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Operator ordering problem of the nenrelativistic Chem-Simans theory
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The operator ordering problem due to the quantization or regularization ambiguity in the Chern-
Simons theory exists. However, we show that this can be avoided if we require Galilei covariance
of the nonrelativistic Abelian Chem-Simons theory even at the quantum level for the extended
sources. The covariance can be recovered only by choosing some particular operator orderings for
the generators of the Galilei group depending on the quantization ambiguities of the gauge-matter
commutation relation. We show that the desired ordering for the unusual prescription is not the same
as the well-known normal ordering but stil1 satisfies all the necessary conditions. Furthermore, we
show that the equations of motion can be expressed in a similar form regardless of the regularization
ambiguity. This suggests that the different regularization prescriptions do not change the physics. On
the other hand, for the case of point sources the regularization prescription is uniquely determined,
and only the orderings, which are equivalent to the usual one, are allowed.

PACS number(s): 11.10.Lm, 11.30.—j

I. INTRODUCTION

Recently, the Chem-Simons gauge theory has captured
considerable interest due to the fact that it is still the only
known example of Galilei-covariant gauge theory [1], or
it can realize Wilczek's charge-fiux composite model of
the anyon [2,3]. Pmthermore, it has been proposed as
a toy model of quark confinement in D=2+1 [4]. It has
been also extensively studied as the topologically massive
gauge theory with the Maxwell term [5]. But quantal
analysis of the Chem-Simous theory in [1,3,6,7] shows
that there is the operator ordering problem due to the
quantization or regularization ambiguity in defining the
quantization rule, i.e., commutation relation of gauge-
matter. Although they chose a particular regularization
prescription such that there is no operator ordering prob-
lem, it is still unclear whether one can avoid the ordering
problem even for more general regularization prescrip-
tions, or determine the correct prescriptions &om some
first principles [3].

In this paper we show that the ordering problem can
be avoided, and the key resides in an unusual property of
the nonrelativistic Chem-Simons gauge theory. In con-
trast with our common expectation, the Galilei covari-
ance of the nonrelativistic Chem-Simons gauge theory
in the Galilei-covariant gauges is not a trivial matter.
The covariance can be only recovered by choosing some
particular operator orderings for the generators of the
Galilei group. The extended and point source systems
are separately analyzed. Since the point source systems
with more general regularization prescriptions need much
more care than the extended ones, we will first treat the
extended case. In Sec. II the Galilei covariance of the
nonrelativistic Abelian Chem-Simons gauge theory in the
Coulomb gauge is examined for the extended sources. We

explicitly show that the covariance can be recovered only
by choosing some particular operator orderings depend-
ing on the quantization ambiguities of the gauge-matter
commutation relations. Moreover, we point out that the
desired ordering for the unusual prescription is not the
same as the well-known normal ordering but still satis-
fies all the necessary conditions, while the desired order-
ing for the usual prescription is the same as the usual
one. In Sec. III the operator equations of motion for the
properly ordered generators for the extended sources are
examined. As a result, all the equations of motion cor-
responding to difFerent orderings can be expressed in a
similar form. In Sec. IV the ordering problem for the
point source system is examined, and we show that the
usual prescription is the only possible one. Hence the or-
derings, which are equivalent to the usual one, are only
allowed. Section V is devoted to summary and remarks
about several generalizations of our analysis.

II. GALILEI COVARIANCE
IN COULOMB GAUGE

where Pi2 = 1, g„„=diag(1, —1, —1), and D„=8„+
iA„. It is invariant up to the total divergence under the
gauge transformations

P -+ exp[—iA]P, A„-+ A„+ B„A, (2)

where A is a well-behaved function such that
e"""B„B„A= 0. Then the classical equations of motion
are

The nonrelativistic Abelian Chem-Simons gauge the-
ory on the plane is described by the I agrangian

K 1i. = c""~A„—B„Ap + iP'Dtg — (Dsg)'(Di, g),
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B= e'~8;A~ = ——Jo,

