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We introduce the Wigner functional representing a quantum field in terms of the field amplitudes
and their conjugate momenta. The equation of motion for the functional of a scalar field points out
the relevance of solutions of the classical field equations to the time evolution of the quantum field.
We discuss the field in thermodynamical equilibrium and find the explicit solution of the equations
of motion for the so-called "rollover" phase transition. Finally, we brie6y discuss the approximate
methods for the evaluation of the Wigner functional that may be used to numerically simulate the
initial value problem.
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I. INTRODUCTION

Dynamical processes in relativistic quantum 6elds are
usually described in terms of the particle excitations of
these 6elds. However, there are situations where more
appropriate degrees of &eedom are rather the 6eld am-
plitudes themselves and their conjugate momenta. This
happens when as a 6rst approximation the dynamics is
well described by the classical 6eld equations. A well-

known example here is the evolution of Higgs fields in the
early Universe [1,2], which acquire a finite vacuuin expec-
tation value when the temperature falls below the critical
temperature for the symmetry-breaking phase transition.
The mechanism which drives the Higgs 6eld Rom the
symmetric phase, where the vacuum expectation value
vanishes, to the asymmetric phase with a nonzero expec-
tation value is essentially classical. Such phase transi-
tions have attracted much attention in the context of
in8ationary cosmological models [3], models of galaxy
formation [4], the creation of the cosmic baryon num-

ber asymmetry during the electroweak phase transition

[5], and most recently due to the possibility of creating
the so-called misaligned chiral condensates in ultrarela-
tivistic heavy-ion collisions [6].

All these situations have in common that one must
study the evolution of a quantum field far oE thermal
equilibrium, when the initial state of the quantum field
is specified. Most theoretical approaches to this initial
value problem for quantum fields have been based on dy-
namical equations for the Geld expectation values and
the Gaussian Huctuations around those [4,6,7], assuming
that fluctuations around the most probable path remain
small. While this assumption may be correct in certain
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instances, it is a well-known fact that fluctuations usu-
ally do not remain small in dynamical phase transitions,
where domain formation and clustering are regularly oc-
curring phenomena.

In this paper we present a formalism which appears
to be very convenient to study the evolution of quantum
6elds &om an initial state and which goes beyond the
classical description. The central object of our approach
is the Wigner function, the Wigner functional, in fact,
which is the quantum analogue of the classical distribu-
tion function in a phase space. Here the phase space,
however, is spanned not by the particle coordinates and
momenta, but by the Geld amplitudes and their conjugate
momenta. The great advantage of the %igner function
formalism is that, while being fully quantum mechani-
cal, it remains close in its spirit to the classical descrip-
tion, and that the classical limit can always be easily
obtained. On the other hand, the simultaneous presence
of many "quasiclassical" field con6gurations can be de-
scribed with ease, and the fluctuations around these do
not have to remain Gaussian.

An additional motivation for our work derives from
the fact that there are many interesting investigations
of nonlinear classical Geld equations in Minkowski space.
One can mention here studies of the chaotic behavior of
classical, in particular, Yang-Mills fields [8], searches for
exact solutions of the equations of motion [9] (see, e.g. ,

[10] for recent developments), or very specific predictions
concerning multiparticle production in high-energy col-
lisions [ll]. Whereas the relevance of classical solutions
in Euclidean space is safely grounded because they mini-
mize the Euclidean action, as in the case of instantons [9],
no such argument exists for solutions in Minkowski space.
Attempts to understand the quantum nature of classical
fields have been based on the coherent state representa-
tion of Fock space [12] or semiclassical methods [13].For
recent work in this direction, see [14].

