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We discuss the canonical quantization of Chern-Simons theory in 2 + 1 dimensions, minimally
coupled to a Dirac spinor field, first in the temporal gauge and then in the Coulomb gauge. In
our temporal gauge formulation, Gauss's law and the gauge condition Ao = 0 are implemented
by embedding the formulation in an appropriate physical subspace. We construct a Fock space of
charged particle states that satisfy Gauss’s law, and show that they obey fermion, not fractional
statistics. The gauge-invariant spinor field that creates these charged states from the vacuum obeys
the anticommutation rules that generally apply to spinor fields. The Hamiltonian, when described in
the representation in which the charged fermions are the propagating particle excitations that obey
Gauss’s law, contains an interaction between charge and transverse current densities. We observe
that the implementation of Gauss’s law and the gauge condition does not require us to use fields with
graded commutator algebras or particle excitations with fractional statistics. In our Coulomb gauge
formulation, we implement Gauss’s law and the gauge condition 8;A; = 0 by the Dirac-Bergmann
procedure. In this formulation, the constrained gauge fields become functionals of the spinor fields,
and are not independent degrees of freedom. The formulation in the Coulomb gauge confirms the
results we obtained in the temporal gauge: The “Dirac-Bergmann” anticommutation rule for the
charged spinor fields 9 and 1! that have both been constrained to obey Gauss’s law is precisely
identical to the canonical spinor anticommutation rule that generates standard fermion statistics.
And we also show that the Hamiltonians for charged particle states in our temporal and Coulomb
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gauge formulations are identical, once Gauss's law has been implemented in both cases.

PACS number(s): 11.10.Ef, 03.70.+k, 11.15.—q

I. INTRODUCTION

In recent work, attention has been focused on any-
onic states in gauge theories with Chern-Simons (CS)
interactions [1-5]. In this work, gauge-invariant fields
have been constructed that create, from a vacuum state,
charged particle states with arbitrary spin and fractional
statistics. Considerable effort has been devoted to under-
standing the nature of these states, and the dynamical
laws they obey. Some authors have argued that anyons
are a consequence of the imposition of Gauss’s law on
charged states in (2 + 1)-dimensional gauge theories with
CS terms in their Lagrangian [1-5]. In these authors’
treatment of these models, local operator-valued fields
that create charged particles from the vacuum obey ei-
ther purely commutator or anticommutator algebras; the
graded commutator algebras, and the consequent arbi-
trary spin and fractional statistics, arise with the con-
struction of nonlocal gauge-invariant operators, which
these authors consider essential for the imposition of
Gauss’s law. Other authors have questioned these conclu-
sions [6-9]. The dynamical implications of the CS term in
gauge theories coupled to charged matter have also been
discussed [5,10-12]. Jackiw and Pi have shown that CS
fields coupled to charged matter do not generally produce
“pure gauge” interactions that have no effect on the equa-
tions of motion [10]. They point out that, in relativistic
quantum field theories, the CS vector potential cannot be
totally gauged away. In nonrelativistic quantum field the-
ory, in which the CS interaction is pure gauge, Jackiw and
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Pi have exploited the pure gauge nature of the CS inter-
action to remove the entire gauge field from the Hamilto-
nian with a gauge transformation. The correspondingly
transformed charged field operator ¥°(r) does not com-
mute with ¥°(r'), but obeys a graded commutator alge-
bra. N-particle orbitals, represented by appropriately se-
lected matrix elements of products of these transformed
Schrédinger field operators, are multivalued. The con-
straint imposed by the multivalued boundary condition
carries the information contained in the gauge fields be-
fore they were eliminated by the gauge transformation,
and produces charged N-particle orbitals that describe
an interacting system of particles. Other investigators
have used line integrals over gauge fields to construct
gauge-invariant field operators that obey graded commu-
tator algebras for relativistic quantum field theories inter-
acting with a CS field [4]. These authors have identified
the excitations of these gauge-invariant fields as anyonic
states with arbitrary spin and fractional statistics.

In our work, we address this question from a some-
what different point of view. We investigate a (2 + 1)-
dimensional gauge theory in which the gauge field is min-
imally coupled to a charged spinor field. The Lagrangian
contains a CS term, but no Maxwell kinetic-energy term.
The gauge field obeys canonical commutation rules, and
the spinor field anticommutation rules. We construct
a Fock space of N-particle charged states [the (2 + 1)-
dimensional analogues of electrons and positrons] that
satisfy Gauss’s law. In the process we construct a gauge-
invariant operator-valued spinor field that creates, from
a vacuum state, the charged particle states that satisfy
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Gauss’s law. We demonstrate that this gauge-invariant
spinor field obeys anticommutation rules; and the exci-
tations of the gauge-invariant spinor field, which satisfy
Gauss’s law, obey fermion rather than fractional statis-
tics. Moreover, it is possible to define these states so that
they change sign in a 27 rotation, regardless of the value
of the CS coupling constant.

We do not argue that our results invalidate either the
anyonic descriptions of particle states in CS theory, or
the gauge invariance of the charged fields discussed in
Ref. [4]. We do argue that an anyonic description is
not the only possible one for this theory; and in par-
ticular, that it is not required for the implementation
of Gauss’s law. We demonstrate in this work that it
is possible to formulate a consistent description of the
charged particle excitations as “normal” fermions which
obey Gauss’s law and ordinary fermion statistics, and
which interact through a nonlocal interaction mediated
by the CS field. The availability, in this theory, of a Fock
space of states with normal statistics is consistent with
the work of Jackiw and Pi [10]; these authors have shown
that nonrelativistic charged bosons coupled to a CS field
can be described by either of two Schrédinger field op-
erators, ¥(r) or ¥%(r). ¥(r) obeys “ordinary” canonical
commutation rules, while ¥%(r) is subject to a graded
commutator algebra, in which ¥°(r) and ¥°(r’) do not
commute. In the representation in which ¥(r) is the
appropriate Schrodinger field operator, explicit nonlocal
charged particle interactions appear in the Hamiltonian.
In the representation in which ¥°(r) is the appropri-
ate Schrodinger field operator, these explicit interactions
have been replaced by equivalent boundary conditions.
Both representations implement Gauss’s law. We observe
that in our work, an explicit interaction between charge
and transverse current densities appears in the Hamil-
tonian, in the representation in which the electron and
positron operators create (or annihilate) charged parti-
cles that obey Gauss’s law. A similar interaction also is
reported in Ref. [10] in the representation in which the
orbitals of the boson field ¥(r) are used to describe the
interacting particles. Our result, that CS theory coupled
to relativistic charged fermions can be formulated in a
Fock space of charged fermion states that satisfy Gauss’s
law as well as normal statistics, is consistent with the re-
sults of Jackiw and Pi for nonrelativistic charged bosons.

