landau gauge, the transverse cora-
ponent of the vertex vanishes. This is motivated by its
large moment@~ behavior in perturbation theory. There
for k2 )) p2, the leading logarithmic behavior is [17]

a( k2 k" gr" (k, p) = ——ln —&~—
k2

F k2

+b(k', p') 2k'p'+ (k'+ p')k p ——(k' —p')'k p + At(k')c(k', p') p'+ k p ——(k' —p')(k p —p')
q2 q2

, [p'(k' —k p) + Af(k')AI(p')(k p p')] + (k' p'-)((k' + p')lk'p' —(k p)'])

+vs (k') p ) [—2k p + 3(k + p )k .p —4(k p) ] + 7s (k, p ) [(k —p )3k .p] + vs(k, p ) [
—2k p + 2(k .p) ]

(12)

n Fk2= mo — d k ——3a(k, p )AI(k ) —b(k, p )Al(k ) (k+ p) ——(k —p )
q

+c(k', p') (k'+ k. p) ——(k' —p')(k' —k. p)q2 q2F (p2)
[AI(p )(k —k .p) —Al(k )(p k —p )]

+vg(k*, p*)Al(k*)[—2kp*+ 2(k. p)*[+37'(k*,gP)At(k*) + vs(k~, gP}M(k')[3(k* —p*)]) . (13)



7682 A. BASHIR AND M. R. PENNINGTON

We are only interested in solving this equation when the bare mass mo is zero. One solution of the mass equation,
Eq. (13), is, as anticipated, M(p ) = 0. We first consider the wave-function renormalization F(p ) in this case.

Carrying out the angular integrations in Euclidean space gives

3a " dk2k2k2+p ( F(k )~i n( dk F(k )
F(p2) 4n . k2 F(p2)

—F(k )K,(k, p ) —— F(k )K.(k, p ),dk k

8x o p2 p2 8~ „, I'

dk' k'+ p' / F(k') )1—
16~ „. k2 k2 —p2 + p2

where which can be reexpressed in terms of functions with def-
inite symmetry properties when k M p. Thus

Ki(k, p ) = (k —3p') ~s(k, p') + vs(k', p ) Ki(k, p ) = h, (k, p ) + Ii (k, p ), (20)

——,'(k'+ p')~, (k', p') K2(k, p ) = h, (k, p ) —h (k, p ),
+3(k' —p2) vs(k2, p'), where h, (k2, p2) and h (k2, p2) are symmetric and anti-

symmetric, respectively, under the interchange of k and
p:

Kz(k, p') = (p' —3k') rs(k', p ) + rs(k', p')

—
2
(k' + p')7.2(k', p')

h, (k, p ) = —(k + p )~(k, p )

+3(k —p )~s(k, p ),

ti (k', p') = 2(k' —p')~(k', p')

(22)

(23)
+3(k' —p2)rs(k2, p') . (i6)

The following treatment turns out to be very close to that
of Dong, Munczek, and Roberts [19], in a more suitable
form for our extension to dynamical mass generation. It
is convenient to de6ne the combination 7 of v.2, ~3, and
8.'

Ki(k, p ) = (k —3p )v.(k, p ) + 3(k —p )~s(k, p ),
(18)

K2(k', p') = (p —3k )~(k, p ) + 3(k' —p')~s(k', p'),
(i9)

T(k, p ) = rs(k, p ) +rs(k, p ) —2(k + p )r2(k, p ).
(»)

Then

As discussed in [24,17,18], multiplicative renormalizabil-
ity requires that the solution of this integral equation for
the wave-function renormalization F(p2) must be of the
form

F(p') = &(p')" . (24)

As shown in [19],gauge covariance requires v = o.(/4z.
Burden and Roberts [25] noted numerically that the
fermion equation with the simple Cp vertex correctly
generates this behavior, even though the authors of
Refs. [26,18] found v = 2o.(/(8z + n() as a result of not
imposing translational invariance on their loop integra-
tions, Eqs. (3) and (4), as discussed earlier.