In order to avoid unnecessary complications we restrict
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considerations in this paper to scalar quantum 6elds with
quartic self-interactions. After discussing the definition
of the Wigner functional we show that the equations of
motion have the fam~»ar form of a transport equation in
phase space with quant»~ corrections. We then derive
the Wigner functional for a free scalar 6eld in thermal
equilibrium. We discuss how the classical phase space
distribution is obtained in the high temperature limit,
and we obtain the two-point correlation function. We
analyze the "rollover" of the scalar 6eld in a second-
order phase transition, where the power of the Wigner
functional approach becomes apparent, allowing for the
evolution of the quantum 6eld along many simultane-
ous classical paths. We brie8y discuss the mean 6eld
and semiclassical approximation, and 6nally we conclude
with a suggestion how to obtain n»merical solutions to
the initial value problem for quantum fields in more com-
plex situations.

Z(t, z) = 8—"e (t, z)B„e(t,z) ——m e (t, z) + LI (t, z) .

W(q, p;I) = /du e-'~(q+ eu) p(q) ~q
—-', u), (2)

The interaction Lagrangian l:I is ass»med to be a poly-
nomial in 4 such as Zl ———

4, 4 . We use carets to distin-
guish operators from corresponding c n»mbers. For sim-

plicity xnost formulas are written for (1+1)-dimensional
Beld theory, but the generalization to higher dimensions
is straightforward.

Before defining the Wigner functional of the field, let us

write down the well-known definition of the single particle
Wigner function as [15—18]

II. SIGNER FUNCTIONAL

We consider a real scalar quantum 6eld with the stan-
dard Lagrangian density

where p and q are the particle momentum and position,
respectively, while p is the time-dependent density matrix
operator in the Schrodinger picture. In analogy with (2)
we define the Wigner functional as

W[O(e) II(e) I) = f Iqp(e) exp —I f de II(u)qt(e) (O(e) + -tp(e)) p(q) (O(e) ——p(u)) .

It sometimes appears easier to compute the Wigner functional of the fields in momentum space. However, we then
face a slight complication. The field e(z) is real while e(p) is complex, but the real and imaginary components of
e(p) are not independent from each other because of the constraint e(—p) = 4"(p). Thus, we adopt the following
procedure. The real and imaginary parts of e(p) are treated as independent variables, but p E (O, oo) instead of
p 6 (—oo, oo). The Wigner functional is then defined as

W(O(p) II(p);I) = J &p(p) ~ I -* d (II'(p) (p)+II( ) '( )I (O(p)+ lp(p)IP(q) lo( )
—lIp(p)),

0
(4)

with the functional integrations running over real and
i'maginary components of II()(p). The transformation from
(3) to (4) involves a Jacobian

be(z)
~e(&)

Z —= TrP = Ve(z) W[e, 11;t] .2711(z)
2x

As is shown in Appendix A,

(o(e, 11)) = (v(e, 11))
1 VII x

which equals»nity on account of the unitarity of the
Fourier transformation.

To clarify the physical meaning of the Wigner func-
tional, we consider the expectation value of an operator
Q(e, II). The expectation value is defined as

(&(e,II)) = —Tr[p(t) Q(e, ll)],
with

(8)

provided that the noncommuting operators in 0 are
properly symmetrized. Operators corresponding to an
asymmetric ordering of the operators 4 and II must be
explicitly expressed as s»ms of symmetrized terms.

Equation (8) shows that the Wigner functional has the
same role in quantum 6eld theory that the density dis-
tribution in the phase space spanned by 4 and II has in
the classical field theory. We emphasize, however, that
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the signer functional is not always positive defiaite and
thus cannot be interpreted as a probability density in
phase space. The analytically tractable cases discussed
below, when the signer functional is of Gaussian form in
the variables 4 and II, are somewhat exceptional in this
respect. Of course, the limited classical interpretability
of the signer functional does not diminish its usefulness
as a representation of the quant»m mechanical density
matrix with a simple classical limit. This will become
obvious in the next section, where we study the relevance
of solutions of the classical 6eld equations for the time
evolution of the signer functional.