As has been noted, CS theories do not possess any ob-
servable propagating modes of the gauge field [13]. Only
the charged fermion field gives rise to observable propa-
gating particle excitations which interact with each other
through their interaction with the gauge field. In our
work in the temporal gauge, we treat this model much
as we have previously treated the topologically massive
Maxwell-Chern-Simons (MCS) theory [14]. We introduce
a gauge-fixing field in such a way that Ao has a conju-
gate momentum and obeys canonical commutation rules.
Although, as in our treatment of MCS theory, Gauss’s
law and the gauge condition are not primary constraints,
there are nevertheless other primary constraints in CS
theory. Primary constraints relate the canonically conju-
gate momentum of 4; to Az, and vice versa, so that the
constrained gauge field A; will be subject to Dirac rather
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than Poisson commutation rules. Furthermore, all com-
ponents of the CS gauge field, A; and A; as well as Ao,
must be represented entirely in terms of ghost operators,
which can mediate interactions between charges and cur-
rents but do not carry energy-momentum, and have no
probability of being observed. Neither longitudinal nor
transverse components of the CS fields have any propa-
gating particle-like excitations.

In our Coulomb gauge formulation we implement all
constraints, including Gauss’s law and the gauge condi-
tion, 8;A; = 0, by the Dirac-Bergmann (DB) procedure
[15,16]. We include a gauge-fixing term —G& A4; in the
Lagrangian, in order to provide for the systematic de-
velopment of all constraints, including the gauge condi-
tion, from the DB algorithm. In the Coulomb gauge,
the gauge fields have no independent degrees of free-
dom whatsoever, but are reduced to functionals of the
spinor fields. The constrained fields obey Dirac com-
mutation (anticommutation) rules which must be evalu-
ated, and which may, and often do, differ from the com-
mutation (anticommutation) rules of the corresponding
unconstrained fields. There is therefore an opportunity
for discrepancies between the commutator (anticommu-
tator) algebras for constrained and unconstrained fields
to arise. The Dirac anticommutation rules among the
constrained spinor fields are of particular significance,
because a graded anticommutation algebra among the
spinor fields may signal the development of “exotic” frac-
tional statistics by their particle excitations.

II. FORMULATION OF THE THEORY IN THE
TEMPORAL GAUGE

The Lagrangian for this model is given by
L= j}meln(Fl',Ao - ZFnoAl) - avoG
+51A1 = joAo + P(in* 8, — M)y, (1)

where Fj, = 8,A; — 8;A,, and Fjo = 81Ao + 8pA;. We
follow conventions identical to those in Ref. [14].
The Euler-Lagrange equations are

MeémFrno — jl =0, (2)
%melnFln + aOG - jO = Oa (3)
0pAp =0, (4)
and
(M —iv*Dy)y =0, (5)

where D,, is the gauge-covariant derivative D, = 0, +
ieA,. Current conservation leads to

The momenta conjugate to the fields are given by

Ho = —G (7)
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and
Hl 2 melnAn (8)

The Hamiltonian density is given by
H = —3menFinAo + joAo — 1A + Hee , 9)

where Hs = Pt (y° M —iy°+'8;)4 and the total derivative
3,,(%meg,,A1Ao) has been dropped.

The use of the gauge-fixing term —8pAoG in the La-
grangian £ leads to the equal-time commutation rule
(ETCR)

[Ao(x), G(¥)] = —id(x — ¥), (10)

and elementary considerations lead to the equal-time an-
ticommutation rule

{¥a(x), $5(¥)} = basd(x - ¥), (11)
for the fermion fields. But the naive use of Eq. (8) to set

[A1(x), Lo (y)] = [Ai1(x), 3imenr Ar(y))]
=id(x—-y), (12)

and, after contraction over €,x,

[41(x), An ()] = 2 1ad(x ~ ), (13)

is incorrect, because it ignores the fact that II; —
3meimAn = 0 constitutes a primary constraint. There
are various ways to arrive at the correct ETCR [15-17].
One way is to use the Dirac-Bergmann (DB) procedure
[15,16], for which we need the Poisson commutator ma-
trix

Min(x,y) = [Ci(x),Ca(y)] = —imemd(x —y) (14)
for the primary constraints
C =1, - %manﬂ. (15)

To implement the DB procedure we form the total Hamil-
tonian density

2
Hr=H+> Cl, (16)
=1

where the U; are arbitrary c-number functions. The com-
mutator [Hr,Ci(x)] for Hr = [ dx #Hr(x), then is

[HT,C;'(I)] = [Hyct(x)] + Z/dy ul(y)[cl(y),cl(x)] )
1

(17)

where the brackets represent canonical “Poisson” com-
mutators. Equation (17) leads to

me (U + 81Ao) — j; = 0, - (18)
so that U is identified as U; = 9y A;, and no secondary
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constraints are generated. Having established that the
two primary constraints given in Eq. (15) do not give
rise to any secondary constraints, we recognize the two
primary constraints C; =~ 0 as a system of second-class
constraints, and use Y (x,y), the inverse of M(x,y), to
obtain the Dirac commutator