This simple power behavior is generated by the 1 and
the first integral on the right-hand side of Eq. (12). This
requires, as noted in Refs. [26,19], a cancellation among
the remaining integrals. Thus multiplicative renormaliz-
ability imposes the constraint

2 0 p2 p2 k2 —p2 ( F(p2)) 2 „~ k2 k2 —p2 ( F(p2)) 0 p2 p2

A' da'
F(k ) [k, (k, p ) —k (k, p )] = 0, (25)

J2

where E(p ) = A(p2)" and the artificial cutoff A can be taken to infinity with impunity. The scale invariance of the
integrals makes it convenient to introduce the variable z, where for 0 ( k2 ( p2, x = k /p, and for p2 & k2 ( oo,
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x = p2/k2 [27,18]. Then

3 ' x+1
Cz r, (z) + Czx"+'F(p') h. (zp', p') + h. (xp', p')

2 0 x 1 Q

1

+ d " 'F(p') h. (p'/ p') —ho(p'/ p') = o (26)
0

where

ri(x) = x(1 —x") —z '(1 —x "),
ri(1/z) = -ri(*) .

Since this equation must hold true at all p, the inte-
grands cannot be functions of p2 but only of x. Thus

F(p')h. (zJ' p') —= hi(z),
F(p )h (xp, p )—:h2(z),

define hi, h2. Then Eq. (26) becomes

where

1 k2+p 1 1

2 (k2 p2)2 (F(k2) F(p2) )
1 I 2+ 2

1 1 1
6 k2 —p2 si(k2, p2)

(k2) (p2 l
XW1 —

2 +Wl 2&p)

I 2 2

si(k, p ) = —F(k ) + F(p ) .—

(31)

3 x+1
dx ri(z) + Czx"+' hi(z) + h2(z)

2 0 x —1 0

1

+ dzx " hi(1/z) —h2(l/x) = 0 . (27)
0

In the most compact way, Eq. (27) can be written as

where

1

dxWi(z) = 0,
0

(28)

W, (z) = — r, (z) +
~

x"+' + x '
~

h, (x) + h2(z)
3+ 1 ~ v+1 —1~

The original symmetry of the v's under the exchange of
k2 and p2 translates as follows in terms of the x vari-
able [19]:

hi(l/z) = x"hi(x),
h2(1/z) = —x"h2(x) .

lim (k' —p )rs(k, p') = 0, (32)

which requires

It is the first term in Eq (31).that is essentially the CP
vertex in the massless theory. Note the automatic ap-
pearance of the difFerence [F(k )

i —F(p ) ], which
Curtis and Pennington [17] conjectured was the nonper-
turbative generalization of the leading logarithm behav-
ior in lowest-order perturbation theory, Eq. (11). In-
deed, agreement with this behavior is naturally achieved
if Wl ~ 0 in this limit.

The vertex can only have singularities for good dynam-
ical reasons. It cannot have kinematic singularities. A
suHicient condition for this is to assume that each of the
r; (i = 1, 8) is free of kinematic singularities. Ball and
Chiu [15] found that with their choice of basis vectors T;"
this is indeed true at one-loop order in perturbation the-
ory in the Feynman gauge and Kizilersu, Reenders, and
Pennington [28] have now shown this in any covariant
gauge at this order, too. In the present nonperturbative
analysis that this continues to hold with the Ball-Chiu
basis vectors is a plausible simplifying assumption. Thus

(29) Wi (1) + Wi(1) = —6v, (33)

r(k ,p ) =—
4 k2 p2 si(k2 p2)

X Wl 2
-Wl-

&p) & )
(30)

Thus this function Wi(z) fixes rs(k, p ) and the combi-
nation r(k2, p2), so that as found by [19]. Perturbation theory demands Wi(x)

be Q(a). While the form of the coefficient function rs is
determined by the constrained function Wi(x), it is only
the combination v of v2, ~3, v8 that is so speci6ed. By
imposing the gauge independence of the critical coupling
for mass generation, we will be able to separate these
functions as we now show in Sec. III.
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III. THE MASS FUNCTION

While for a ( cx„ there is only one solution M(p ) =
0, as o m a a second nonzero solution becomes possible.
This solution bifurcates away &om the other solution. Bi-
furcation analysis allows us to investigate precisely when

this happens. In the neighborhood of the critical cou-
pling, terms quadratic in the xnass function can be rigor-
ously neglected. Thus the wave-function renormalization
F(p2) is that of the massless theory, Sec. II, and the equa-
tion for the mass functioii M(p2), Eq. (13) with ms = 0,
linearizes