1
K

(3)
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(4)

A(x, t) = 1t—f d'x'tt(x —x')dt(x', t), (6)

where J() ——P'P, J* = (1/2mi){P'D;ttt —(D;P')P), and
eo'~ = ~'~. We will quantize this model by defining usual
equal-time commutation relations for the matter field as

[ttt(x), (ttt(x')] = h (x —«'),

[&( ) 4( ')] = o [&'( ) &'( ')] = o

by considering ttt to be a quantum Beld and ttt' its dagger
Note that although several authors have considered

the usual Dirac procedure [8] or symplectic quantization
method [9],we consider here the safest approach in order
not to miss the ordering problem following Refs. [1,3,4,7].
In this approach one adopts quantum rules such as (5),
which do not possess the ordering ambiguities as the fun-
damental ones.

Now let us consider Eqs. (3) and (4) as the operator
equations. If we choose the Coulomb gauge, the solutions
for A and A are given by [1,7]

relativistic Abelian Chem-Simons theory, which is that
the Gab&ei covariance in the G~b&ei-covariant gauges like

the Coulomb gauge, is spoiled for incorrect orderings de-
pendi1tg on the regularization prescriptions. To this end,
we first write Eq. (10) as

[A(x), tt (x)] = FP(x),

where F denotes —(1/e) V17(x —x') ~„», which is real
and should be constant in both space and time such that
the quantization rule (ll) is covariant under space and
time translation [10]. Then, there exists the nontrivial
ordering ambiguity in defining the covariant derivatives
Dttt and Dtttt; i.e., we can define covariant derivatives as

D&'&(t (x) —= VP(x) —iA(x) ttt(x),

D&'lPt(x) = Vgt(x) —iA(x)gt(x),
D&2& tt)(x)

—= Vtt (x) —iP(x)A(x),
(12)

Then, the dHFerences between these two diferent defini-

tions D&il4)(or tII)t) and D&2&P( or tttt) are given by the
field-dependent terms as

A (x, t) = ——f d x'J(x', t) 1117(x—x'), (7)
[D '& —D ]P(x) = —iFQ(x),
[D~ l —D~ l]4) (x) = —iF4) (x) (13)

where V' = e'~8&, having the property V = V', and
'D(x) is defined by

V' 17(x) = b (x)

and has the well-known solution

17(x) = —lnx
1

4m
(9)

by neglecting the trivial constant term. Then, the gauge
potentials A and A become the quantum operators due
to the operator nature of the densities J(), J. Although
solutions (6) and (7) are generally valid for both point
and extended sources, we first consider the extended one
in this section. Moreover, since all the gauge fields A
and A are completely expressed by the matter fields,
we may expect that the commutation relations of the
gauge-gauge and gauge-matter should be completely de-
termined by the matter-matter commutation relation (5).
But as was pointed out in Refs. [6] and [7], there is quan-
tization ambiguity in the gauge-matter commutation re-
lation at the same point,

As a result, one can easily expect that these produce the
nontrivial operator ordering problem to the generators of
the current operator J and Galilei group II (time trans-
lation), P (space translation), C (Galilei boost), and J
(rotation) .

A. Hamiltonian operator

The classical Hami&tonian in our analysis is given by

H= d xT

dz D x' D x

1
d z V

—iA(x)tt)(x)]' [V(tt(x) —iA(x)g(x)], (14)

using the nonrelativistic energy momentum tensor T""
[71:

[A(x), 4)(x)] = ——V27(x —x') i„„ ttt(x), (10)
(D'4)'(D'4) *

since V' 17(x) = (1/2z )8~ 2:~/x2 is ill defined at the origin.
Although several authors [1,6,7], by choosing a partic-
ular regularization preserving the antisymmetry of V17
under space refiection, have assumed F17(x —x')~
= 0 such that there is no operator ordering problem,
it is still unclear w'hether the ordering problem can be
also avoided for even more general regularization pre-
scriptions, or whether the correct prescriptions can be
determined from some first principles [3].

