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We compute the kee energy density for pure non-Abelian gauge theory at high temperature and
zero chemical potential. The three-loop result to O(g ) is
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where T is the temperature, ( is the Riemann zeta function, g~ = g(p)C&, p, is the MS renormal-
ization scale, g(p) is the corresponding coupling constant, and d~ and C~ are the dimension and
Casimir number of the adjoint representation. We examine the sensitivity of this result to the choice
of renormalization scale p. We also give a result for the free energy of scalar P theory, correcting
a result previously given in the literature.

PACS number(s): 11.10.Wx, 12.38.Bx

I. INTRODUCTION

The perturbative expansion of the free energy of hot
non-Abelian gauge theory is of the form

E ~ T [co+ czg +csg + (C4»g+ c4)g + O(g )],
(1.1)

where the c; are numerical coefficients (with some de-
pendence on the choice of renormalization scale). The
leading term is just the free energy of an ideal, ultra-
relativistic gas of bosons. The first effect of interactions
appears at O(gz) and can be computed from two-loop
diagrams such as Fig. 1. To compute to higher order
requires reorganizing perturbation theory to account for
Debye screening of electric fields in the plasma and yields
terms nonanalytic in gz such as O(gs) and O(g4lng).
The full O(g4) term requires a three-loop calculation, and
a full accounting of Debye screening at three loops would
produce the O(gs) terms. And that is it; perturbation
theory is believed incapable of pushing the calculation
to any higher order. Beginning with four loops, in&ared
problems associated with magnetic confinement appear
and there is a non-perturbative O(gs) contribution to
the &ee energy. A complete three-loop calculation of
the free energy therefore has the special significance that

it is the best anyone will ever do with perturbation the-
ory. In this paper, our goal is slightly more modest. We
shall only tackle the O(g ) contribution from three loops
and leave the O(gs) contribution for another day.

Another interest of the three-loop calculation is that
O(g4) is the first order that begins to implement the
renormalization-scale independence of the free energy.
The coupling in (1.1) is really g(p), where p, is some
renormalization scale, and some of the coefficients de-
pend on in@. The leading term that depends on the
interaction is order g (y,), and by itself depends logarith-
mically on our choice of p. A change in this term due to
a small change in renormalization scale,

I2

g'(I') = g'(I ) + P.g'(t )» + "
p2

is compensated by changes in higher-order contributions,
first starting at O(g ). The O(g4) result should therefore

For a reviewer of this, and also of the previously mentioned
reorganization of perturbation theory due to Debye screen~ng,
see Sec. IV of Ref. [1] and also Ref. [2]. FIG. 1. A two-loop contribution to the &ee energy.
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have a fiatter dependence on p than the O(g ) result. By
checking this claim, we can get some idea of the theoreti-
cal uncertainties of lower order calculations and perhaps
learn some qualitative lessons that will carry over to other
thermal quantities.

The O(gs) piece of the free energy of non-Abelian
gauge theory was previously obtained by Kapusta [3],
and the O(g4lng) piece by Toimela [4]. We shall com-
pute an analytic result for the full O(g ) contribution.
In somewhat related work, Coriano and Parwani [5] have
recently studied high-temperature /ED and numerically
extracted the O(g ) contribution, and Parwani [6] has
also found the O(gs) piece. (Unlike in non-Abelian gauge
theory, the perturbation series in /ED does not break
down after g .) We shall only study pure gauge theory
in this paper and do not include any fermions. Fermions
will be included in a later work.

In the next section, we begin our task by computing the
O(g4) contribution to the free energy in pure scalar the-
ory. The result for the basic, three-loop scalar diagram
will be essential to the later gauge theory calculation,
and we shall step through our technique for evaluating
it analytically. We shall also briefly review the reorga-
nization of the perturbation theory to account for the
scalar analogue of the Debye mass. In Sec. III, we turn
to non-Abelian gauge theory and show how many three-
loop diagrams can be reduced to the scalar case. We
then discuss how to evaluate the exceptions, which are
two-particle-reducible diagrams. Finally, in Sec. IV we
discuss our results and examine the renormalization scale
dependence. The details of several calculations needed
along the way are relegated to appendices.

Throughout this paper we shall find it convenient
to work almost exclusively in the Euclidean (imaginary
time) formulation of thermal field theory. We shall
conventionally refer to four-momenta with capital let-
ters K and to their components with lower case let-
ters: K = (ko, k). Unless explicitly noted otherwise,
all four-momenta are Euclidean with discrete f'requencies
kp ——2' nT.

&z=&o+ —a 4 ——e T 4'
1 2 4 1 2 2 2

4I 48
(2.2)

&o = — (W)'+ —g'T'0'
2 24

(2.3)

where the thermal mass has simply been added in and
subtracted out so that nothing is changed. Now treat
Zp as the unperturbed Lagrangian and the last term as
a perturbation. This reorganization of the perturbative
expansion is necessary to get a well-behaved expansion
in g. One can imagine including yet-higher order cor-
rections to the thermal mass in l'.p above, but this is
unnecessary and we shall not do so.

We regularize the theory by working in d = 4 —2r
dimensions with the modified minimal subtraction (MS)
scheme. This corresponds to doing minimal subtraction
(MS) and then changing the MS scale p to the MS scale
p, by the substitution

g yE@2
P =

4
(2.4)

In dimensional regularization, the one-loop thermal mass
generated by Fig. 2 is

2 12 1
2g P2 '

where the integral-summation sign above is shorthand for
the Euclidean integration

this section, we show how to obtain the result analytically
and also correct an error in the derivation of Frenkel et
al.

At high temperature, the scalar picks up a thermal
contribution 24g T to its effective Inass &om the one-
loop diagram of Fig. 2. It is ineKcient to do perturbation
theory with zero-temperature scalar propagators, which
do not account for this effect. We follow Refs. [7,8] and
rewrite the Lagrangian as

II. SCALAR THEORY

d3 —2E
2&T X

(2~)3—2e
So

(2.6)

A. Basics

Consider the theory of a real-scalar field with Eu-
clidean Lagrangian

C~ = —(0$) + —g P

where we consider temperatures large enough that any
zero-temperature mass can be neglected. The O(g ) con-
tribution to the &ee energy of this theory has been com-
puted numerically by Frenkel, Saa, and Taylor [7). In

FIG. 2. One-loop contribution to the scalar thermal mass.

Note that our g is 4! times their y and that our 6 is half
of theirs.

For a short review in a slightly diferent context, that also
contrasts this resummation scheme with the shghtly diferent
one we shaH use in the next section for gauge theories, see
Ref. [9].
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l:p ——— (8$) + m gP (2.8)

and the s»m is over po ——2mnT for all integers n. Our
reorganized Lagrangian is

&z = &o+ —(Zi —I)(&4) + —V 'Z2a 4 — m-4
1 2 2e 2 4 2 2

2 4t 2
(2.7)

(a)
IL rI

(b) (c)

E.