III. EQUATION OF MOTION

The density matrix operator satis6es the equation of
motion

ih —p(t) = [H, p(t)] .
6

In this section we re&ain &om setting 5 = 1, because
we want to discuss the classical limit of the evolution
equation. The Hamiltoaiaa H for the real scalar 6eld is

H= — dx II x + V'4z +m4 z —2ZI x

(io)

where II—:bZ/be = 4 denotes the conjugate momen-
tum operator, and the operators are in the Schrodinger
picture.

As discussed in Appendix B, one derives from Eq. (9)
the following equation of motion of the Wigner functional
(~):

transport equation. %hen the higher derivative term in
the interaction (12) is neglected, Eq. (11) can be written
in the form of the classical Liouville equation

a „& ba b bII
at (blI(x) be(z) be(x) bII(z) )

x W[e, II; t] = 0, (14)

where H is the classical He~iltoaiaa. The neglected term
is proportional to h2, showiag that corrections to the clas-
sical phase space evolution are of second order in h. %e
will later (in Sec. VII) briefiy discuss how the quan-
tu~ corrections to the time evolution of the "classical"
signer functional could be obtained.

IV. FREE FIELDS IN THERMAL EQUILIBRIUM

Let us consider the scalar field in thermodynamical
equilibrium. The density operator is then

(15)

where P = T is the inverse temperature and Z
Tr e ~ is the partition function. Since there is no con-
served charge carried by the real scalar field, there is no
chemical potential in Eq. (15).

It appears easier first to compute the Wigner func-
tional of the fields in the momentum space (4) and then
transform it into the coordinate space representation (3).
The Hamiltonian

a. = —"[Ilt(p)11(p) + (p'+ ')et(p)e(p)]
0 27(

11(~) —[m e(2:) —V e(z))at

+iCi(z) W[4, II;t] = 0,

can be identified as the sum of independeat harmonic os-
cillator Ham~&toniaas each representing the mode of mo-
mentum p. Using this analogy one finds, as shown in
Appendix C, the equilibri»m signer functional as

where
dp

Wp[e, II] = C exp ——P —Ap(p)
2 — 27r

x II' p II p + E p 4' p 4 p

For El(e) = —
4, e we find

a' b'
6 ( )blI(*)+ 4 ( )blI (*)

(12) with E(p):—gp2 + mz, the thermal weight factor

2 PE(p)
n(P) PE( )

and the normalization factor (V is the quantization vol-

ume)

In particular, the iateraction term Ky always terminates
for renormalizable quanta~ field theories in (3+1)space-
time dimensions, since their I agrangians contain at most
quartic interaction terms.

One sees that Eq. (11) has the familiar structure of a

C = exp V —ln2taah4 PE(p)
27K 2

(19)

which represents the contributions koln zero modes.
Since the expressions under the momentIIm integrals in
(17) and (19) are even functions of momentum, the in-
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tegrals are extended &om —oo to oo not from 0 to oo,
as in the deiiIIition (4). The Wigner functional (17) is
normalized to IIpIity.

In the high temperature lipnit, where b,p(Ij) -+ 1, we
reproduce the classical result, i.e.,

IT& [@,II] = exp p—-—[11 (p)ll(p)
2 2'

+&'(p)~'(p) ~(p)]

ln this case the Wigner functional depends only on the
total energy of the system.

One immediately finds from (1'7) that

(p)@(p)) =
p@(g2Ep tanh

One easily checks that the Wigner functional (23) rep-
resents a time-independent solution of the equation of
motion (11).

V. EQUILIBRIUM CORRELATION FUNCTION

As usually, the correlation function is obtained kom
the generating functional, which for the free Selds in equi-
librium is defined as

nrlS[j(x)]:—f IIO W[@,II]exp' . P de O(e)j(x)
2jr

P4 exp — dz dx x z
VII I I

—~(& —&')@(&)j(&')] (28)

where the angular brackets are given by Eq. (8). There-
fore,

where 'R(z, z') is given by Eq. (24) and j(z) denotes
the external classical current. Because of Eq. (8) the
correlation function can be expressed as

rrt J rrJ

(22)

8's[j]
( ( ) (Ij)) —

p, /[.]$.( )b.( )
(29)

showing that the uncertainty principle is built into the
%igner functional.