In the following, we present a novel feature of the non-

&' = —.[O'D'4' —(D'4)'4']
2i

T"=-, [(D4) (D'4)+(D4)(D'4)'],

, [(D'4)'(D, 4) + (D'4)(D, 4)
—~V(Ds&)'(Dsd')]

(b;,.V' —28;8,)Js + b;,T". .
4m
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Then, four difFerent Hermitian operator forms of the
Hamiltonian are possible:

D(~) „ t. 0( )

d x V x1

—iA(x)P(x)]t [VP(x) —iA(x)g(x)],

d2 D(2) t D(Q)
2m

+F. d @J(~~ F
2m

0() „ . 0()
2m

= Hg+ d zA (x),
2m

d'x D('~ x . 0('~ x t
2m

= H+F , f d~xdi'i — F*Q
2m

b2 0 F2
F dzA+ V, (15)

m +2m

where J~ l = (1/2mi)[gt(D~~lp) —(D&~lg)tg], 82(0) =
8 (x —«), Q = f d zJ, and V = f d2z. The corre-
sponding quantum Geld equations of motion for the mat-
ter Geld are given by

(iBP(x)), —= [d( ), x[H= — D ' d(x) +2 (x)dt(x) + f d x'[V 11(x' —x)['Jo(x')d(x),

(i'�(t(x))s = [P(x),Hs]

= [P(x),H ] ——F D '&P(x) + F P(x) — F d'z'[V 17(x' —x)]Jo(x')P(«),
m 2m mK

(i'(t)(x)), = [P(x),H, ]

= [P(x), Hg] + d2z'[V 17(x' —x)] A(x')P(x) + d z'V17(x' —x)] (t)(x),

(i@4(x))~= [4'(x)»~]

—[y(x), H, ]
' F . D ' 4(x) + F24(x) — F d'z'[V 'D(x' —x)]Jo(x')p(«)

m 2m mK

b2 0 F f d~x'[V D(x' —x)[qi(x'), (16)

where the scalar potential A is

d {x,t) = ——f d x'J~ ~(x', I) V 17(x —x'). (17)

Note that it is clear &om the expression of J( ~ that there
is also quantization ambiguity in an A -matter commuta-
tion relation. This problem is related to the nonunique-
ness of the current operator and will be treated later.
At present, the A-matter commutation relation is only
needed in calculating the generators of the Galilei group.
Moreover, we note that the last term in the first equation
of (16) is the usual Jackiw-Pi quantum correction term
&om reordering [7]. Furthermore, Eqs. (15) and (16)
show additional quant»m eKects due to the regulariza-
tion axnbiguity by the explicit appearance of F-dependent
terms and highly divergent terms proportional to b (0)
due to additional reordering.

J= d x xxT

d z —.x x [P'D4) —(DP)'P]
2i

=L+ 9,

where T' = T ', the orbital angular Inomentum L is
given by

L= d x —.xx 'V —V
2i

and 8 is the well-known Hagen anomalous spin angular
momentum [1,2,4]:

B. Angular momentum operator

S= — d2: xxA J
4mK

(2o)

The classical angular Inomentum in our analysis is
given by

Sing&ar to the case of the Hamiltonian operator, four
Hermitian diferent operator forms of angular momentum
are also possible as follows:
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tD(~) D(~) t
2i

=J+Fx d xxJ,
Jg= d x —.x x to( ) —0( )1

2i

=J —Fx d xxJO,

(~) t (~) t
2i

= Js —6 (0) J d x (x x A),

Jg= d'x —x x
2i

= J, —F x d~zxJO,

6 4 =—[J,4(x)]

= ix x V(t) — P+ (x x F)P,
2%K

6s4)—:[Js, P(x)]
=6 6/6

—(x x F)6t),

6 &=-[J. 4(x)l

= 6s4) — d z'x' V' 27(x' —x)61)(x),
b (0)