[A(x), An(y)]P = — [ duds’ [Ai(x), Cula)Viw (3,5
x[Ci (2'), An(¥)]- (19)
The resulting correct expression for the commutator
[Ai(x), An(y)] is the Dirac commutator

[44(x), 4n(3)] = = cind(x ~ ¥). (20)

‘We now construct the following momentum space expan-
sions of the gauge fields in such a way that the ETCR
given in Eqs. (10) and (20) are satisfied:

Ax) =3 5,,%/7 [er(k)e™™ + aj (k)e~™*>]
k

+ Z z\/_elﬂ [ (k)eik:x _ aa(k)e—ilpx]

k
+) ip(K)ki [ag(k)e™™ — ag(k)e™*=], (21)
k

Ao(x) = 3 = [aq(k)e™ ™ — ap(K)e*=],  (22)
—~ vm

and
Z ar(k)e™™ + aj(k)e~™>] , (23)
k

where ¢(k) is some arbitrary real and even function of k.
The magnetic field B and the electric field E are given
by

B(x) = - Y vm [aq(k)e™™ +ag(k)e™**]  (24)
k
and by E; = —81Aq — i[H, A] so that
Eix) =) %eznjn(k)e“‘"‘ (25)
k

as shown in Eq. (2). The explicit form of ¢(k) is immate-
rial to the commutation rules given in Eqgs. (10) and (20);
its form as well as its inclusion in Eq. (21) are therefore
entirely optional. The operators ag(k) and ag(k) and
their Hermitian adjoints af,(k) and a}(k) are the same
ghost operators previously used for the MCS theory [14];
they obey the commutation rules

[eq(k),ak(a)] = [er(k), a5 (q)] = dikq (26)

and

[eq(k), a5 (q)] = [er(k), ak(a)] = 0. (27)
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The use of ghosts is appropriate and necessary for com-
ponents of gauge fields which have nonvanishing com-
mutators with each other, but which do not exhibit any
observable, propagating excitations. The representation
of the gauge fields in terms of ghost excitations only,
therefore, tests the principle that no observable excita-
tion modes are required to represent the commutation
rules given in Egs. (10) and (20).

The Hamiltonian H = [dx H(x)
Hy and Hj are given by

= Hy + Hi, where

Hy = -/dx %mfln-FlﬂAo + He:

=" im [ag(k)ag(—k) — ag (k)ag (k)] + H.
k
(28)

with Hes = [ dx Hez(x) and
Hi =Y — [aq(K)jo(—k) — a(K)jo(k)
I Zk: \/'r—n—[ Q\X)Jo o(k)j ]

- Z 27:;7 [ar(k)ji(—k) + ak(k)ji(k)]

Z 7'\/_617; n

[ag (k)51 (—k) — ag(k)ji(k)]

- Z ig(k)ki [aq(k)ji(—k) — aj(k)(k)] .  (29)
k

The total Hamiltonian Hp reduces to the canonical
Hamiltonian H on the constraint surface on which all
C;’s are zero, and it correctly implements time evolution
when the Dirac commutation rule given in Eq. (20) is
used. This can easily be demonstrated by observing that
when the commutators i[H, A;], i[H, Ao}, and i[H, G] are
substituted for dgA;, dpAo, and JG, respectively, the
Euler-Lagrange equations are obtained. The other con-
straints, Il + G = 0 and IIg = 0, have no further effect
on the commutation rules for the gauge fields.

We will implement the gauge constraint, A9 = 0, and
Gauss’s law not by using the DB procedure but, as in
earlier work [14,18], by confining the dynamical time evo-
lution to an appropriately chosen subspace of the Hilbert
space {|h)} in which the Hamiltonian H operates. The
Hilbert space {|h)} very closely resembles the Hilbert
space used in Ref. [14]; {|h)} is based on the pertur-
bative vacuum |0) annihilated by all annihilation op-
erators, ag(k) and ag(k) as well as the electron and
positron annihilation operators e(k) and é(k), respec-
tively. The Hilbert space {|h)} contains a subspace {|n)}
that consists of all multiparticle electron-positron states
of the form [N) = &/(ay) - &/ (@)e!(pa) -/ (po)|0), as
well as all other states of the form ag (ki) - - - agy (ki) | V).
We note that the commutation rules for t%e ghost
(26) and (27) demonstrate
ag(ki)|N) bave zero norm,
since (Nlag(k;)---aq(ki)ay(ky)---a%(ki)|N) can be
rewritten as (Nlag(k;)---ap(ki)ag(ks) - - aq(k:)|N)
and each of the ag(k;) annihilates any state |V). The
states in the subspace {|n)} therefore are either free of

operators given in Egs.
that the states ag(ki)---
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ghosts, or if they contain ghosts, they are zero norm
states. Hy time translates all states in {|n)} so that
they remain contained within it; and the matrix elements
of Hoy within {|n)}, i.e., matrix elements of the form
(np|Ho|n,), always vanish when |n,) or |np) contains any
af, ghosts. States in which a} (k) operators act on a state
|n), such as ak(qi)---ag(a)ay (ki) -ag (k)| V), are
included in {|h)}, but excluded from {|n)}. Such states
are not probabilistically interpretable and their appear-
ance in the course of time evolution signals an inconsis-
tency in the theory. In the next section we will show how
the implementation of Gauss’s law and the gauge choice
averts the development of this inconsistency. Lastly, it
should be noted that the unit operator in the one-particle
ghost (OPG) sector is given by

lorg = Y [a5(k)[0)(0lar (k) + ak(k)[0)(0lag(k)] -
k

(30)

For multiparticle ghost sectors, the obvious generaliza-
tion of Eq. (30) applies.