Knowing the Wigner functional (4) one easily finds the
Wigner functional (3). Thus,

As shown in Appendix D, the generating functional is

Z[j(x)] = Af exp — dz dx' j (x)g(x —x')j (x')
2

ee

Wx[O(x), II(x)] = C exp —P/dx dx' II(e,e'), (28)

with

where N is the normalization constant and

g(*) =
2z Lp(p) p2+m2

(3O)

(31)

'R (x, x') —= —b p (2: —x') [II(x)II(z') + V@(z)Ve (z')1

2
+m'c (z)4(z')], (24)

with by(p) given in Eq. (18). Thus, the correlation
function (29) equals

where
(4'(*)O(lj)) = g(* —Ij) (32)

b,p(x) = —e '" Ep(p) .2'
One sees that Ij(],)s(x) —b(x) for m, lxl » P which
corresponds to the classical lixnit. For m = 0 the integral
(25) can be computed analytically in one dimension [19]

The integral (31) can be evaluated analytically [19] in
three dimensions for m = 0:

sinh(2~IxI/P)
4s lxl cosh(2s lxl/P)

Ep(x) = ln coth
2 algal

7r 2

4
I Ig(x) =

4~~IxI~

p « lxl,

p » lxl.
(34)

and approximated as

——'. In~
&~(*)= for l2:l «P,

for lxl » P. (27)

For a finite mass the integral (31) can be calculated in
an approximate way and for three dimensions one 6nds

g(x) e
—m)x)1

4s.]xi
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for m, [x[ » P, which corresponds to the classical limit,
and

where the first approximate equality holds for m « P,
while the second one requires additionally m « ~x~.

VI. "ROLLOVER" PHASE TRANSITION

Let us consider the scalar field in a variable heat bath,
undergoing a phase transition with falling temperature.
The mass squared of the field, eH'ectively being temper-
ature dependent, is initially assumed to be positive. %e
are interested in the evolution of the quantum field with
spatially homogeneous initial conditions when, suddenly,
due to a rapid decrease of the temperature, the mass
squared acquires a negative value. This model is an
idealization of instabilities arising in, e.g. , inflationary
cosmology and during the chiral phase transition in ex-
panding dense hadronic matter. Thus, we study the time
evolution of the field described by the Hamiltonian

ii(&) = j —{f)'(n)))(n)+) '(&)+n' @)'h)@b'))

—"IIt & II p +~' ~ Ct J i p

(39)

where sr~(p) = gk(p2 —p2) is a real number.
One sees that the modes are independent &om each

other; thus, we discuss for a moment a single mode, sta-
ble or unstable. Since the signer functional equation of
motion (14) with m2 = —p,

2 coincides with the classical
Liouville equation, it can be solved in a way which is well
known f'rom classical mechanics. Specifically, the single
mode equation of motion is solved by

W(C„II„t)= W(4, (—t), II„(—t);0), (40)

where C)„(t) is the solution of the classical field equation

d2
(t) +~~(p) e, (t) = o,

At t ( 0 the state of the system is described by the
equilibrium Wigner functional (17). To find the system
evolution starting with t = 0, we split the Hamiltonian
(37) for t ) 0 into stable and unstable modes as

H(&») = f,—{&'(s)&(n) —~* (n) i-')s)c'0))

with

m &0 for t(0,
—p (0 for t) 0. (38)

with II~(t) = 4?~(t) and the initial conditions C)„(0) = C „,
11,(0)

=' ll„.
Solving Eq. (41) one finds the single mode Wigner

function (40), and then gets the whole functional as a
product of the single mode functions. Thus,