JH(p2) ag ~ dk 2 F(k2) a( dk2 2 F(k )
F(p2) 4s' p2 F(p2) 47' ~ k2 F(p2)

2(k' ') F( ') (k' ') F( ')

k2 ( ) F(p2) 2(k2 p2) ( ) F(p2) 2(k2 p2) ( ) ( ) F(p2)

M(k )F(k ) —(k 3p )T2(k, p ) + p r3(k 1 p ) + (k p )rs(k, p )
4m p p~ 6

, M(k')F(k') —(p' —3k')7;(k', p') + k'r, (k', p') + (k' —p')~s(k', p') (3
4~ „, I~ 6

If this equation is to be multiplicatively renormalizable with a gauge-independent bifurcation, then this imposes
further constraints on the transverse vertex, 7;(i = 2, 3, 6). We first work in the Landau gauge, where we continue to
assume the transverse vertex vanishes. This is motivated by the perturbative result of Eq. (11).

Then we have simply

k2

0

A

(35)

This equation has the multiplicatively renormalizable solution

M(k2) = B(k )

where Eq. (35) requires

8' 3 1—= 1+ —+ —vr cot s.s = f (s) .
8 1 —8

(37)

There are two roots for 8 between 0 and 1. Bifurcation occurs when the two roots for 8 merge at 8 = 8, specified
by f'(s, ) = 0. This point defines the critical coupling [4,27, 18], a, = 8m/3f(s, ) Numerically. , o., = 0.933667 and
s, = 0.470966. A little away from this critical point the exponent s in Eq. (36) is given by

&2f(..)'l "I',
Ck

(38)

It is only at the bjfurcation point that the simple behavior of Eq. (36) holds at all momenta. There, only when

the mass is still efFectively zero is there just one scale A for the moment»~ dependence of M(k ). Multiplicative
renormalizability then forces a simple power behavior. Such a multiplicatively renorma»zable mass function must
exist in all gauges. Consequently, the exponent s must be gauge independent. Moreover, dynamical mass generation
marks a physical phase change and so the critical coupling a must also be gauge independent. Thus the critical
values o.„s,found in the Landau gauge must hold in all gauges. This is achieved as follows. We recall Eqs. (14) and

(25):

1 a( dk2 F(k2)
F(p2) 4m „~ k2 F(p2)

(39)
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Thus, we conveniently de6ne

Then we have

F(p')g. (zp'. p') —= »(z) F(p')g-(*p' p') —= g.(*) .

1 3 1
Czz" "+- [z ' —z" "—z" '+z" " ']

0 2 0

1 1
dzz" "[gg(z) +g2(z)] — dzz" " '[gg(l/z) —g2(/z)] = 0 . (45)

0 0

The symmetry of the vertex [19] under k E+ p means that

g~(1/z) = z" g~( z) g~(1/z) = z"g-2(*)

In contrast with our discussion in Sec. II when the equations for the wave-function renormalization F(p2) apply for
all values of the coupling, Eqs. (44) and (45) only hold when a = a, .

Equation (45) can be written in a compact way as

' dx
W2(z) = 0,

p z

where

~.(z) = Cz"-""~'+— ' -*"-""'[g(*)+g.(*)]-*-"'-"[g (1/*) - g.(1/z)] (47)

with

~, (z) = z' '-"(1—z") —*"-' '(1 —z-")

which has the property, rq(1/z) = r2(z) —Conve. niently defining the combination

k M(k2) 2 p JH(p2)(" p)= ~( )
(")+k~(k)F(p)

where k = (k k)~ 2, p = (p p) ~ we have

( k M(k')F(k') p M(p')F(p') 3 k'+ p' 1 (k2~

2sq(k~ p2) p M(p2)F(p2) k Af(k )F(k ) 4 ks —pl s2(k2, p2) (p2)

(k21 /'p2~

(48)

(49)

k M(k2)F(k2) p M(p2)F(p2) 3 1 f k2 l

(k2 p2) p ~(p2)F(p2) k ~(k2)F(k2) 4 s (k2 p2) (p2 )
(p2 )