III. THE ROLE OF GAUSS’S LAW

As in all other gauge theories, Gauss’s law is not an
equation of motion in CS theory. The operator G(x) used
to implement Gauss’s law is

G(x) = jo(x) — 3memFin(x),

and whereas oG = G, 998G = 389G = 0 is the equation
of motion that governs the behavior of this model. Fur-
ther measures must be taken to implement G = 0. We
can conveniently express G in the form

Zm [aQ (k)ek

Jo(k) ix
3/2 ’

(31)

+ag(k)e > 4+ (32)

where jo(k) = [ dx jo(x)e **. We can define an oper-

ator (k) as
k) = (k) + 5= o(k), (33)
so that
G(x) =Y m*? [Qk)e™™ + Q*(k)e **].  (34)
k
Similarly, we can write Ap(x) as
Ao(x) = " — [Q(Kk)e™™ — Q*(k)e~ %] . (35)

We can therefore implement Gauss’s law and the gauge
condition by embedding the theory in a subspace {|v)}
of another Hilbert space. The subspace {|v)} consists of
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the states |v) which satisfy the condition
Q(k)|v) =0. (36)

It can be easily seen from Eqs. (34) and (35) that, in the
physical subspace {|v)}, (¢’|G|v) = 0 and (V'|Ao|v) =0,
so that both Gauss’s law and the gauge condition 49 = 0
hold. Moreover, the condition Q(k)|v) = 0, once estab-
lished, continues to hold at all other times because

[H, (k)] =0 (37)

so that Q(k) is an operator-valued constant. This demon-
strates that a state initially in the physical subspace {|v)}
will always remain entirely contained within it as it de-
velops under time evolution.

Consider now the unitary transformation U = eP,
where

D=—z/dxdy Z

It is easy to show that

31A1 (x)jo(y)-  (38)

UlQK)U = ag(k). (39)

We can use U to establish a mapping that maps Q(k) —
ag(k) and {|v)} — {|n)}, where {|n)} is the subspace
described in the preceding section. In this mapping, op-
erators P map into 'P ie., U"1PU = P. For example,
Q(k) = ag(k), and H = U-1HU is given by

o t€inkn
H=Ho~ Y —5" ji(k)jo(~k)
k

_Zz 6lnn

The similarly transformed fields are

[aq(k)ji(—k) — ag(k)ji(k)] . (40)

Ai(x) = Au(x) — Y 0L (k) o J)e™>
k
- Z “'" ™ jo(k)e™*, (41)
Ag(x) = Ao(x), G(x)=G(x), (42)
and

%(x) = exp [Py (x)] ¥(x) , (43)

where

etk (x—y)

— 0 Ai(y). (44)

u(x) = —ze/dy

The transformed electric and magnetic fields are

Ey(x) = Ey(x) (45)
and

B(x) = B(x) + B(x) , (46)

where Ej(x) and B(x) are given by Eqgs. (25) and (24),
respectively, and

B(x) = ir:)- . (47)

Equations (43) and (44) are of particular importance to
one of the questions we are investigating, i.e., whether
imposing Gauss’s law on the charged particle states
of this theory causes them to develop “exotic” frac-
tional statistics. If the anticommutators for_the spinor
fields that implement Gauss’s law, {¥(x),%'(y)} and
{#(x),%(y)}, differ from the canonical spinor anticom-
mutators {%(x), ¥ (¥)} = 6(x—y) and {$(x), ¥(y)} = 0
that account for the fact that the excitations of 3 and
1! are subject to Fermi statistics, then that difference
may signal that the excitations of 4 and 'n/,vt are subject
to fractional statistics. We also note that 9(x) is gauge
invariant; if we gauge transform (x) within the con-
fines of the temporal gauge, then the effect of that gauge
transformation on Dy(x) and on 1¥(x) cancel, so that the
spinor field 9(x) is gauge invariant. This gauge invari-
ance is necessary for excitations of J:(x) to obey Gauss’s
law.

To show that the anticommutation rules for 1/; and 1/,"’(
are identical to the anticommutation rules for the uncon-
strained 9 and ¢, we observe that (x) and A;(y) [and
therefore also 4 (x) and Dy(y)] commute at equal times,
so that {¥(x),¥'(y)} = 8(x —y) and {(x),%(y)} = 0.
The constrained fields 9 and 9! obey the same anticom-
mutation rules as the unconstrained 1 and %, and are
not subject to any exotic graded anticommutator algebra.
The electron and positron states that implement Gauss’s
law therefore obey standard Fermi, not fractional, statis-
tics. This result can also be demonstrated from the fact
the the transformed fields 9, ¥f, A;(x), and II;(x) are
unitarily equivalent to 1, ¥, A;(x), and II;(x) respec-
tively, and that commutators and anticommutators that
are equal to ¢ numbers, are invariant to unitary transfor-
mations. It is, of course, important to keep in mind that
the particular form of 3(x) given in Eq. (43) only applies
to the temporal gauge and to this method of quantiza-
tion. In other gauges, and with other methods of im-
plementing constraints, the spinor fields that implement
Gauss’s law will have a different representation, and ques-
tions about the statistics of electron-positron states that
obey Gauss’s law arise in a different way. We will formu-
late this theory in the Coulomb gauge in later sections of
this paper, and in that work confirm the result that the
charged particle states obey standard Fermi statistics.