(d)

where Zq and Z2 are the usual zero-temperature multi-
plicative renormalizations: L IC 0I

Zg ——1+O(g ),
2

Z, =1+—,+O(g').
2e 4z 2

(2.9)

(2.10) (e) (g)

1 2 2 4 2 2 1 3
2

ln(P +m)= T ———mT + mT
2 p 90 24 12'

1 1 p+ 2
—+2ln +2p@ m

64+2 4+T

+O(m /T, e) . (2.11)

The one-loop integral needed for the remaining diagrams

The diagrams contributing to the free energy I'
through three loops are shown in Fig. 3, where all propa-
gators represent the reorganized propagators of l:0. The
sum of these diagrams gives —I'. All of the diagrams ex-
cept the last, the basketball diagram, are simple because
they factorize into one-loop integrals. Diagrams (e)—(g)
in Fig. 3 are particularly simple because they cancel each
other at O(g4). Figure 3(a) represents the contribution
to —F of a noninteracting gas of bosons of mass m, and
its high-temperature expansion is well known [10]:

FIG. 3. Diagrams contributing to the &ee energy in scalar
theory. Dots represent zero-temperature counterterms,

and crosses represent the "thermal counterterm" arising &om
the last term of (2.7).

is obtained4 by difFerentiation with respect to m2:

1 1 2 1= —(1+ea, )T — mT—
P P2+ m2 12 4x

m —+ 21n + 2p@
1 2 1 p

4z2 c 4+T

+O(m /T, emT, e T ). (2.12)

We have shown only those terms that can contribute to
the free energy at O(g4), but this requires introducing a
term of O(e) that was not needed in (2.11). The coeffi-
cient c, of this term is less well known, and it is worth
taking a moment to focus on the m = 0 case and review
its simple derivation:

1 2, d ' 1 2 . d 1

~ P (2z) ' p (2z) ' (2snT) + p
=p, ' —+2p, 'T

2 26T
d3 2' 1 1—2e

(2z)s —2~ (2~T)2+ p2 +

Tz P
2

~ (zT') I

I'(——,'+ ) ((—1+2 )

( p ('( 1)
I+&I 2ln +2 +2

I
+O(e ),12 g 4~T —1

(2.13)

so that

a, =21n +2 +2.S ('(—1)
4mT —1

(2.14) For a sketch of an alternative derivation directly in Eu-
clidean space, see for example Sec. III D of Ref. [9].
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With these tools, all of the diagrams but the last are
straightforward. The individual contributions of each di-
agram are summarized in Appendix A. Frenkel et al. [7]
did not properly account for the s., term of (2.12) when
evaluating Figs. 3(a)—3(c).

step by step into a con6guration space form, and Inake
needed subtractions as we go along.

2. A. camlese derivation

B. The basketball diagram

The last diagram of Fig. 3 is more difBcult. One sim-
pli6cation occurs because the diagram remains in&ared
convergent when the mass m in the propagators is set
to zero. This means that the presence of m has only a
subleading efFect on the diagram, since m itself is O(g).
We can ignore m here if we are interested in the &ee en-

ergy only to O(g ), and the basketball diagram is then
proportional to where

Ib u = [II(P)]
P

(2.18)

To simplify the presentation, let us first forget about
the UV subtractions and run through the derivation pre-
tending that it makes sense in exactly four dimensions
despite the UV divergences. We will later step through
it a second time, handling the divergences more carefully.
We start by noting that, by a shift of variables, the mo-

mentum integral (2.15) can be written in the form

1

s x P'O'K'(P + Q+ K)' ' (2.15) ""'=0q*v+q)' (2.19)

Our attack on this integral starts with the observa-
tion that the basketball diagram of Fig. 3(h) requires
three independent four-momentum integrations if evalu-
ated in momentum space but only one four-space inte-
gration if instead evaluated in configuration space. This
suggests the diagram may be more tractable in config-
uration space. Indeed it would be if the diagram were
ultraviolet (UV) convergent and we could set e to zero.
The configuration space propagator in four dimensions,
with period 1/T in Euclidean time, is the relatively sim-

ple function

Now let us evaluate II(P) using configuration space and

(2.17):

c(~) =r& ja"' '~(,„,)~(p, +q„,)
qO

1) dsr e's rc —
Isolde

—Iso+vol~

(4sr) 2
qo

d r —e'~'(coth r +
~po[) e

(4~)2
(2.20)

= T sinh(2srr T)
4srr [cosh(2srrT) —cos(2srrT)]

' (2 16) where we have introduced the dimensionless variables

~
—loof~

b(p, r) = (2.17)

Our approach mill be to start with the the moment»~
space form (2.15) of the basketball integral, convert it

but in 4—2e dimensions it is a nightmare. We there-
fore need to Grst subtract out the UV divergent pieces,
and evaluate them separately, so that we can then eval-
uate the remainder in four dimensions. We found, how-

ever, that making these subtractions is more convenient
in momentum space than in con6guration space. As a
result, our derivation mixes the use of momentum and
con6guration space. First, we shall always treat the Eu-
clidean time direction in frequency space. In con6gu-
ration space for the remaining, spatial dimensions, the
propagator 1/P2 then has a very simple form in exactly
four dimensions:

r = 27rTr po = po/2srT. (2.21)

Plugging this into (2.18), the p integral becomes trivial,
producing

3 ) d s r (cothr + [po[)'e
4~ 4

PO

T4 oo

drr (coth r —cothr t9„-+48„-)
32K 0

x cothr. (2.22)

As we shall discuss later, integrals such as this can be
performed analytically when they are convergent. The
present result does not make any sense, however, because
the UV behavior (r -+ 0) of the integrand makes the inte-

gral divergent. We shaH now repeat the above derivation
while making necessary subtractions as me go along.

More speci6cally, because their de6nition of m = —y T
dsffers from (2.5) at O(c), their thermal counterterm does not
exactly cancel the one-loop diagram of Fig. 2 and they should
have an extra term in their Eq. (14). If one instead uses our
definition (2.5), then their Eq. (14) is correct but there should
be an extra term in the one-loop pressure in their Eq. (11).

Subtrrsctioss of UV dieeryersces

I et us start with the expression (2.20) for II(P). This
integral is logarith~icaHy divergent in the ultraviolet. As
usual with one-loop integrals at 6nite temperature, how-

ever, it can be made 6nite simply by subtracting out the
zero-temperature contribution. So me write
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rl(P) = II(')(P) + II( )(P),

where II(s)(P) is the zero-temperature result

(2.23)

II( )(P) = T, 1, , ( 11
d r —e'~'

J
cothr ——

f

e
(4~)3

+O(e) . (2.25)

We now split our computation of the basketball dia-
gram into

11(0) P 3a d Q 1

(2~)"Q'(P + Q)'
(4z.p'l ' (1

4@3 l, P3) (e )f

—+ 2 —p~ + O(e)
I

~

(2.24)

In four dimensions, II(+)(P) can be obtained from (2.20)
by subtracting out its T -+ 0 limit (with P fixed):

A more rigorous derivation may be found in Appendix B.
This limit is not restricted to four ~dimensions, so we are
now in a position to subtract out the UV divergence in
our integral:

II(T) 2 II(T) yy 2

4~ (P'4a q*&
(2.28)

The first integral is now UV finite, and so we might hope
to evaluate it in exactly four dimensions. However, it is
aot also i»Pared finite if we evaluate the po ——0 term of
the &equency s»~; for po ——0, the subtraction we made
diverges linearly with p in the infrared. We shall there-
fore treat the po ——0 mode separately and put primes on
integrals, as we have above, to denote that this mode is
excluded:

Ib g —— II +2 II( )II( ) + II 2.26 3-2e (2.29)

Though II(+) is finite in four dimensions, the first term
above is not because II(+) ~ 1/Ps as P-+oo; the first
term therefore has a logarithmic UV divergence. The
large P (i.e., P )) T) behavior of II(+) is easy to extract
by staring at the definition (2.19) of II. The dominant
contribution comes from routing the large moment»~
P solely through one of the two propagators and then
integrating over the relatively small moment»~ Q & T
in the other propagator:

We can now evaluate the first term of (2.28) in exactly
four dimensions.