)T')~ "'&) = «*r ))f,—&n(~—)-{)):)n)&.)~ ) + &'(n)~i(n)o. (n)) (42)

where

4'0(p) = 4(p) cosh(ur {p)t) — II(p) sinh(u (p)t) {43)

for 0(p( pand

IIO(p) = II(p) cosh(tu (p)t) —~ (p) 4(p) sinh(~ (p)t)

1
@'o(p) = C (p) cos(u+(p)t) — H(p) sin(w+(p)t),

~+(p)

for p ) p, . It should be stressed that the solution (42) is exact and fully quantum mechanical.
If one is interested only in the 4 dependence of the signer functional, II is integrated over and one gets

f 17II—,P dp
W[4, II;t] = C'exp —— —bp(p) y(p, t) 4'(p)@(p)

2K 2 O 2' (47)

where
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y(p t) = e(p —p)
E'(p)~ '(-p)

ur2 (p) cosh (ur (p)t)+E2(p) sinh ((u (p)t)

(p) +(p)+o- p '( ) -"( +( )t)+&'( ) '( +( )t)
(48)

Using Eq. (47) one easily finds how the ~mstable modes grow:

Q2
(O'(p)~(p))~ = (4'(p)~(p))«osh'(~-(p)t) +, »»'(~-(p)t) ~

(d p
(49)

with (4 (p)4'(p))0 given by Eq. (22). The unstable mode growth is usually obtained directly from the classical
equation of motion (41). In such a case however, one finds only the first term on the right-hand side (RHS) of Eq.
(49). The second term, which results from the proper incorporation of the initial condition and the interplay between
4 and II in (42), is missing. Then it is argued that the zero-momentum mode grows the fastest. This statement,
however, is not quite correct. Approximating the RHS of Eq. (49) as

(I'(p)@(p)) = (@'(p)c'(p))o [I+ (u'+ m)t'+ &( '(p)t')] . (so)

One sees that initially [for t (( u (p)] all unstable modes
(pz & y,2) grow at the same rate, and the zero-momentum
mode becomes dominant only at a later stage. This
observation might be of physical significance since the
experimental detection of the misaligned chiral conden-
states [6], if they are produced in heavy-ion collisions,
would be di%cult if the phenomenon occurred only for pi-
ous with approximately zero momentn~. Equation (50)
suggests that the pions with nonzero momentum have a
chance to contribute to the condensate.

The two-point correlation function is also of inter-
est here, because it contains information about domain
growth after the phase transition. The generating func-
tional Z[j] defined in (28) depends explicitly on time in
the present case. A straightforward calculation'shows
that the generating functional again has the form (30),
where the time-dependent correlation function now is
given by

Qp g %PC

&(* t) =
2~ &p(p) X(p t)

(sl)

The late-time properties of g(z, t) are determined by the
exponentially growing modes with p & p, for which

y(p, t) oc exp[—2~ (p)t] -+ 0. Expanding ur (p) around

p = 0 and carrying out the three-dimensional Gaussian
integral over p one finds

there is an obvious need to develop approximate meth-
ods to study problems more complicated than those dis-
cussed above. We briefiy present in this section three
approaches which seem to be promising.

A. Mean-Beld approximation

The mean-field approximation, which has been fre-
quently used to study symmetry-breaking phase tran-
sitions, is implemented by replacing in the initial La-
grangian the terms which are cubic, quartic, etc. , in Belds
by the products of the fields and their expectation values.
In the case of Zl(4) = —

~, 4 the replacement is

4t@'(*)~ 4
(O'(&)) O'(&) (53)

or equivalently, we replace the mass m2 in the free-field
equation of motion by the effective mass m2 =—m2 +

A

&
(C' (z)). The combinatorial factor 4! changes into 4 in

Eq. (53) because there are 6 ways to select 2 fields out of
4. Since (Oz(x)) is determined by the functional W via
Eq. (8), we get a self-consistent nonlinear equation for
R'.