It is convenient to establish an entirely equivalent, al-
ternative formalism, in which all operators and states
are unitarily transformed by the unitary transforma-
tion U. Since all matrix elements and eigenvalues are
invariant to such a similarity transformation, we can
construct a map {|v)} — {|n)}, (k) = aq(k), and,
in general, for all other operators P, P — P, where
P = U~1PU. We may then use the transformed rep-
resentation as an equivalent formulation of the theory, in
which Gauss’s Law and the gauge constraint, 49 = 0,
have been implemented. In this equivalent alternative
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representation, {|n)} is the physical subspace in which
Gauss’s law and the gauge condition are implemented,
and exp(—iHt) is the time-translation operator. A time-
translation operator will time translate state vectors en-
tirely within the physical subspace in the transformed
representation, if it is entirely devoid of a} (k) and ar(k)
operators, or if it contains them at most in the combina-
tion [a}i(k)aq(k) + ap(k)agr(k)]. Inspection of Eq. (40)
confirms that H is, in fact, entirely devoid of a}(k)
and ag(k) operators, so that the time-translation op-
erator, exp(—il? t), correctly satisfies this requirement.
Observable multiparticle states in the alternative trans-
formed representation are described by state vectors in
{|n)} which we have previously designated by |N). In
CS theory, the only such positive-norm observable states
are charged excitations of the spinor field (we will refer
to them as electrons and positrons for simplicity). The
time-translation operator e *#* translates state vectors
|N) by transforming them into new state vectors, at a
later time ¢; these time-translated state vectors consist
of further positive-norm state vectors |N'), as well as ad-
ditional ghost states. All of the latter are represented
by products of a*Q(k) operators acting on positive-norm
states |N’). At all times, the positive-norm states alone
exactly saturate unitarity. We will refer to a quotient
space, which is the set of all |[N), and also is the residue
of {|n)} after all zero-norm states have been excised from
it.

We can define another Hamiltonian I;Tquot, which con-
sists of those parts of H that remain after we have re-
moved all the terms in which a (k) or ag(k) is a factor;

I?quot is given by
_ 1€
Hguor = Hee = 3 0200 i 1)jo (k). (48)
k

The Hamiltonian ﬂquot contains H,.z, which describes the
kinetic energy of noninteracting electrons and positrons;
it also contains a part that describes a singular nonlocal
interaction between the charge density and the transverse
current density. The projections of exp[— iHt]|N) and
exp[—-quuottle ) on other state vectors in the quotient
space are identical. The parts of H that contain aQ(k)
or ag(k) as factors therefore do not play any role in the
time evolution of state vectors within the quotient space
of observable states, and cannot have any effect on the
physical predictions of the theory. The time-evolution
operator that time translates physical states in the quo-
tient space of observable states can therefore be given as
exp[—iHguott].

If we expand D in momentum space we get D = D, +
D, where

D=3 s len(K)io(—k) — ap(k)jo(k)]  (49)

and

Dy =) id(k) [ag(k)jo(~k) + ag (k)io(k)] . (50)
k
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Since D, commutes with ag(k), it has no role in trans-
forming Q(k) into ag(k), and the operator V = eP1 by
itself achieves the same end as U, i.e.,

VIQk)V = ag(k). (51)

We can use V to establish a second mapping of this the-
ory, in which operators map accordingto? - V'~ 1py =
P. (k) = ag(k), so that Q and Q are identical; un-
der the mapping P — V~1PV = P, the subspace {|u)}
maps into the same subspace {|n)} as under the mapping
P->U" 1Py = P. But, in the case of other operators,
P differs from P. For example, H is given by

H=Ho=3 = EEintn (k) o( k)
X e Bk (k)jo(~
- Xk: L\/—r—%rﬁ [aq(X)5i(—k) — ag (k)i (k)]
- X i#(0k [aq()i(—K) ~ ap(k)i)] . (52

Similarly, ¥ and ¢ differ from each other, although both
are gauge invariant and project, from the correspondingly
defined vacuum states, electron states that implement
Gauss’s law. ) is given by ¥(x) = exp[Dv(x)] ¥(x) [19],
where

Dv(x) = —ie / dy Z " [a,A,(y)

+ﬁ¢(k)€1n31‘4"(y)] . (53)

Similarly, J and J are the forms into which the Noether
angular momentum operator J is mapped when it is uni-
tarily transformed by U and V, respectively. Both these
forms, J and J, are therefore significant for the rotation

of states, and it is of particular importance to observe
that J and J differ from each other. J is given by

J=J,+Je, (54)

where J, and J. are the angular momenta of the gauge
field and the spinors, respectively. J; and J,. are given
by

Jg = —/dx €1n(ILiz18n Ai — G180, A + ILA,) (55)

and
_ / dx (9! sretndnth + 11700). (56)

Under the transformation mediated by U, J — J, and
J = J, so that J remains untransformed. But, under the
transformation mediated by V, J — J where J=J+J
and
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7 == 3 ankt 25 [ay()ja(k) + a0 (Kio(~k)]
k

eimki OP(K) .
2m3/ 2 Bk,

——Jo(k)jo(—k). (57)

We can support the preceding demonstration that J
transforms into itself under the unitary transformation
mediated by U, whereas it transforms into J + J under
the unitary transformation mediated by V', with the fol-
lowing observation: D is an integral over operators and
functions which all transform as scalars under spatial ro-
tations. Since J is the generator of spatial rotations, the
commutator [J, D] must vanish. D, is not necessarily
such an integral over scalars, and there is therefore no
similar requirement that [J, D,] vanishes.

Since U and V map (k) into ag(k) in identical ways,
we can conclude that the implementation of Gauss’s law
is not responsible for the fact that J is transformed into
J + J when V is used to effect the mapping. In fact, we
can use the Baker-Hausdorff-Campbell relation to con-
struct an operator W = e? ', where

D' = 3 o (k) o(k)jo(~k)
k
— 3 i6(k) [ag@)io(~k) + a5 (W)0()] ,  (58)
k

so that V = UW. W has the same effect as V on J, i.e.,
we find that

WLIW =J+J, (59)

although W leaves (k) and G(x) untransformed and
does not play any role in implementing Gauss’s law; ¢(k)
is arbitrary, and if we choose to set ¢(k) = 0, U and V
become identical. If we choose

$(1) = v 28 a1 B2 (60)

k'’
and if we assume that we can carry out the integration
over dk while jo(k) is still operator valued, then J be-
comes J = Q%/4wm, and accounts for the well-known
anyonic phase in the rotation of charged states through
2.