K

6~&= [J~ 4(x)l
= 6,4) —(x x F)(t). (22)

Here we also see the iterative changes of the angular
moment»0» operators and their rotational anomalies due
to the reordering and regularization ambiguity.

where J = f dzz (1/2i)x x 6/dtV6/6 —(V6/6t)6td

(1/4z'6c)Q . Then the corresponding infinitesimal rota-
tions of the matter field are

p = g ~ tD() D() f
2i

=P —FQ,
tD(2) D(2) t

2i

=P. +FQ,
D(~) t D(~) t

2i

=Pg —6~(0) f d~xA,

d2~ D(2) t D(z)
2i

= P, + FQ + 6 (0)FV, (24)

showing the space-translational anomalies, which should
vanish for the true space-translational generators. We
can classify true moment»0» operators according to two
possible values of F: i.e., F = 0 and F g 0. For F = 0,
the true moment»~ operators are

where P = f dhz(1/2i)[6t6tV6/6 —(Vdt6t)g], which is the
usual momentum operator. Although the anomalous
terms in the Hamiltonian and angular momentum may
not be harmful in these cases because the anomaly can
be attributed to some exotic property of field itself, this
is not the case for the linear moment»m. In this case,
it can produce space-translationally noninvariant theory,
which cannot be allowed even for any exotic fields.

The correspond~a four space-translational operations
of the matter field are

[P, 6t (x)] = iVQ(x) —FP(x),
[Ps, P(x)] = iV4)(x),

[P„P(x)]= iVQ(x) + d z'V 17(x —x')P(x),
6z (0)

[Pg, 6t)(x)] = iVQ(x) + F4

dzz'V 17(x —x') 4 (x), (

C. Linear momentum and Galilei boost operators

The classical linear momentum is given by

1

2i

while, for F g 0, they are

P, = Z' —. tV —V t1 t
2$

(26)

P= deT

1
d x —. 'V —V ' — d2xAJ

2i

d T —. 'V —V
2i (23)

In the last step we used the fact J' dzxA Jo vanishes due
to the symmetry property. However, this step vrould be
illegitimate for the case of point sources, i.e., sum of b
functions. This matter will be treated in Sec. IV. The
corresponding possible four Hermitian operator forms are

and all others cannot be accepted as the true momen-
tum operators for the given values of F due to wrong
space-translational forms of the matter 6eld. This result
means that the linear moment»m operators can be con-
sidered as the correct space-translational generators only
with appropriate operator orderings for a given regular-
ization or quantization ambiguity F. However surpris-
ingly, the Bnal forms of linear moment»m operators are
all the same, and»»iquely dered to be the canonical
one vrhich does not have the operator ordering problem.
Hence, the quantization ambiguity of the gauge-matter
commutation relation (ll) does not induce the operator
ordering ambiguity for the linear moment»~.

Now, by defining the Galilei boost operators corre-
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sponding to four momentum operators of (23),

Gg ——tPy — d zxJp k = a, b, e, d,

the true boost operators become

C = Gb —tP — d2x xJp

for F = 0, and

Gb ——tP — d x xJp

(28)

(3o)

Second, by considering the P-J relation, the commu-
tation relations for all possible orderings of angular mo-
ment»m J J~ of Eq. (21) are obtained to be

[P",d]= —ioo P +Fxfd'z«Bodo,

[P",J[,] = iP—.I, P

[P', d.]= ,o, P——b'(0) f d'z (»» BoA),

[P do]=or'oo P——F x f d*z »Bodo

for F P 0. Furthermore, the final forms of these boost
operators, which are all the same, also have no operator
ordering ambiguity.