The leading large P behavior (2.27) of II(+) is related
to the leading small r behavior of the integrand in (2.25)
and is given by

II( )(P) ~ T
d r —e'~' —e l~ l" + O(e) .1 r—

(4~)3 r' 3

(2.30)

(z) 2 (
)

(2.27) Following the same steps as in the careless derivation of
the preceding section, we then obtain

I&'"(&)l*—
I

3 4 ( 11 ' (r1) d rr
/

cothr ——
f

—
)

—
[ e l~'I" +O(e)

(4 )'
u08o

T4 ( 1&' ir '
dr r

~

cothr ——
~

—
~

— (cothr —1) + O(e) .
327l'3 0 ( r ) 43

(2.31)

This integral is both IR and UV convergent and can be evaluated using the techniques of Appendix C to give

II() a

1 (T3 l g'( —3) &'(—1) 28

(4~)3 g12) ((—3)
—16 + 1152$'(—2) + 24 —87@ + —+ O(e) .((-1) 15

The last term in (2.28) is easily evaluated in 4—2e dimensions using (2.13) and

—+21n +2p& +O(~),
1 1 1 P

~P4 4n 3 e 4~T

(2.32)

(2.33)

which may be obtained in a manner si~(lar to (2.13).
Completing the derivation of the [II(+)]3 contribution to Ib u now just requires adding in the contribution of the

po ——0 mode, which is UV convergent and does not require any subtractions:
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gd —1 , t'
dr r

l

cothr.——
l

+ O(e)32mz p l, r)
1 (T')

(4m)z (12) [
—1152$'(—2)] + O(e), (2.34)

where we have again used the techniques of Appendix C to do the integral. Putting together (2.13), (2.28), (2.32),
(2.33), (2.34) then gives

[11 ]'=
l l

-+241 —16 +40 + +0( ).
(4n) ( 12 ) e 47I'T ((—3) ((—1) 15

(2.35)

Now that we have covered the basic ideas of our technique, we will leave the evaluation of the remaining two terms
in (2 26) «Appendix D. The final result for the basketball integral (2.1.5) is

f'T' l 6 P, t,"(—3) ('(—1) 182
Ib &I

(4 ), l 12 l —, +361n4 T
—

12~( 3) +48(( 1)
+

5
+O(e). (2.36)

This agrees with the numerical result of Ref. [7]. We should mention that our analytic result can also be obtained
from the integrals generated by a real-time analysis, such as in Ref. [7], and we show how to do this in Appendix E.
We have found it simpler to stick to Euclidean space, however, to evaluate diagrams involving double poles 1/P4
which will appear later in gauge theories.

C. The result

Putting together all the diagrams, which are independently tabulated in Appendix A, one finds that the &ee energy
in P4 theory at high temperature is

F =T ———+— — — — + — ——ln +— —— ——pE+ +0 g . 2.374vr~ 1 1 g ~2 1 g ~ g 4 3 P, 1('(—3) lj,"(—1) 1 59

Before leaving scalar theory, we should mention one
other basic scalar integral which appears in the literature
[8,9] and which will be needed when we analyze gauge
theories. It is the integral corresponding to the setting
sun diagram of Fig. 4:

I,„„(mg,m2, ms)

2.38
1

J~ (P +mi)(Q ™2)[(P+Q)™s]'

evaluated to leading order in the masses. It has previ-
ously only been evaluated numerically [8], but the same
techniques we applied to the basketball diagram can be
used to obtain an analytic result. We give the derivation
in Appendix F, with the result that

fcl&cfdbc Q Jlxd (3.2)

For SU(N), they are

8@ = —(B„A„—O„A„+gf A„A'„)+ (gauge fixing) .
4

(3.1)

We shall work exclusively in Feynman gauge. (It would
be nice to explicitly verify that our results are indepen-
dent of gauge choice, but we have not done so.) Let d~
and C~ be the dimension and Casimir operator of the
adjoint representation, with C~ given by

I,„„=—+ln
l

1 f p,

(4~) 4. ~m, +m, +m, )
+O(m, e) . (2.39)

III. NON-ABELIAN GAUGE THEORY

We now turn to pure non-Abelian gauge theory, given
by the Lagrangian FIG. 4. The settiag sun diagram.
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(3.3)

It is also convenient to define the effective coupling g~ of
the adjoint representation by

+ M pn.

~A —g +A ~
2 = 2 (3.4) FIG. 5. The one-loop gluon self-energy.

Msgs& —IIo& (0) —&z (d 2)s
1

A qz (3 5)

As before, we shall regulate the theory with dimensional
regularization in the MS scheme.

As in the scalar case, one-loop efFects induce a thermal
mass contribution. This mass is given by the one-loop
self-energy II„„atzero momentum, and in Euclidean
space a mass is generated for Ao but not for A. This
mass M is the Debye screening mass for static electric
fields and may be evaluated from the diagrams of Fig. 5

teractions induced by the heavy modes, which can be
computed to any desired order in perturbation theory.
Only then does one finally integrate out the po ——0
modes after deciding on a sensible partition of the effec-
tive three-dimensional Lagrangian into an unperturbed
piece, containing the thermal mass terms, and a pertur-
bative piece. Rather than carry out the reduction to
this effective theory explicitly, however, we find it sim-

plest to just introduce the reorganization (3.6). We refer
the reader to Secs. IIID and VI of Ref. [9] for details «
hoar to implement this form of reorganization on two-loop
graphs. s

In four dimensions, M is simply g&~Ts/3. In the gauge
theory calculation, we find it calculationally convenient
to use a slightly different reorganization of perturbation
theory than we did in the scalar case. The success of
the reorganization only depends on the behavior of the
propagator in the infrared (pp=0, p((T), where the mass
cannot be treated as a perturbation. We follow Ref. [9]
and only introduce the mass for the po ——0 mode. That
is, we rewrite our Lagrangian density, in frequency space,

(a) (b) (c) (e)

&@ = (8@+ z M Ao As b~, ) —
2 M Ao Ae 6~, , (3.6)

where b„,is shorthand for the the Kronecker delta func-
tion b~, o. Then we absorb the first A2oterm into our un-

perturbed Lagrangian Eo and treat the second Ao term
as a perturbation. r

Since the necessity of res»limation is an infrared phe-
nomenon, associated with the mass scale gT, it is worth
noting that the prescription (3.6) can be naturally ex-
pressed in the language of decoupling. First imagine in-
tegrating out all the physics associated with scales & T.
In particular, integrating out all of the po g 0 modes in
Euclidean space generates an efFective three-dimensional
theory of the remaining po ——0 modes. This efFective
theory vrill have the thermal mass for Ao and other in-

(g)

p.v

(m)

Throughout this article, II„~{0)will refer to the Euclidean
hmit (po=0, p~0) and never to the limit (po-+0, p = 0) which
may be achieved by analytic continuation and which gives the
mass gap for propagating plasma waves.