In comparing H with H we note that they differ by
some terms that include ag(k) or aj (k) as factors. Since

both H and H are entirely free of ag(k) and a}(k) op-
erators, ag(k) and aj (k) commute with every other op-

erator that appears in H or H. The terms which in-
clude aq(k) or aj (k) as factors therefore do not affect
the time evolutxon of state vectors in the previously de-
fined quotient space of observable particles (i.e., electrons
or positrons); they can neither produce projections on
physical states, nor can they contribute internal loops to
radiative corrections. They have no effect whatsoever on
the physical predictions of the theory and if they are ar-
bitrarily amputated from H or H, none of the physical
predictions of the theory are aﬁ'ected The only other
difference between H and H is

7525
h=Y" 372 Pk)kuit(k)jo(—k); (61)
k
h is a total time derivative in H, which can be expressed
alternatively as h = i[Ho,X], as h = i[H,X], as h =
i[H,x], or as h = i[H, x] where
1 . .
X=- Ek: 2372 $)To(k)jo(~k). (62)

We will discuss the significance of x in the next section.

IV. ROTATIONAL ANOMALIES AND
STATISTICS

Conclusions about the physical implications of this the-
ory depend not only on the structure of the operators,
but also on the properties of the Hilbert space in which
these operators act. The choice of a Hilbert space can
have significant consequences, even though these may not
be reflected in the field equations or the commutation
rules. We can, for example, decide to assign the previ-
ously defined Hilbert space {|n)} to the representation
in which the Hamiltonian and the angular momentum
take the forms H, given in Eq. (40), and J = J, given in
Eq. (54), respectively. We will designate this representa-
tion of operators as the P representation, and the system
consisting of operators in the P representation acting in
the Hilbert space {|n)} as the Y system. This system
of operators and states constitutes a theory in which the
charged fermions rotate “normally,” acquiring a factor of
(=1)" in a 27N rotation. The sole interaction between
electrons in the U system is given by

H= =3 S e)jo(~k). (63)
k

We can use W to unitarily transform the operators in the
P representation so that all operators P are transformed
to the P representation, as shown by

WPW = P. (64)

The Hamiltonian H, and the angular momentum J, will
then have the forms given in Egs. (52) and (59), respec-
tively. By itself, this change in the form of the operators
has no significance. For example, if we combine these
transformed operators with the correspondingly trans-
formed Hilbert space {|n’)}, where each |n!) = W~1|n;),
then we have merely regenerated the U system of oper-
ators and states in another representation. There will
be no rotational anomaly, although J appears as part of
the angular momentum J. The combined transformation
of operators and states guarantees that the rotated state
e!U+7)|n!) returns to (—1)¥|n!) in a 27N rotation, in
spite of the arbitrary parameter in J, which appears to
imply arbitrary phases in 27 rotations. To demonstrate
this in detail, we examine

R(O)|nt) = &0+ nl) = T0TOW N ny).  (65)
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J commutes with W~!; and, for ¢(k) given by Eq. (60),
J commutes with 7, but not with W~!; we can show
that

eiJGw—l — W—leiloe—iJO (66)
so that

ei(J+.7)9|n£> — W—leflJOln‘_) (67)

and the state |n}) rotates “normally,” to acquire a fac-
tor of (—1)" in a 27N rotation, as is required by the
similarity transformation.

Alternatively, we could just as well assign the Hilbert
space {|n)} to the P representation of operators. We
will designate the system consisting of operators in the
P representation and the Hilbert space {|n)} as the W
system. The systems W and U both implement the equa-
tions of motion, as well as Gauss’s law and the gauge
choice Ap = 0. There is no reason to prefer one system
over the other on the basis of dynamics or constraints.
In the W system of operator and states, however, the J
in J would be responsible for an anomalous rotational
phase that we associate with anyonic behavior. Subse-
quent similarity transformations that transform to the
operator representation P and the states Win;), would
preserve that rotational phase anomaly, although then
the arbitrary parameter would not reside in J. We can
conclude from these observations that rotational phase
anomalies are possible; but they are not an inevitable
feature of this gauge theory. However, contrary to what
has been suggested by some authors [1,2,12], it is not
the implementation of Gauss’s law that is responsible for
anyonic rotational phases. Gauss’s law can be imple-
mented with or without producing arbitrary rotational
phases. Moreover, in corroboration of a result obtained
by other means [6], we find that regardless of whether the
arbitrary rotational phase develops, the anticommutation
rule that governs the electron field operator remains un-
changed by the unitary transformations (U or V') that are
instrumental in implementing Gauss’s law in the {|n)}
space. And that observation applies equally to the free
Dirac field and to the gauge-invariant electron field that
projects electrons that obey Gauss’s law. The “normal”
and the “anyonic” operators are unitarily equivalent and
both obey Fermi-Dirac statistics. Graded commutator
algebras and “exotic” fractional statistics do not arise in
the process of implementing Gauss’s law and establishing
the U and W systems of operators and states.

We next turn our attention to the extra term h that
appears in the Hamiltonian H in the W system; h is the
only part of (H — H) that describes interactions between
charges and currents, and which therefore might possi-
bly account for physically observable discrepancies be-
tween H and H. Since the Y and W systems of operators
and states both implement the same dynamical equations
and constraints, the question whether both these systems
make identical physical predictions is of considerable in-
terest. The fact that h given in Eq. (61) is a total time
derivative gives us a priori confidence that it will not
affect the S matrix produced by this theory. A formal
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argument that confirms this result is based on a theo-
rem about the relationship between two representations,
in which the Hamiltonian in one is a unitary transform
of the Hamiltonian in the other, but the states in both
representations are left untransformed, and are identical
[18,20]. When this theorem is applied to the question we
have raised here, we find that the on-shell transition am-
plitudes determined by the two Hamiltonians are related
by