2 s2(k2, p~) (p2 ) (k2)

Solving the last two equations for 72 and ~3 in terms of x6 and N'2, we obtain

2( q, (k', p') ~,(k', p')
(k2 p2)2 s (k2 p2) k2 p2 (k2 p2)2 s (k2 p2)

2 p2 2 k2

(» —p2)s s, (k2, p2)

where
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k' M(k')F(k') p' M(p')F(p')
k2 —p2 p M(p2)F(p ) k M(k )F(k )

(53)

where qs(k2, p2) is obviously a symmetric function of k and p, and

where

~s(k, p ) =—,~e(k, p ) +, , r2————qs(k, p )k2 —p2 ' k2 —p2 s2 k2, p2 2 (p2) 3

1 k'+p' 1 ik2i (p2i
6 (k2 —p2)2 s (k, p ) (p ) (k )
1 k4 + p4 —6k2p2 ] (k2 i (p2 i
6 (k — ) (k, ) ( ) (k

(54)

kp s 2 M(k )F(k ), , M(p )F(p )'"')
M(p )F(p )

(
'

'P')M(k )F(k )

where qs(k2, p2) is antisymmetric in k and p. The relation, Eq. (17),

~(k', p') = ~,(k', p') + ~s(k', p') ——,'(k'+ p')~2(k', p')

then fixes vs(k, p ):

where

&s(k &p ) = —2 2 2&e(k ip ) +&(k ip ) —
k2 2 k2 2

—r2 —
2

——gs(k ip )
2 2 k +p 2 2 — 2 2 1 1 1 k ( 2 2

3 (ks —pl)2 s2(ki, p2) (p2) (k2)

2 k4+ p4 1 (k2i (p2&

3 (k2 —p~)s s (ki, p2) (p ) (k )

(56)

1 k 4 4 M(k2)F(k2) p 4 4 M(p2)F(p2)"("''"')=
(k -p ) p( "'+"')M(p )F(p )

k("'+ "')M(k )F(k )

which is clearly antisymmetric in A: and p. I~posing the
condition that the vertex and its components should be
free of kinematic singularities means that

lim (k —p )7;(k,p ) = 0, i = 2, 3, 8,

noting that the antisymmetry of re means ve(p, p ) = 0.
Thus

Since at large momenta we expect the power behavior of
Eqs. (24) and (36) even away from criticality, Eq. (59)
will hold for all values of the coupling a. In contrast,
Eq. (46) is only true at the bifurcation point. Its exact
form for all a is not known, but Eq. (38) might suggest

Z/2

W2(x) =( 1 ——
0 x Oc

W2 (1) + 2W2 (1) = 2$(v —s + 1), (59)

k M(k2)F(k2)
W2(k /p ) = (— +O(o.) . (60)

where s = s, at the critical point. The transverse ver-
tex has the correct lowest-order perturbative limit, viz. ,
I'~& ——Q(o.), provided

to agree with both the a = 0 and a = n limits, Eqs. (60)
and (46). These equations determine our vertex for any
W; (i = 1,2) that satisfy the constraints.

In [18] a plot is shown of the critical coupling, a„as
a function of the covariant gauge parameter g, when the
CP vertex is used. We re&ain &om showing the anal-
ogous graph for the presently constructed vertex, as 0,
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would be boringly gauge independent. This has been
achieved for any choice of the functions W;(x) (i = 1, 2),
that satisfy Eqs. (28), (33), (46), (59), and (60). A
simple example of Wi is 2v(1 —2x). There are, of
course, an infinity of such functions. In practice, we ex-
pect that W'q should be expressible solely in terzns of
the ratio F(k2)/F(p2), while W2 should surely also in-
volve M(kz)/M(pz). However, we have not been able
to find simple examples that achieve this. The exact
form of the full vertex would, of course, determine these
functions precisely. Thus solving the Schwinger-Dyson
equation for the three-point function would specify the
unknowns. However, that has not been our aim. Our
aim is more limited. It is to construct a vertex that en-
sures the fermion propagator is gauge covariant, multi-
plicatively renormalizable, and has a gauge-independent
chiral-symmetry-breaking phase transition. One does not
need to know the exact forzn of the full vertex to achieve
these properties, only the effective vertex for the fermion
equation, Eq. (1). However, we believe that this effective
vertex should nevertheless satisfy the appropriate Ward-
Takahashi identity and agree with perturbation theory, at
least in the leading logarithmic limit of the weak-coupling
regime. This is the construction we have achieved for any
functions W;(x) (i = 1, 2). This efFective vertex is thus
given by Eqs. (5)—(7), (9), (10), (31), (51)—(58).