This reorganization only helps in the evaluation of static
quantities such as the &ee energy. To evaluate time-
dependent correlations in real time, one would need the re-
summation scheme of Braaten and Pisarshi [11].

FIG. 6. Diagrams contributing to the free energy in gauge
theory. The crosses are the "thermal counterterms" arising
from the last term of (3.6). We have not explicitly shown any
zero-temperature counterterms, and each diagram should be
multiplied by the appropriate multiplicative renormalizations
for vertices and propagators.

The reader should beware that many of the speci6c formu-
las of Ref. [9] are particular to Landau gauge, whereas in the
present work we are working in Fr~an gauge.
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The diagrams that contribute to the &ee energy are
shown in Fig. 6. The diagrams involving only one-loop in-
tegrations are trivial, and the res»limation and the two-
loop graphs can be handled by the methods of Ref. [9].
Let us therefore focus on the three-loop diagrams. The
first potential problem is that some of the individual di-
agrams, such as Fig. 7, are in&ared divergent because
of the masslessness of the A propagator. However, the
particular combination we have shown in Fig. 6(l) is well
behaved in the infrared since the shaded blobs,

all„„=—Il„„(P)—11„„(0)h„., (3.7)

are O(pT) for (po ——0, p~0). We can then also drop the
Debye mass M in evaluating the three-loop graphs since,
as in the scalar case, the corrections to the free energy
will be beyond O(g ).

All of the three-loop diagr38ms except (l) can be re-
duced to the scalar basketball integral of (2.15). For ex-
ample, diagram (i) is equal to

(;) 1 4 P (Q —K)(P —K).Q
8 + ~ ~ P2Q2K2(P q)2(q K)2(K P)2

' (3.8)

This may be reduced by (1) expanding numerator factors
in terms of denominator factors to cancel factors between
n»aerator and denominator, such as

(Q K)'
Q K (P+Q) (P+K) (3.ii)

P (Q —K) = 2[(K —P)2 —K' —(P —Q)'+ Q2],

(3.9)

(2) performing appropriate changes of variables to collect
similar terms and (3) using the identity

P„
p (P+Q)2(P+K)2

Q„+K„ 1
2 J. (P+ Q)'(P+K)2 '

which follows by averaging the left-hand side with itself,
after applying the change of variables P -+ P Q K. — — —
Appendix G steps through this reduction for the exam-
ple (3.8), and the reductions of diagrams (g—k,m) are all
tabulated in Appendix A.

Unfortunately, diagram (I) cannot be reduced to the
scalar basketball. If one tries the above tricks, one finds
a term of the form

1
"&QxlqcD —= 4tr[++~ (P)]

P
(3.12)

The evaluation of IggD is somewhat similar to that of the
basketball integral Ib u and is presented in Appendix H.
We should mention, however, that the derivation is more
complicated and involves a miraculous cancellation be-
tween two complicated integrals that we do not know
how to calculate individually. The appearance and can-
cellation of such complications suggests that we may still
be missing the most elegant method for making these
calculations.

All the results for individual graphs are collected in
Appendix A, with the final result that

for which the tricks fail to remove the numerator factor.
So we have a new basic integral that we must evaluate,
like the basketball integral of scalar theory. We have
found it more tractable, however, to apply our integration
method directly to the original diagram (l) because the
orthogonality of the one-loop self-energy II„„(P)to P„
leads to useful algebraic simplifications. Diagram (l) is
proportional to

~ +4& gx &gz gx
1

gx
9 5 4n ~3 &4~ 4~

(g~ 4 22 P 38 ('(—3) 148 g'( —1) 64
+

I

— —ln +— — —4p@+—+O(g~)i4~ 3 4~T 3 ((—3) 3 t,"(—1) 5
(3.i3)

For those who prefer ( functions with positive arg22777ents,

('(-n) ".1 ('(1+ n)
A odd. (3.14)

Evaluated numerically, our result (3.13) is

IV. DISCUSSIGN

m'T4
3 = —3& 1 —0 31250 (—I + 0 72188 — + —

1
0 937 50 hx ——0 143 23 ln —+ 0 745 82) + 0(9~)45 7r 7r T

(4.i)
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ee

FIG. 7. A diagram vrith in&ared problems.

We have chosen the expansion parameter g~/z' simply
because it makes all the coefBcients of order 1.

Now we can ask whether perturbation theory is behav-
ing well for physically realized values of the couplings. In
particular, we can investigate (1) the size of corrections
&om different orders for a fixed choice of renormalization
scale, such as p, = T, and (2) whether higher-order re-
sults are less sensitive to the choice of the renormalization
scale p than lower-order results. This information is sum-
marized in Fig. 8 for pure gauge /CD with n, (T) = 0.1,
which for real /CD would correspond to a temperature
around the electroweak scale. We have used the two-loop
renormalization group to compute g(p):

1 1 IJ pi P—Po ln —+ —ln 1 —Pog&(T) ln-
gx (P) gx (T) T Po T

(4.2)

where

FIG. 8. The dependence of the free energy I' on the
choice of renormalization scale p for pure gauge /CD with

a, (T) = 0.1. The free energy is normalized in units of the
ideal gas result d~x T—/45. The thick solid, dashed, and
dotted lines are the results for I' including terms through g,
g, and g, respectively. The light solid curve is the g result
plus the g ln(p/T) term required by renormalization group
invariance. The light dashed curve is the g result minus the

g term.

ity of the result to the choice of renormalization scale by
exam~ning the slopes of the curves in Fig. 8 at p, = T.
Contrary to one's expectation for a well-behaved pertur-
bative expansion, the O(g4) result is more sensitive to p,

than the O(gz) or O(gs) results.
The O(g4) result has to be less sensitive to p, if g is

suKciently small. Figure 9 shows the dependence for
a, (T) = 0.02. This is equivalent to a system of interest—
pure electroweak theory at the electroweak scale, with
aw 1/33. Yet still the O(g4) result is no less sensitive
than the O(gz) result. Figure 10 shows a, (T) = 0.001,
where we Bnally see the expected behavior. (In six-aavor
/CD, this o;, would correspond to a temperature of 10ir
GeV. )

The source of the sensitivity problem can be found by
remembering that the gs term probes diferent physics

22P'- 3(4.)' 68

3(4 )' (4.3)

At P = T, the terms of (4.1) for n (T)=0.1 are

2T4

45

x [1 —0.12 + 0.17 +. (—0 07 +. 0 + 0.11)+ O(g )] .