Let us briefiy discuss the mean-Beld approximation for
the case of thermodynamical equilibrium. The signer
functional is then given by Eq. (17) derived for the free
6elds. However, instead of the mass there is the effective
mass determined by the gap equation

x exp 2@~ — i, as t M oo .
4t )

(52)

From this result one can read off that the size of corre-
lated scalar field domains grows as (x2) 4t/p

m.' = m' + —g(0), (s4)

VII. APPROXIMATE METHODS

There are only a few situations when the exact equa-
tion of motion (ll) can be solved analytically. Thus,

where g(0) is defined by Eq. (31) with m, substituting
m. Before Eq. (54) is solved one has to regulate Q(0)
subtracting Rom it a divergent zero temperature contri-
bution. After this procedure we find the well-known gap
equation
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dp Qp2+m2 1

27r exp()9/p'+m2) —1 p'+rn', '

(55)

which is further analyzed in [2]. It is worth mention-
ing that the standard result is reproduced only after the
correlation function is renormalized.

B. Semiclassical approximation

This approximation might be particularly useful when
the system of interest is, obviously, "semiclassical" and
the "classical" solution. , analytically or numerically, is
known. Then, the quantum correction can be found in
the following way. The equation of motion (11) is written
down in symbolic notation as

(K, + h K~) W = 0, (56)

where K, and Kq represent the "classical" and "quan-
tum" parts of the operator acting on the %igner func-
tional, which is expanded as O' = R', + 52W~. Since

K,W, = 0, we find S'q as a solution of the equation

K,W„= —K~W, +O(h ) . (57)

For a single particle signer function one finds

Wq(qP t) = /dt'dq'dP' G( , qPqP';t, 1')

xK W, (q', p';t'), (58)

BG BH BG OH BGq'q'p'""' =
a + a a a a

= ~(t —t') ~(q —q') ~(p J') . —

(59)

Since solutions of the classical equations of motion are as-
sumed to be known, the Green function can be explicitly
written as

G(q, q', p, p';t, t') = 0(t —t') b(q —q(t) —q'+ q(t'))
«(P —&(t) —& + &(t )) (6o)

with (q(t), p(t)) being the classical solution. The gener-
alization of Eqs. (58) and (60) to the case of a quantum
field is trivial, only the notation is more complicated.

C. Numerical simulation of the initial value problem

The main goal of this study has been to find a formal-
ism to analyze temporal evolution of the quantum fields
beyond the classical limit. Here we argue that the equa-
tion of motion (11) is indeed numerically tractable. The
first step is to define the field 4(z) on a lattice. Then,

where the Green function G(q, q', p, p', t, t') solves the
equation

the equation of motion (ll) resembles a inany particle
transport equation with every site of the lattice repre-
senting a single particle that interacts with an external
polynomial potential (due to the mass and interaction
terms of the Lagrangian) and with its nearest neighbors
(via the gradient term). We can then adopt, e.g. , the
method developed by John and Remler [20] to solve the
quantum transport or quantum Liouville equation of a
many particle system. The method is sketched below for
a single particle; a generalization to many particles is
straightforward.

A single particle signer function is represented by a
finite sum over discrete points in phase space. Since the
signer function is not positive definite, the points may
have positive or negative signature. Then, each point
representing a test particle is evolved in such a way that
every step of the classical evolution is followed by a quan-
tum step, which converts a single momentum point into
several ones. Speci6cally, the b function in momentum
space is represented by a Gaussian distribution centered
around the classical position. The higher momentum gra-
dients, which are responsible for the quantum evolution,
act on this distribution. The resulting function, which
has positive and negative components, is again repre-
sented by discrete points, i.e., by new test particles with
positive or negative signature. To avoid unlimited prolif-
eration of the test particles, those with closely neighbor-

ing trajectories can be allowed to merge. It was demon-
strated in [20] that the method successfully works pro-
vided the initial Wigner function is su8iciently smooth in
phase space. We intend to apply this method in future
work to study the quantum 6eld evolution.