D. Galilei covariance

The Galilei covariance of the quantum field theory can
be expressed by the Galilei group

[P",P']=o, [G",G']=o, [P",G']=ib„M,
[J,M] = 0, [H, H] = 0, [G",M] = 0, [P",M] = 0,

[J,J] = 0, [P",J] = ies~P—, [G, J] = —icy G

[P",H] = 0, [G",H] = iP", [J,—H] = 0, (31)

where I is the mass operator. In this section we will
show that this algebra can be satisfied only for some par-
ticular orderings depending the regularization ambiguity
F. As a result, our model with inappropriate orderings
destroys the Galilei covariance, which has existed at the
classical level [7,11,12). Although there is no a priori rea-
son to reject the Galilei anomaly, we only consider the
theory without this anomaly in order to determine the
orderings of the generators uniquely.

First, by using the properly ordered momentum and
Galilei boost operators of Eqs. (24) and (28), we can
easily co~~m that the first three comrmutation relations,
i.e., P-P, G-G, P-G relations, are satisfied with M =
m J d2z J().

—do(B) f doz (x x Bod«) (32)

By noting that the anomalous term cannot vanish even if
we assume highly localized fields such that the appearing
surface terms can be neglected, we see that the appropri-
ate orderings become

J =Jb —— d X —X. X tV —V t +
2i 4xe

(33)

forF=O and

Jb= d2~ —xx t~ gt + ' 2 J 34
2i 4xe

for F g 0. This result shows that, although the appro-
priate orderings of angular moment»m are determined by
the closure property of the Galilei algebra, the final forms
of the angular moment»m operators are all the same as
for the linear moment»m operator. Although (33) and
(34) contain the usual anomalous spin term, we will use
the representation of no rotational anomaly such that we
can treat the matter fields as the usual ones most safely in
the following. This is possible because the redefined an-
gular moment»m without the anomalous spin term also
satisfies the Ga»&ei algebra [1,4].

Next, we consider the most nontrivial J Hcommut-a-
tion relations. A lengthy calculation shows that

Z

[J H ]=——FxP,
m

[J,Hi, ] =0,
2

[d, K.]
= d z f d z' f d z"[VD(x —x')] [V11(x—«")][x"x V"d (x")]d (x"),

2m
b2 0

I&, ddo1 = —F «F — F fd**f d*z'[V1r(« «')
I
[»' «'do («')]—

2
+ d*z f d*z' f d*z"[V1r(x —x')] [V11(» —x"}[[»"x V"do(«")]do(x").

2m

Then the desired Hamiltonian becomes

Q2 Q t Q + + +2J
2m 2m

g2 ~ t ~ ~ + ~2J
2m 2m
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for F g 0. Here the matter current J' is given by

'
.[y'vy —(vy')4].

2mi

Although the final results of (36) and (37) are formally
the same, the ordering contents are very diferent. (36)
can be considered as the normal-ordered Hamiltonian as

H =:H:=:Hg.. ——Hg (38)

due to the fact that A and 4( or Pt) commute in the
integration of (36) for the F = 0 case. However, this is
not the case for (37). Actually

1 1Hs=: Hs:+—F P — F Qm 2m

+ d z dsz'Pt(x) [V17(x —x')]s1
2m'

x Jp(x')P(x) (39)

due to the fact that A and ()5( or Pt), now, do not com-
mute in the integration of (36) for the F P 0 case. Note
that all the last three terms of (39) cannot be simply
subtracted for the Ga)i)ei covariance because this cannot
be recovered without some of them. Hence the correct
ordering of our theory is not the conventional normal
ordering. If one insists on conventional normal order-
ing, there is the GsBlei anomaly for all Ha~i)tonians
H Hs for F g 0. But, since this is not compul-
sory, a rather more general ordering can be adopted, i.e.,

t(PtP+PPt)P, iPt(PtP PPt)P, ...,—which can be consid-
ered as a modified normal ordering. The modified normal
ordering satisfies all the necessary conditions of ordering
such that properly ordered generators should be Hermi-
tian and annihilate the vacu»») state.

Using the asserted form of H, P, G, and J, it is
straightforward to verify that all other commutation re-
lations in Eq. (31) are satisfied. Hence we showed that
the operator ordering problem arisen from the quantiza-
tion ambiguity at the same point of [A(x), ()t(x)] for the
extended sources can be avoided by considering only the
system with no Ga)i)ei anomaly.