IV. CONCLUSIONS

The nonperturbative behavior of the fermion propa-
gator is governed by its Schwinger-Dyson equation. In
quenched /ED, the self-consistent solution of this equa-
tion is determined by the fermion-boson interaction. This
in turn satisfies a Schwinger-Dyson equation that relates
it to the full four-point function and this four-point func-
tion satisfies its own Schwinger-Dyson equation relating
it to the five-point function and so on. While the solu-
tion of this infinite set of equations represents the whole
theory, the coznplete set is, of course, impossible to solve.
Consequently, we need a systematic method of truncation
that maintains the key features of the theory: its gauge
invariance and multiplicative renormalizability. The only
known truncation schezne consistently respecting these
properties is perturbation theory. However, the bulk
of strong interaction phenomena require a nonperturba-
tive approach. Thus, for example, massless bare matter
Belds remain massless to all orders in perturbation the-
ory. How'ever, if the interactions are strong enough, a
chiral-symmetry-breaking phase may become a possibil-
ity. Truncating the nested Schwinger-Dyson equations
to just the fermion equation by the ruinbom approxima-
tion, in which the fermion-boson vertex is simply treated
as bare, this possibility is realized. However, this ap-
proximation is highly gauge dependent with the critical
coupling for this phase transition varying by a factor
of 2 from ( = 0 to 3 [29]. The present paper defines
a truncation of the fermion Schwinger-Dyson equation,

which does respect the key properties of the theory. The
vertex constructed satisfies the Ward-Talmhashi iden-
tity, ensures the fermion propagator is multiplicatively
renormalizable, agrees with one-loop perturbation the-
ory for large momenta, and enforces a gauge-independent
chiral-symmetry-bre~4ng phase transition. This is a step
on the way to a meaningful nonperturbative truncation
scheme: meaningful in the sense that the fundamental
aspects of the physics crucially determining the fermion
propagator are thereby encoded in its Schwinger-Dyson
equation.

Investigation of how, for a given coupling strength, the
generated mass compares with that found using the rain-
bow approximation requires the solution of the coupled
equations for F(p2) and JH(p2). Study of the chiral-
symmetry-breaking phase transition, using bifurcation
analysis, fortunately allows these equations to be uncou-
pled rigorously. The coupled solution is planned.

The fact that in a (more) realistic version of non-
perturbative /ED, mass generation is possible makes it
more, rather than less, likely that such a phase transi-
tion has been observed in heavy-ion collisions [30]. More-
over, it motivates the need for a realistic calculation of
tt condensates as the source of the electroweak symme-
try breaking [31]. A realistic calculation, of course, re-
quires the unquenching of the theory. This brings at once
renormalizations of the transverse photon propagator
and of the fermion-boson coupling. It is the renormalized
coupling, which at the corresponding chiral-symmetry-
breaking phase transition, is the physical quantity that
must be gauge independent. The need to ensure the
multiplicative renormalizability of the now coupled pho-
ton propagator, of the fermion-boson coupling, as well
as of the fermion propagator, significantly complicates
the problem. The fermion-boson vertex (in particular its
transverse part) will intimately depend on the photon
renormalization function in a nonperturbative way not
yet understood.

Thus the complete multiplicative renormalizability of
two- and three-point functions brings not merely greater
algebraic but also methodological coznplexity. The re-
sults for quenched /ED presented here provide the start-
ing point for such an investigation of full /ED. The solu-
tion to this problem will in turn be the starting point for
a study of /CD, where boson self-interactions, so essen-
tial for both asymptotic keedom and confinement, will
further complicate the analysis whether in covariant or
axial gauges. All this is for the future.
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