VIII. SUMMARY AND OUTLOOK

We have introduced the formalism which describes the
quantum 6eld dynamics in terms of the field amplitudes
4 and their conjugate momenta II. The signer func-
tional playing the central role in our approach provides
a density in a phase space spanned by 4 and II. We
have derived the equation of motion of the functional,
which is of the form of the quantum transport or Liou-
ville equation. It has been shown in the last section how
the knowledge of the classical solution of this equation
can be used to find quantum corrections. The &ee fields
in thermodynamical equilibrium have been discussed in
detail, and we found an explicit analytical solution of
the field analogue of the "upside-down" harmonic oscil-
lator. The solution incorporates in a very natural way
the "thermal" initial conditions; its physical meaning is

intuitive and transparent. In the last section we brie8y
discussed the approximate methods which will be needed
to solve more complicated problems.

We intend to apply our approach to study the role

of quanta~ Guctuations in the temporal evolution of
the symmetry-breaking phase transitions beyond the
Gaussian approximation [7]. As mentioned in the Intro-

duction our formalism also appears useful to investigate
the quantum content of solutions of the classical 6eld
equations of motion.
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APPENDIX A

In this appendix we prove Eqs. (8) and (7), which show
that the Wigner functional can be treated as a density

f 'X)G
exp —i dxIIz p~ =$ y~ (A1)

When the operator 0 depends only on 4 but not II,
one easily gets Eq. (8) since the states I4) are by def-

inition eigenstates of 4 and consequently G(C&)I4')

G(4)I4). It is assumed that O(Ch) can be expanded in

the power series of 4'.
Let us now consider 0 which depends only on II. Then,

we introduce the complete set of the momentum eigen-
states and the RHS of Eq. (8) is

in the phase space spanned by 4 and II. Formula (7) is
obvious if one observes that

»&p ' '&("*)'"p —f~*"(w)p(e) (O+-*'pi»)(»li(') (»)(»lp —ep)
Z 2x 2' 2' (A2)

Further we use the momentum eigenfunction

(O(II) = exp i f dw 1I(w) p (w)

and observe that

)1 b 1
g(lls(z)) exp i dz

I
lIi —llz 4+ —Ili+llz (((& = & —.

~ ( )
—

2 bC, ( )
~

ee

w w

xexp i dx II —+g @'+ —II1+~2 p
2

(A4)

Performing repeatedly the partial integration we e8'ec-

tively convert 6 —,. & & ~

—
2,. &@& ~

into 0 x an

finally prove Eq. (8) for O(II(x)).
When the operator 8 depends simultaneously on 4

and II, the situation gets somewhat complicated because
the operators 4 and II do not commute with each other.
The direct computation, in particular, shows that

APPENDIX B

We derive here the equation of motion (3.3) For this

purpose the Hamiltonian (10) is split as

Hn + av + H~ + Hr

while

(11(~)o(~))= (II(~)@(~))——,~(*-~) (A5) where Hn, Hv, H, and HI correspond to the first,
second, third, and fourth terms, respectively, on the RHS
of Eq. (10). Now one has to calculate four expressions:

{4'(&)ll(*))= (11( )4'(u)) + —b( —y) .

Therefore,

(Ã(&) @(u))) = {11(*)@(u)),

where (A, B}= — (AB y fjA)
Generalizing the result (A7), one proves the equality

g {@,11)) = (Q(4', ll)) assuming that the pairs of non-
commuting operators are symmetrized.

0; = Byexp —— dz II z y ~

(@+-'v'I [H-P j I@ —-'v ) (82)

with the index a = 0, V, m, and I.
The evaluation of G is straightforward since I4) is,

by deanition, the eigenstate of 4. Thus,
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m2
&v exp —

~
dz ll(z)v (*) E[C'(z) + —,'v (*)l' —[@(z)—2~(z))')(C'+ 2~1 (o I@ —

2&& .