Ty =Tpi+ iR, (68)

where T ; and Tf,; are the scattering amplitudes

. - - 1 - )
Ty; = <f | (HI + HImHI) 2> (69)

and
fro= (t|(B+ i) i) (0
fII and Eﬁ are given by
Hy = H - H, (71)
and
B =H-H,, (72)

and R is given by
R={(f|| & ———1-—(1 —e7iX)
lE—f1'+ie

1> ; (73)

|¢) and |f) are two multiparticle electron-positron states
in {|n)} with identical energy F, and represent initial
and final states in scattering events, respectively. We
note that if Hy and x commute, then h vanishes. If
Hy and x fail to commute, then R will consist of terms
proportional to

—(1—e%)

1 n
E — H + e

/dE,l (F|Hy + Hy(E — H + ie)~Hijn)
x(n|(—ix)*|i)(E — En + i)™}

and

/ dE, (f|(~ix)*|n)

x(n|Hy + H{(E — H + ie) "' Hy|i)(E — En, + i€) ™",

where k is an integer. When x and Hy do not commute,
R will not give rise to any 1/ie singularities to cancel
the ie on the right-hand side of Eq. (68), except perhaps,
for contributions that represent self-energy insertions in
external lines. These contributions only affect renormal-
ization constants and do not affect physical quantities.



50 ANYONIC STATES IN CHERN-SIMONS THEORY

We conclude, therefore, that the physical predictions
of this model, i.e., the S-matrix elements that determine
scattering amplitudes and energy level shifts for electron-
positron systems, are insensitive to whether the charged
states develop anomalous phases.

V. FORMULATION OF THE THEORY IN THE
COULOMB GAUGE

To confirm the results we obtained in the preceding
discussion of CS theory in the temporal gauge, we now
also formulate the same model in the Coulomb gauge.
The Coulomb gauge formulation makes use of a quanti-
zation procedure that is different from the one we used
for the temporal gauge, and therefore can provide inde-
pendent corroboration of our earlier conclusions. In the
Coulomb gauge, the gauge field Ao is not involved in
the gauge condition, so that a gauge-fixing term cannot
be used to generate a canonical momentum conjugate
to Ag. The most convenient ways to quantize CS the-
ory in the Coulomb gauge are the Dirac-Bergmann (DB)
procedure [15,16] and the symplectic method of Faddeev
and Jackiw [17]. We will here use the DB procedure to
impose the constraints. In this method, the canonical
“Poisson” commutators (anticommutators) are replaced
by their respective Dirac commutators (anticommuta-
tors), which apply to the fields that obey all the con-
straints of the theory. Since the Dirac and the canonical
commutators (anticommutators) can, and often do, dif-
fer from each other, this method enables us to investigate
whether the Dirac anticommutator for the spinor field ¢
and its adjoint ¢ differ from the corresponding canonical
anticommutator. A discrepancy between the Dirac and
canonical anticommutators for the spinor fields could sig-
nal the development of “exotic” fractional statistics due
to the imposition of Gauss’s law. On the other hand,
identity of the Dirac and the canonical anticommutators
for the spinor fields demonstrate that the excitations of
the charged spinor field that obey Gauss’s law (as well
as all other constraints) also obey standard Fermi statis-
tics. The question of whether the imposition of Gauss’s
law produces charged particle excitations that are sub-
ject to exotic statistics, therefore, arises in a new way in
the Coulomb gauge. In this section we will carry out this
quantization procedure and demonstrate explicitly that
the implementation of Gauss’s law for the charged spinor
field does not change the anticommutation rule for 4 and
1, and does not cause the excitations of these fields to
develop exotic fractional statistics.

The Lagrangian for CS theory in the Coulomb gauge
is given by

L= %méxn (F'[,,,Ao - 2FnoA1) — GO A + 1A
—JdoAo + Y(#v*8u — M)p.  (74)

This Lagrangian differs from Eq. (1) only in that the
gauge-fixing term —G8yAp is replaced by —G9;4;. We
have included a gauge-fixing term for the Coulomb gauge
in Eq. (74) to enable us to develop all the constraints
systematically from the Lagrangian.
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The Euler-Lagrange equations generated by the La-
grangian are

me Fro — ji — alG =0, (75)
%meln-Fln —Jjo=0, (76)
84 =0, (77)
and
(M = iv*D,)p = 0. (78)

The momenta conjugate to the gauge fields are II; =
3memAn, for | = 1,2; Ilp = 0, where Iy is the mo-
mentum conjugate to Ap; and IIlg = 0, where Ilg is the
momentum conjugate to the gauge-fixing field G. For
the spinor fields, we obtain the momenta II,, = i)' and
II,+ = 0 which are conjugate to ¢ and T, respectively.
The corresponding primary constraints can be expressed
asC;~0fori=1,...,4,as wellas Cy =~ 0 and Cy+ = 0,
where

C, =1I; — 3mA,, (79)
C; =1l + 3mA,, (80)
Cs = I, (81)
Cs =g, (82)
Cy = Iy — iyt (83)
and
Cyt = Iyt. (84)

The total Coulomb gauge Hamiltonian HS is given by

HE = / dx 9t (oM — inom )

+ /dx [—%me;an,.Ao + G A

+JjodAo — J1A1 — UsCy — UsCa — UsCs — UsCy
—UyCy — UyptCyt] , (85)

where U, .. .,U, designate arbitrary functions that com-
mute with all operators; Uy, and Uyt designate arbi-
trary functions that are Grassmann numbers, which an-
ticommute with all fermion fields and with Grassmann
numbers, but commute with bosonic operators and with
Uy,...,Us. In the imposition of constraints we will use
the Poisson brackets [A, B] of two operators A and B,
defined as [4, B] = AB—(—1)"(4A)"(B)BA, where n(P) is
an index for the operators P;! n(P) = 0 if P is a bosomic

'We generally follow the conventions in Sundermeyer [21].
The definition of Poisson brackets used here, however, differs
from Sundermeyer’s definition by a factor i.
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operator, such as a gauge field or a bilinear combination
of fermion fields; and n(P) = 1 if P is a Grassmann
number, or a fermionic operator such as ¥ or ¥t. The
Poisson bracket [A, B] is the commutator [A, B] when A
and B are both bosonic operators, or if one is bosonic and
the other fermionic. But [A, B] is the anticommutator
{A, B} when A and B are both fermionic operators.