(4.4)

1.02-

1.01 .

r 1
'tj
o~ 0.99-

~Q

0.98-

o 0.97 '

0.96-

a, (T) =0.02

~ ~pace
a ~ ~ ~ ~ s ~ ~ ~

~ ~ 0 ~ e ~ ~

~ ~ ~ ~ ~ ~
~ y ~

aeee ace+

The behavior of the perturbative expansion does not look
particularly good, though a partial cancellation between
the g4 lng and g4 terms makes the total O(g4) contribu-
tion relatively small. Alternatively, examine the sensitiv-

0.95 -.
-6 0 2

log xo (~/T)

FIG. 9. The same as Fig. 8 but for u, (T) = 0.02 [which is
identical to SU(2) gauge theory with n (T) 1/33].
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0.999- +s(&) =0 .001
APPENDIX A: RESULTS FOR INDIVIDUAL

GRAPHS
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FIG. 10. The same as Fig. 8 hut for a, (T) = 0.001.

than the g term: the g term is produced by particles
with hard thermal momenta of order T, while the g3
term arises &om the interactions of particles with softer
moment»m of order gT. Since the gs term is the leading-
order contribution of the physics of scale gT, it perhaps
should be treated independently of the g2 term when
discussing whether the perturbation expansion is well be-
haved. The g4 terms reduce the sensitivity of the g2 term
to P, and the gs contribution will be needed to reduce the
sensitivity of the gs term. The light dashed line in Figs. 8
and 9 show the result of the free energy through O(g4)
if the g term is arti6cially excluded. The sensitivity to
P, compared to the O(gs) result, is indeed much better
than before.

In order to put the O(gs) term back in, we have tried
adding the g ln p term that is determined by renormal-
ization group invariance. The light solid lines in Figs. 8
and 9 represent our result (3.13) with the addition

dP = dnT —— —
~

llln I. (4.5)
4x 16 g~~ 5 p

9
I ~3 4-& - 4TrT j

The results are much better behaved than the O(g4) re-
sults discussed earlier. Of course, the constant under the
log at O(gs) is unknown and will change the curves some-
what. Our understanding of whether perturbative results
are indeed well behaved in high-temperature /CD, for
realistic coupling constants, would therefore benefit by
a true calc11)ation to O(gs)—the last order accessible to
perturbation theory.
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1. Scalar theory

The diagrams of Fig. 3 are given by

—p'F = —— ln P +m (A1a)

2eF{b)

2eF(c)

2eF(d)

1, (

1= -m2
2 P2+m2 '

1t'3g') (
32, )I I P, , I

+o(g'),

(Alb)

(Alc)

p2n(p(~) + p(r) + p(s)) —O(gs)

—p'+( ) = —g'Ib n+ O(g').
48

(Ald)

(Ale)

(Alh)

2. Gauge theory

Writing F = p d~X and ignoring terms of O(e), the
diagrams of Fig. 6 are given by

y'(b)

y.(c)

y-(d)

d

2
lnP + MT,12' (A

= glnP (A

I= ——(M~ + M2 + Ms )MT,

1,= —-g~~sd(d —1)
~

+ M~ MT, —
4 8 P2 ) 87r

(A2c)

(A2d)

—X' =g„Z -(d —1)
~ ~

+b, +b,(), , 3 / 1)
4 ( P )

(A2e)

(5 23)-~(') =
i

-d - —
I
g'lb-(~+ O(g')

g8 32) (A2g)

b„,(1 —b',.) ( 3&

(P2+ M2)q2(P+ Q)2 2

1 M2MT+-
8vr g~Z2

1M T
4 (4~)2

—M bp, b~,
(P2 + M2) (Q' + M') (P + Q) 2 '

2

= g~Z(q) 2 2 1 f 1 ) 1 1I...„+M, M—T, —
4 i P2) 2

'""
87r
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——g~Ib~»+ O(g ) )16
(A2h)

Pp6
FeSUI +

qo
P' Q'(P + Q)'

go
2

Q4

(A5)
—g—~Ib-»+ O(g'),

32

d—(d —1)g~Ib» + O(g ),16

(A2i)

(A2j)

2 2 2
qo qo + O .

&+ P4 Q2(P + Q)2 Q4

(A6)

= ——(d —1)g~Ib»+O(g ),k 27 4 5

16
(A2k)

„'I~c,+ O(g'),
4

(A21)

g&Ib—~»—+ O(g ) .
8

(A2m)

The multiplicative renormalization constant used for the
coupling is given by

gb, = Zsp'g = 1 —— +O(g ) p'g. (A3)
11 g~

Wave function renormalization constants are unnecessary
because they cancel between vertices and propagators.
To this end, the most convenient choice of M is

1
M = g~Z Z~(d —2)z (A4)

which differs from (3.5) by the introduction of Z2 and
the photon wave function renormalization Z&z. At O(g ),
however, this is not an issu= the factor of ZzZ&z in Mz

can be ignored for all of our diagrams. M~z, Mz, and Ms
denote the three pieces of M originating, respectively,
from the three diagrams in Fig. 5. We will not give ex-
plicit formulas for these pieces because they explicitly
cancel between Figs. 5(c)—5(f).

The integrals needed above are given by (2.11), (2.12),
(2.36), (A10), and (F3), (F17), (H31) below. The integralI„,„

is defined by

x [(P —Q)&6o~ + 2Qo6& —(2P + Q)~6~o]
—(M-+0), (A7)

where the factor in square brackets is the triple gauge
vertex. Using the reduction tricks described after (3.8),
6q may be reduced to

6,.(1 —6,.)
(ps + Mz)Qz(p+ Q)z

b„, b
+( )

1 6, 1
2 (Pz+M2) Qz '

2
So ~O

P2 Q2(P + Q)2

(A8)

which may be recast in the form shown in (A2e). 62, and
the mass efFects in (A2f), are calculated similarly.I„,„

is easily evaluated by taking the form (A6) and
scaling all three-momenta by ~qo ~:

and will be discussed below.
The efFect of the thermal mass term in the po

——0 gauge
propagator appears fairly simply in the last terms of
(A2a), (A2d), and in (A2c). The case of diagram (e)
is a little more complicated. The first term of (A2e) is
the result when M is ignored. 6q is the correction to this
result for the contribution to the diagram where exactly
one of the three propagators has po

——0, and 6z is the cor-
rection for the contribution where all three have po ——0.
So, for instance,

6„(1—h,.)
4 (p2 y ~2}Q2(p yq}2 )

1

(2z)~—' (2z)"—' p4 (1+qz)(l+ ~p+ g(z)
qo

1 3(1+,), +o(g ). (A9)

Recognizing the qo sum as giving a ( function, and that the integrals are finite, it is easy to now take the a~0 limit:

d p d q 1 1

(2') (2') p (1 + q )(1+ ~p + g~ )
1 M2T2

( )2
+O(g ~E).

1 3+ O(g, e)

(A10)

APPENDIX B:LARGE P BEHAVIOR OF SCALAR II(P)

In this appendix, we shall derive the large momentnzn behavior of II(P). Recalling the definition (2.19),
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After assembling the individual terms of a particular in-
tegral (C2), it is straightforward to expand in h and take
the limit hm0.

large moment»~ expansion of II& i, we rewrite this term

APPENDIX D: COMPLETION OF THE
CALCULATION OF Ib~i where

II& )II~') =I.+I,+I„
P

(D4)

In Sec. IIB, the basketball diagram was split into three
terms,

11( & + 2 11& ill('&+ ll('1, (Dl)
(D5)

and the first term was evaluated. Here we shall evaluate
the two remaining terms.