Since

z b
p(z) exp —— dx II(z)(p(z) = jh exp —— dz II(z)(p(z)

bII(x)

one finds

(85)

Keeping in mind that Zl is a polynomial in 4, one also easily computes Gl as

ih, b ih b
Gl = — d Cl C' + + — —Cl 4 & —— TV@,II

2 bII(z) 2 bII(z)

To find Gii we introduce the complete set of the momentum eigenstates III) and then

(86)

1 VII' BII2
Gii = — dz 17y exp —— dz II(z)(p(z) (II2i(z) —I122(z))

(4'+ —,'v III )(ll I ~ lll )(ll I@ —
—,'v) (87)

Next we make use of the explicit form of the momentum eigenfunctions (A3) and observe that

252 b b i 1
exp — de (Ile —lie)4+ —(Ili+ )le)p

2

= (II, —II ) exp — dz (IIi —II2)4+ —(IIi + II2)(p . (8&)

Since the derivative over y appears under the integral over y, we perform the partial integration and as a result we
obtain

b
Gii = ih dx II(z) —W[4, II; t] . (89)

We best find G~ defining the Beld CI(z) on a lattice. The Hamiltonian is then

(810)

where a is the lattice spacing and i numerates the lattice sites. With such a Hamiltonian the computation of t ~ is
very similar to that of G and one finds

=,~) —(C, , —C,) — W({C,j, (II,);t) .
a a&

"*)
In the continuum limit the above expression reads

G~ ——ih d~ V'4 x V O' C, II;t .
b

(811)

(812)

After the partial integration we finally get
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G[) ~$ g +2@ Q7 @ Q. g (B13)

Collecting Gri, Gv, G, and Gr we find the desired equation of motion (11).

APPENDIX C

We derive here the equilibrium Wigner functional of the fields in the momentum space. We introduce the complete
set of the energy eigenstates of the two-dimensional (isotropic) oscillator ]ni, n2) and rewrite Eq. (4) as

oo

W[e, rj[= —' & f jjj"» —f di[i(jj (j) '(jp)+ (jj)iy'( )i)+jE)„., (i'))1
kg ~Tlat

x(4+ 2iy]ni, n2)(ng, ni]@ —2p), (Cl)

with E„,„,(p) = gp + m (ni + n2 + 1). The eigenfunctions for the two-dimensional (isotropic) oscillator are [21]

(@R,er]ni, n2) =
[

n' 2~' nil 2~~ n21)

A
H„, (cd@R) H„, (nC' )rexp ——

i
4R + 4'r

i2 ) (C2)

where 4R I is the real or imaginary part of the field. H„denotes the Hermite polynomial, while

(p2 + m2 1/4
(C3)

Substituting (C2) into (Cl) and using the identity [19)

OO

) —H„(z)H„(y) = expgl —4a2
4azy —4az(z~ + yz)

1 —4a2 (C4)

which holds for a ( 1/2, one finds after elementary integration and proper normalization the final formula of the
equilibrium Wigner functional (17). The same result can be obtained by analytic continuation and generalization to
infinitely many degrees of freedom of the formula given in the Appendix of Ref. [17) for the generating function G(s)
for the Wigner functions associated with the energy eigenstates of the harmonic oscillator.

APPENDIX D

The purpose of this appendix is to derive the generating functional (30). We apply the method described in the
literature [22] modifying it slightly. After integration over II and partial integrations with respect to z and then z,
we rewrite Eq. (28) as

(Dl)

It is important for these manipulations that b, (z)
4(—z). Now we change the variable 4(z) into 4(z) +
@p(z) demanding that the field 4p(z) satisfies the equa-
tion

dz'A(z —z') ( —V2 + m2) 4 p(z') =j (z) . (D2)

After integration over 4 and the partial integrations with
respect to x and x', we get the result

Z[j] = JV exp — dz @p(z)j(z) . (D3)
~
2

40(~) = f dx' g(z —x')j (~'), (D4)

with Q being the Green function given by Eq. (31), one
finally finds the generating functional (30).

Substituting into Eq. (D3) the solution of Eq. (D2) in
the form
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