IIL EQUATIONS OF MOTION
FOR EXTENDED SOURCES

@'(i) = B.Ao(i) (B,A') (i)

@~(2) = B,Ao(2) (B,A')(2)

where

(40)

A~ (x, t)—:——f d~z'Ji~i(x', t) v Tl(x —x'),

J(2) [()I)tD(2)P (D (2) (t)) t(t)]
2mi

g(~) + FJo
m

(BgA')( ) = i[H, A'], (BgA') ) = i[Hb, A.']. (41)

Then it is straightforward to show that

B=——J,1

K

gi(1) ~ij Jj(1)
K

g~(2) ~~j Jj(2)
IC

using

(B,J.)('& =- i[H. , J.] = -v J('&,

(BgJp)('& =—i[Hs, Jp] = —V J(').

(42)

(43)

Now, Faraday's induction laws for each type become

V E()+(BB)() 0

V x E('& + (B,B)('& = 0. (44)

Moreover, the equations of motion for the matter field
for the second type in Eq. (16) reduce to

We now study how the qua»t»m equations of motion
behave for our properly ordered generators for the ex-
tended sources. To this end are de6ne

x =aux
D'*' 0(*) + &" '(*)0(*)+, .J ~**'7''D(*'-*))*J~(*')0(*).

All these results show that all the equations of the motion for both gauge and matter fields can be expressed as the
simi&ar form regardless of the types of the orderings or the regularization prescriptions. This result strongly suggests
that the &inherent orderings or regularization prescriptions do not change the physics.

It seems appropriate to remark that there is also quantization ambiguity for an Ap-()) commutation relation at the
same point although this does not afFect our analysis:

[A (x), 4(x)] = —. F D $(x) — d z"VZ)(x —x") ~ V 17(x —x")Jp(x")(t)(x),
$m me

[A ( )(x), ())(x)] = [A (')(x), P(x)] — F P(x). (46)
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IV. ORDERINC PRGBLEM
FOR POINT SOURCES

For the point source system much more care is needed
for nonzero F. This is essentially due to the fact that
integrals such as f d2zAJs do not vanish for the point
sources, i.e., the sIIm of b functions. In this case it be-
comes

EuE(x) =

Eua(x) =

V ua(x),
1 2

2m

(V+ iF) ua(x),
2m

the self-interaction induced by quantum corrections. Ex-
plicit manipulations for the one-body Schrodinger equa-
tion give the relations

(47) EuE(x) = — (V+ iF)'
2m

which does not vanish for a nonzero F. Then the linear
momentum operators of (24) are modi6ed as d2z'[V 'D(x' —x)] u@(x),

P~ = P„—(F/2m) f d +do (I = a, Ic, d). (48) Eu@(x) =
~

— (V + 2iF) ——F
)'

2 1 2

2m m
However, one can easily find that none of these operators
can be considered as the true momentum operators for
nonzero F by considering the space-translational opera-
tions of the matter field:

P, 4I(x)

Ps, 4)(x)

P„P(x)

= iVQ(x) —F(t)(x) + —J (x)(t (x),

= iVQ(x) + —Jo(x)P(x),
2x

= iVP(x) + d z'V 17(x —x')P(x)
b2 (0)

+—Jo(x)It)(x),2'
Pq, g(x) = iVQ(x) + FP

d z'V 17(x —x')P(x)

+—Jo(x)P(x).2' (49)

Any operators in P Pp do not produce the correct
space translation for a nonzero F. Since the regulariza-
tion prescription of a nonzero F is not physically allowed
for the above reason, the usual prescription of F = 0 of
Refs. [1,4,7] is the only possible one. This is in sharp con-
trast to the case of extended source system where any reg-
ularization prescriptions are allowed although the proper
orderings are determined depending on the prescriptions.
Although a similar analysis may be performed for other
generators, these are redundant ones because the anal-
ysis for the linear momentum operator gives the most
restrictive condition for the regularization ambiguity F
already.