We first calculate the second term in (Dl). To ap-
ply the calculational method of Sec. IIB, we must first
subtract the ultraviolet divergences. II( ) is given by

(D2) and

lli 1(P) —11„' '(P)
(4m) 2e

11~'l(P)11„"'(P),
P

(D6)

(DV)

where

A=
i

—+2 —pa ~+O(e).
1 t 1

(47K) 2

II (P) = 2J g + (1 —h„,)8' ~

—po ~

.Ps id —1

(D8)

Because IIi+1 (P) 1/P2 at large momentii~ P, the sec-
ond term of (Dl) is quadratically divergent and so re-
quires two subtractions. Using our result (B6) for the

I

I is ultraviolet and in&ared finite, and so it can be eval-
uated in d = 4. Note that we have used one less subtrac-
tion in (D8) for the po

——0 mode.
Using the integral representation (2.25) for 11~+1 gives

T (4m@'l 1;, 1I ln
~ i

+2 —p@ d r e' ' —cothr ————+ (1 —h„,)—e i"'i" +O(e),
(4z) z i P2

&
3 "' 45

(D9)

where we have expressed the large P behavior (D8) of Ili 1 P) in terms of three-dimensional coordinate space integrals.
In fact, it is easy to see that the P~oo behavior of II(+ (P) in (2.25) simply corresponds to the r~0 behavior of
cothr —1/r, and the subtractions in (D9) simply refiect the small r expansion

1
cothf' = —+ + (D10)r

The p integral in (D9) is trivial for the terms that do not involve ln P2: it just gives h(r), which in turn gives zero.
The p integral involving the logarithm can be evaluated by first writing

(Dl1)

Deforming the contour to wrap around the cut in the upper half of the complex plane gives

gaol

i&lpol+ —~l e i~i"
~

2mr ( r rsvp

Inserting this result into (D9) and carrying out the po sum yields

1
(e' —p')

a=0

(D12)

T 1 drI( 1 rest fed' ( 1 rt
cothr +

I I
1:

I
(cothr —1) +

i
cothr —:

I
+ O(~) .

(4m)2 2 o rs
q r 3 45) ( 2 dr] ( r 3) (D13)
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The integral can be computed by the method of Appendix 8 to give

1 (T2 ) 8 ('(—3) ('(—1) 12 46

(4vr) 12 5 ((—3) ((—1) 5 15
(D14)

We now study Ib defined by (D6). Though the P integration converges, we still need to evaluate Ib in d=4 —2e
dimensions because of the overall factor of 1/0 p Writing II(+) as II —II(0) gives

1 1 g(0) p g(2) ~

T4 d

4n2e ( T2 d —1

where we have defj.ned

Taking the limit ~ m 0,

2n

(a) T2a —4 —222 q0
Q2a

( p2 ) ' (2~)2+222
I' (——,+a+e) ((—3—2n+2a+2e) .

2) 4 &2r( )

(D16)

(D17)

1 t' T2 i 8 ('(—3) ('(—1) 12 46
Ib =

~ ~

— —4 + —PE ——+O(e).
(42r) ( 12) 5 ((—3) ((—1) 5 15

(We do not have an explanation for the fact that I = Ib.)
Using the explicit expression (D2) for II( ), I, is

I = 2AT
~ ~

Z pSp(1+p) + (Sp(2+p) —dSp(2+p)))4 /4~y, 2))' 4'
E

T' ) d—1

f T2 ) 4 24 p, 12 ('(—3) ('(—1) 24—+ —ln —— + 12 — pE + 13 —+ O(e) .
(4x)2 ), 12) 5e 5 4n.T 5 ((—3) ((—1) 5

Adding the results (D14), (D18), and (D19) produces

(T,) (0) 1 (T2 i 4 24 P, 4 (,"(—3) (,"(—1) 103

(4w) 2 12 ) 5e 5 4&T 5 ((—3) ((—1) 15

It is straightforward to also evaluate the third term in (Dl):

- 2 2d

II() =A T
~ ~

S0(2)

1 (T2 ') 2 12 p 12 ('(—3) 24

(4x)2 12 5e 5 4s'T 5 ((—3) 5

Assembling (2.35), (D20), and (D21) gives our final result (2.36).

APPENDIX E: REAL-TIME CALCULATION OF Ib~g

In Ref. [7], Ib ii is expressed as

Ib~u =
~ ~

—+ 181n + 187E + 6 —36 + NT + O(e),
1 (T2&( 6 vrp2 (."(2)

4m 2 (12$ e T2 2

where N is given by

(D18)

(D19)

(D20)

(D21)

d P d Q d K 2 2 2 n(p)n(q)n(k)
(22r)2 (2')s (2~)s (P+ Q + K)'

1
dp dq dk n(p) n(q) n(k) (p+ q+ k) ln(p+q+ k) —(p+q —k) ln ]p+q k]—

(q + k —p) ln ~q
—+ k —p[ —(k + p —q) ln ]k + p —q]



50 THREE-LOOP FREE ENERGY FOR PURE GAUGE @CD 7617

and was evaluated numerically to get

(E3)

1
n(p) =

e»' —1
(E4)

The second equality in (E2) is obtained by doing the
I

In (E2), u~»&e the rest of this paper, P refers to
Minkowski rather than Euclidean four-moment»m, with
metric P = —pp + p . 'P denotes that the integrations
are to be performed with the principal value prescription.
The n(p) are the usual Bose factors but in units where
T=1'

trivial ps, qe, and Iso integrations and then doing the
angular integrations. Their final result was then obtained

by n~~meric integration. We shall show how to obtain the
same result analytically starting from (E2).

We start by making use of the peculiar identity that
(P + Q + K)2 can be replaced by 4lp + q + k 2 in the
first line of (E2) for any function n(p) of p = lp to give

N=8 dsp dsq dsk n(p) n(q) n(&)

(2~)s(2~)s(2~) 2p 2q 2~ lp+q+kl'
(ES)

This identity can be proved by brute force by doing the
angular integrals in (ES) by the same steps Ref. [7] used
for (E2) and verifying that the result is the same as (E2):

n(p) n(q) 1 lp+ ql+ ~

(2~)' (2~)' o 2p 2q Ip+ ql lip+ ql —kl
OO

dp dq dk n(p) n(q) n(k) dip + ql ln
»+e Ip+ q I+ &

7f Q I»
—el p+q -k

OO

dpdqdkn(p) n(q) n(k) (p+q+&)»(p+q+&) (p+ q —k) lnlp+ q
32Ã Q

+(lp —
ql

—I )» lip —
ql

—kl —(IJ —ql+&)»(lp —ql+k) . (E6)

Sadly, we do not have a more elegant derivation.
Now take (ES) and convert it to coordinate space using

the Fourier transform

I

Equations (El) and (E8) give the same result for the
basketball integral as (2.36), which was our result using
the Euclidean formalism.

dsp n(p);, 1 sinpr
(2~)' p 2~'r, e~ —1

(
I

coth(nr) ——
I

.
4 nr&

Equation (E5) then becomes

d r
I

cothsr ——
I4~r g xr) 4mr

1 1 1 ( 1)
dx —

I
cothz ——

I4(4x)2 x2 ( xp
1 1 1('(—3) 1('(—1) 7
4 (4n)2 3 ((—3) 3 g(—1) 45
14.1723

32vr6

(E7) APPENDIX F: DERIVATION OF I,
„

Let us evaluate the integral for the setting sun diagram
defined by (2.38) in a similar way as the basketball in-

tegral. As usual, we work in the limit that masses are
all much smaller than T, and we shall denote their order
of magnitude simply as O(m). Only the leading term in
the m/T expansion will be calculated. To this order, the
masses can be taken to be zero except in the pp