Now we discuss the physical implications of this result.
It is well known that the nonrelativistic Abelian Chern-
Simons gauge theory does not exhibit self-energy at the
classical level [7,13]. This is crucially due to the exact
cancellation of electric and magnetic Geld contributions
to the Lorentz force by the classical equations motion (3)
and (4). By noting that [A(x), g(x)] = 0 implies that
there is no self-interactions even at the quantum level
in our model, one can expect that the usual prescrip-
tioa of F = 0 is the only consistent one with the classi-
cal results. Actually this can be easily confirmed by the
fact that the Schrodinger equation for nonzero F reveals

+ d2z'[V 17(x' —x)]~
b' 0

F d2z'V 17(x' —x) u~a (x). (50)
&'(0)
mx

In deriving these equations we use the relations

ua(x„..., x~) = {0
~ y(x) ".y(x~) ~

E, N),
Eua(xg, ..., x~) = {0

~ [P(x) P(x~), H]
~
E,N), (51)

with the energy and particle number eigenstate
~
E, N)

and the vacuum state
~
0) satisfying

H (E,N) =E(E,N),
N (E,N) =N

[ E, N),
{0

~
Pt(x) = P(x) [ 0) = 0,

a
i 0) = N

i 0) = 0 (52)

V. CONCLUSION

In this paper we have shown that the nontrivial op-
erator ordering problem of the nonrelativistic Abelian
Chem-Sixnons theory in the Coulomb gauge can be
avoided if we require Galilei covariance even at the quan-
t»~ level or the consistency. The requirement of Gahlei
covariance is nontrivial because we do not have any prin-
ciple to disregard the Galilei anomaly of the model in
D = 2+ 1 dimension.

Actually, the recovery of the covariance for the ex-
tended sources is only possible when we choose some

for each Hamiltonian of (15) and we use the equations
of motion (16), which are valid for the case of the
point sources also. The result (50) explicitly shows that
only the usual prescription of F = 0 exhibits no self-
interaction with tc& and u@, w'hich are the same in this
prescription. Note that, although N-body Schrodinger
equation [1,7,14] may be analyzed generally, this does
not change the essence of our argument. As a result, we

recognize that the usual ordering corresponding to a and
b types, which are the same for F = 0, is the only possi-
ble one due to the»n~que determination of F = 0 for the
consistency, i.e., the space-translational invariance of the
model at the quantum level.
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specific orderings, which cannot be the same as the well-
known normal ordering but still satisfy all the necessary
conditions at the same point of the proper orderings for
the unusual prescription [A(x), P(x)] g 0. These specific
orderings are the same as the usual ordering for the usual
prescription [A(x), P(x)] = 0. However, we have shown
that both the usual and unusual orderings or regulariza-
tion prescriptions describe the same physics by noting
that all the equations of motion can express the same
form regardless of the types of the orderings or regular-
ization prescriptions.

On the other hand, for the point source system, the re-
quirement of consistency, i.e., space-translational invari-
ance, which can be guaranteed by the proper momentnTn

operator, can be satisfied only for the usual prescription
and not for the unusual ones. Hence only the orderings,
which are equivalent to the usual one, are allowed in this
case. Moreover, only for this usual ordering or prescrip-
tion is the quant»m theory consistent with the classical
results.

As final remarks, we first note that our analysis for

the extended sources may be useful for the relativistic
Chem-Simons theory since the sources of the relativistic
system are inherently extended although the anyonicity
of the model is still debatable. Second, we note that our
results are not changed even when the usual quadratic
self-interaction term for the matter field are introduced
although it may change the structure of the conformal
group [7,11,12,15]. Finally, although we only considered
the representation without rotational anomaly, it is ques-
tionable whether a similar result can be also obtained for
the representation with rotational anomaly.
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