——qp=0
contribution, where the mass cuts ofF a logarit~~ic in-
frared divergence. But it is convenient to keep only one
mass nonzero in the pp ——qp

——0 contribution and to set
m2 ——m3 ——0. The discrepancy introduced by doing so is
easily computed in coordinate space to be [9]

(2x)s (2x)s p2+ mli (q2+ m22) [(p+ q)2+ ms2] q2(p+ q)2

1T2 g3& e mar e
—(~g+~s)r —1 + O

(4mr)s

T mQ + O(m, e) .
(4~) m, +m, +m, (F1)
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l. Quick derivation using the contour trick

%e now need to compute

1 —b„,b~,
(P'+ m')(Q'+ m') [(P + Q)'+ m'] P'Q'(P + Q)' (F2)

We start with the purely three-dimensional contribution [12]

T 1 p, 1

(P + mf)(Q + m2)[(P+ Q) + mz] (4n') 4e my + m2+ ms 2
—+ ln + — + O(e), (F3)

which follows from

b„,b„h„,p"T I (-,' + e) I ' (-,' —e)
(P'+ m&)Q2(P+ Q)' (P'+ m', ) p'+" (4~) l- I (1 —2.)

T 1 p 1—+ ln + — + O(e)
(4~)2 4. m,

(F4)

and (Fl). For the second term of (F2), note that if dimensional regularization is used to regulate the infrared as well
as the ultraviolet then

&0 &0

P2 2 P+ =0

simply by dimensional analysis. (There is no scale to make up for the p2'. ) So

1 —bp, b~, 1
P2Q2(P + Q)2 P2Q2(P + Q)2

dd —1 dd-1
[u(p) —n(-p) 1[n(~) —n(-~)]

2 (27r) 2p (27r) 2q

1 1
X 2+ + (T independent)

lp+ qI' —(u+ ~)' lp —~ I' —(p ~)'
(F6)

where we have used the standard contour trick [2] to do
the sn~s and n(p) is the usual Bose function (B3). The
result is zero because (1) the temperature-independent
piece in the penultimate line vanishes by dimensional
analysis in 4 —2e dimensions, and (2) the two terms
1/(P+Q) and 1/(P —Q)2 in brackets exactly cancel each
other. Because of this cancellation, the full result (2.39)
for I,

„
is just equal to the purely three-dimensional con-

tribution (F3) at leading order in the masses.

where A,„„andB,„„aredefined by

' 11(P)
&sun =

P

d3 2'p II(pp ——O, p)
(2~)2-" p2 + m'

(FS)

2. Euclidean derivation

First consider A,„„.As usual, we need to subtract out
the UV divergences:

T2 m1
isun = +sun + +sun +

(4vr 2 my+m2+m3
+O(m, e), (F7)

In other computations in this paper, we will need to
know the separate contributions of various subsets of
Euclidean modes (pp, qp) to I,„„.To get the formulas
we need, we shall now rederive the result for I,„„using
purely Euclidean methods, similar to our derivation of
the basketball integral. Start with

Asun =
p2 + p4

+g, n~~~p)— (F10)

where we have used the limiting behavior (2.27) of
II~ l(P). The second term is now convergent in four
dimensions. Exploiting the expression (D2) for II~ l(P)
and the integral (D17) enables us to evaluate the diver-

gent parts of A,„„as
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' 11«&(P) 1 (].
, ~

—+2 —7a+O(e)
~

1 (4hrpz)
'

P2
g Pz )

2 1 Ts 1 2 p 1 ('(—1)
P Q (4hr) 6e 3 4hrT 3 t,'(—1)

1+ 7—E+ — +O(e).
3 3

(F12)

+O(e), (F11)

T 1 1 p, 1('(—1) 1

(4hr)2, 12' 3 4hrT 3 ((—1) 2

The finite part of A,
„

is calculated by utilizing the co-
ordinate space integral representation (2.25) for II&+&(P)
and (2.30) for its UV behavior. Performing the p inte-
gration and the po sum produces

(F14)

where we have defined mq ——mq/2hrT and done the last step by the method of Appendix C. Combining (F7), (F14),
(F15) gives

1 ~ 2 1 T2 1 ( 1 rl
II& &(P)— dk (cot—hr —1)

~

cothr ————
~

+ O(e)
& P P & Q (4hr) r ( r 3)

T' 2 ('(—1) 1
pE—+ ln(2hr) —— + O(e),

(4hr)2 3 ((—1) 3 3.
(F13)

where the method of Appendix C has been used for the r integral. Adding (F11,), (F12), (F13) yields

—+ ln + ln(2hr) + — + O(e) .
2

Now consider B,„.Though (F9) contains ultraviolet divergences due to the zero temperature part of 11(P),
dimension» an»y»s shows that the contribution from the zero temperature part is O(m) and so it need not concern
us at leading order. Making use of (2.25) and completing the p integration,

T2 ~" 1. ( ].)B, =
2

d r —
2 ~

cothr ——~+O(m, e)
4hr 2 4hrr r2 ( r)

dr —,„-( 1
e '"

~

cothr ———1
~

+ e '" + O(m, e)
(4hr) e r ( r )

T2 dh ( 1
~

cothr ———1
~

+ e '" + O(m, e)
(4hr)z s r ( r
T' 2T

ln + O(m, e), (F15)
4hr 2 mg

1
lsun = (,2

—+ ln + — + O(m, e) .
4-) .4 '-.+-.+-. (F16)

Before leaving this section, we should collect some additional results that will be useful elsewhere. Subtracting (F4)
from (F15) gives

b„,(1 —bq, ) T2 1 2T 1

(P2 + m2)Q2(p + Q)2 (4hr)2 4e p,
(F17)

Finally, adding (F12) and (F13) gives

' II~ 1(P) T 1 2 p, 1t,"(—1)—+ —ln —— + ln(2hr) + O(c) .
4hr 2 6e 3 4hrT 3 —1

(F18)

APPENDIX G: EXAMPLE OF REDUCTION TO THE SCALAR BASKETBALL

Consider the reduction of Fig. 6(i):

() 1 4 P-(Q —K)(P —K).Q
8 pqlc P Q K (P —Q) (Q —K) (K —P)
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By expanding the numerator as in (3.9), we get

PgZ

(P K—).Q (P K—).Q
P2Q2K2(P Q)2(Q K)2 P2Q2(p Q)2(Q K)2(K P)2

(P K—) Q (P K—).Q
P2q2K2(q K)2(K P)2 P2K2(p q)2(q K)2(K P)2

Now switch the variables K and Q in the second lines:

Pqx

P (Q K)— P (Q K)—
P2Q2K2(P —Q) 2(Q —K)2 P2Q2(P —Q) 2(Q —K)2(K—P) 2

Use the identity (3.10) to substitute P, K-+Q/2 in the first numerator and Km(P+Q)/2 in the second:

1 2P Q 2P—
64 i Ic P K (P Q) (Q— K) —P Q (P Q) (Q—K) (K—P)2—
1 4 1 1

64 J, Ic P2K2(P Q) (Q—K) —P Q (Q K) (—K P)—
1 4 1

32 ~qlc P Q K (P+Q+K) (G4)

where we have written 2P.Q as P +Q (P Q) —for t—he second step and shifted integration variables in the last step.

APPENDIX H: DERIVATION OF Ig~D

The one-loop self-energy of Fig. 5 can be reduced, using the methods discussed after (3.8), to the form

II„„(P)= g P II„(P)—2(P 8„„—P„P„)
)

where Ilp„(P)= II2 (P) 'P2 p„+III,(P) PI,
„

(H3)

1 (2Q + P)„(2Q+ P) „""
q Q' q Q'(P+Q)'

II„„happensto be the form the self-energy would take
in scalar /ED. We find it convenient to introduce II„„
mostly for reasons historic to our original derivation and
because the decomposition (Hl) simplifies some of the
algebra of the following calculation.

By again applying the same reduction methods, one
may easily verify that both (Hl) and (H2) share the prop-
erty that P„II„„=0. In finite temperature non-Abelian
gauge theory, this is a property of the one-loop self en-
ergy which does not persist to higher loops [13].We shall
use this property in our derivation.

2
&T'g = bag

—pang/p ~ PTpp = PTpa = %Tap = 0,
(H4)

PI,„„=h„„—P„P„/P—'P2„„.
(H3) then gives

(II„„)= IIL, + (d —2)IIT

, 11,.
~

+
~

11„„—,11,
I

. (H6)
gp' y d-2I, "" p' )

where the Euclidean projection operators are given by

1. Consequences of P„II~= 0 at one loop 2. Scalar @ED

The orthogonality of II~ to P~ implies that it can
be decomposed into separate transverse and longitudinal
pieces:

%'e now work to evaluate the integral

[b,lI„„(P)]
IsgED = P4P

(H7)

For a review, see Refs. [1,2].
and start by separating out the zero-temperature piece
of II„„:
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- 2

, all(„)(P)

+g, n~o&( ) (H8)

fI„„(P)= P II(P) + 2(d —2)g (H9)

where II(P) is the scalar integral (2.19). Next, we need
to isolate the UV divergence of the P integration by iso-
lating the large P behavior of II~„:

a The /site-temperetsre-squared piece

Let us evaluate the pp P 0 part of the s»m for the
first integral. First apply the standard reduction tricks
to obtain

Q~~~: 2(a —i)g
—(» 2p 1
II00

(H10)

Specializing to the finite-temperature pieces of II„„,(H6)
can be algebraically rewritten as

-(T) (d-1) P -(r)
gav (d 2) 4 00 II( )II(» + P II(»

(d-2) p' " (d-2)

+4 P'II, +4( d —3+
„

(d —3) z (T) 1 ( 1 ) ( 1 l

where we have introduced the UV subtracted

22
lloo'(P) = lloo'(P)—

(H11)

(H12)

ir~'~(p) —= n~'~p )— (H13)

The integral we want is now

1 H(z, )
z (d —1)

' 1 -(z) z

P4 lsv (d 2) 4 00
2 ' 1 - (T')II(T') + 1 II(T)

(d —2) pz (d —2)

(H14)

The integrals in the last three terms can be obtained f'rom (2.13), (2.33), (2.35), (F18). We need to focus on the first
two terms, which are convergent and may be evaluated with e = 0. From the observation that

(9 ) e (00("e ~+ ' " = ) (2qp+ p ) e ~ ' "e (so+00)~+ z(2zT) e ~ "(pp((p —1),
)

(H15)

where 8, me~»~ dz/drz and not Vz, one may easily relate II00 to the scalar case (2.20):

1 (2qp + pp)z
Q2 Qz(P+ Q)

T2 T 3 1
d r —ie' ' B„e'~~"(cothr+(pig() —~~e '~~"(pi~((Poi—i))+o(e), (H16)

II00 (P) = — d r —e' 'B„e~~~"
~

cothr ————
~

+ O(e) ."(T') T s 1 ~.i z „( 1
4 r2 " ( r- 3)

Performing the angular integration and then integrating by parts yields

II()() (P) = —— dr
~

8
~

e ~~~"
~

cothr ————
~

+ O(e) .-(T) T 6 2sinpr( „f 1 r)
4z 0 g pr ) ( r 3)

The first two integrals in (H14) are then

(H17)

(H18)
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3 1 p4, (T2)

2 p4 00

I
&(&)~(T')

00

Now plug in

) dr dae ~"'~("+'
~

cothr ————
~ ~

cotha ————
~

3 T' „+,( 1 r)) ( 1

2(4~)'„,o o & r 3) )

1 d p&2smpr&2smpa
(2z.)s p4 " pr ' pa
T' . - - „+.( 1 r-) t' 1 a')) dr dae ~"'~ "+'l

~

cothr ————
~ ~

cot» ————
~(4~)'„~;o o & r 3) E

1 dsp 2 sin pr sin p8
X 0~.

(2s)s p2 " pr pa

(H19)

(H20)

1 d p zs).npr zsmpa 1 1
+ 6r —a,

(2~)~ f p4 "
pp

' pa 6mr~~ 4~v~

1 dsp
& sinpr sin pa 1

Hr —s h(r —a .
(2~)3 f p~ "

pp ps 2~r~ 4wr~

(H21)

(H22)

Amazingly, the terms not proportional to h(r —a) cancel in the sum of (H19) and (H20). The 6(r —a) terms then give

I I I

This could be easily evaluated using the techniques of Appendix C, but we will leave it in this form for now.
The evaluation of the po ——0 piece of (HS) proceeds in much the same way, but we do not need to make any UV

subtractions. One finds

The integral is

all„(0,p) =-—(T') T'
d r —(e'~' —1) 8„-

~

cothr ——
~

+ O(e)r)
T ( 2sinpr') ( 1)

~ ~

cothr —= I+O(e)4~ o 0 p" ) E ") (H24)

8 p 1 —p ) 6f p 3 1 —(+)
( )s 4 EII» (0 p) = T

(
411oo (H25)

The same sort of cancellation occurs between the first
two terms as in the po g 0 case, and we are left with

1 —(T) —
(0) 1 1 —

(T )~(0)
P4 +~ P~ g —1 Pg

Putting this together with the po P 0 results (H14) and
(H23) yields, after a little reorganization,

~g( ) g( )
P4

+4(d —2) P4 ~ 2 ~

+ O(&) .
1 (

(H27)

The first integral is given by (2.35). One wonders if there
is an easier way to get (H27).

g(&)g(0)
d —1

(d —2) 1 (o) 1
+2 II . (H28)

The integrals can be found in (2.13), (D20), (Fll). The
final integral we need is

(H29)

b. The rest of it

The cross term between II~„andII„„is easy because
- (T') - (0)-

II(„lis proportional to P26„„—P„P„.Using (H9),

which may be found in (D21). Combi22222g (HS), (H27),
(H28), (H29), and incorporating the results for the as-
sorted basic integrals, gives
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1 (Ts ) 46 P, 44 t,"(—3) 272 ('(—1) 1034
(H30)

3. Non-Abelian gauge theory

Using (Hl) and our standard reduction tricks, it is easy to obtain

(d —2l '1 1
4cD =

I I
IsqED+2dIb n —4(d —2) p II(P)

which, when combined with (2.13, F14, H30), is our final result for IqcD.

(H31)
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