We use the total Hamiltonian to generate the further
constraints needed to maintain the stability of the pri-
mary constraints under time evolution. For this purpose
we evaluate time derivatives of the primary constraints
by using the equation 8,C; = [HE, C;], and set 8,C; ~ 0.
In this way we find that 8,C7 ~ 0 and 3,C> =~ 0 lead to
equations for U; and U, but do not generate any sec-
ondary constraints. The equation 8yC3 ~ 0 leads to the
secondary constraint Cs =~ 0 where

Cs = me, 01 A, + Jo, (86)

which implements Gauss’s law. 9yCs ~ 0 leads to a fur-
ther, tertiary constraint, Cg ~ 0 where

Cs = 010,G. (87)

This constraint is necessary for consistency between
Eq. (75) and Gauss’s law. To demonstrate this we
observe that taking the two-dimensional divergence of
Eq. (75), and applying current conservation, lead to
9o [%me,an,. - jo] + 8,6,G = 0, which is inconsistent
with Gauss’s law unless 8;0;,G = 0. The tertiary con-
straint C¢ = 0;0;G = 0 ends this particular chain
of unfolding constraints; imposing the condition that
80(0101G) = 0, leads to an equation for Uy, but gener-
ates no further constraints. To ensure the stability of the
constraint IIg ~ 0, we set 9yIl¢ =~ 0 and obtain C7; = 0
where

Cr = 1Ay, (88)

which implements the gauge condition for the Coulomb
gauge. The equation 8oC7 = 0 leads to the tertiary con-
straint Cg ~ 0 where

1 .
Cs = 0101 A0 + — €Ol jn. (89)

The constraint Cg = 0 is an expression of the fact that
Eq. (75), which is an equation of motion for the gauge
field A; in most gauges, reduces to a constraint in the
Coulomb gauge. Equation (75), which has a longitudinal
as well as a transverse component, can be expressed as
me (Opdo + 80An) — ji — G = 0. The longitudinal
component has just been shown to lead to the constraint
8;0G =~ 0. The transverse component can be extracted
by contracting over €;8;, and noting that €;€1, = —6in.
In the resulting equation, the sole remaining time deriva-
tive, 8901 A, vanishes because of the Coulomb gauge con-
dition, leaving Cg =~ 0 as a constraint. The equation
80Cs ~ 0 leads to no further constraint, so that Cg =~ 0
terminates the chain of constraints that develops from
II¢ = 0. In the case of the spinor fields, the equations
00Cy = 0 and 3yCy+ = 0 lead to equations for the Grass-
mann functions Uy, and U,+; but they do not lead to any
further constraints.
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The preceding analysis leads to ten second-class con-
straints for this gauge theory. Imposition of the con-
straints requires that we form the matrix M(x,y), whose
elements are M;;(x,y) = [Ci(x),C;(y)]. We assign
the values Cy,...,Cq0 to the descending horizontal rows
of the matrix, as well as to the sequence of vertical
columns, where Cy,...,Cg refer to the previously defined
constraints; for simplicity we will designate Cy, and C,+
as Cg and C,, respectively. The matrix M(x,y) is eval-
uated and inverted; its inverse, Y (x,y), which obeys

/dz Mk (x,2)Vrj(2,¥) = /dz Yir(x,z2)My;(z,y)
= 8;;0(x —y) (90)

is used to calculate the Dirac commutators (anticommu-
tators) by applying the equation

[£(), <31 = [€(x),¢(¥)]
-3 / dz dz’ [£(x),C:i(a)]

xVi;(z,2")[C;(z'),C(y)]- (91)

We observe that the resulting Dirac commutators (anti-
commutators) are given by

[v(x),¢'@)1° = {(¥(x), 4! ¥)} =d(x~y), (92)
[¥(x), v()]P = {¥(x),%(y)} =0, (93)

[40(x), %(¥)]° = [Ao(x), %(¥)]

ie (z—y)h
—_— 94
e P Yom¥b(y), (94)

[Ai(x), % (y)]° = [A{(x),lb(Y)]
= flnw P(¥), (95)

[Ai(x), Ao (¥)]° = [Ai(x), 4o(y)] =0, (96)

and

[4i1(x), A (¥)]® = [Ai(x), An(y)] = O. (97)

Equations (92) and (93) demonstrate that the con-
strained spinor field obeys standard anticommutation
rules, and not a graded anticommutator algebra; and that
the charged excitations of that spinor field are subject to
standard Fermi statistics, and not the exotic fractional
statistics that would result from a graded anticommuta-
tor algebra. In contrast with the spinor field, the Dirac
commutators of the gauge fields differ substantially both
from the unconstrained canonical commutators, and also
from their corresponding values in the temporal gauge.
The observation that the spinor anticommutation rule is
unaffected by constraints, and identical in the Coulomb
and temporal gauges, therefore is not trivial.
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The Dirac commutators (anticommutators) imply re-
lationships among the constrained operators that reduce
the independent degrees of freedom of this theory. There
are various procedures for making these relationships
explicit, but in this model the simplest way is to use
the constraint equations to express the gauge fields as
functionals of the charge and current densities. Since
the gauge fields have no observable, propagating degrees
of freedom, this procedure can completely eliminate all
gauge fields from the Hamiltonian. We find, for example,
that Cs = 0 can be solved to yield

1 1 8 .
Al(x) = —;n— Elnﬁ 5‘1:—"_']0(x), (98)

and Cg = 0 can be solved for

1 1 .
Ao = “m Eln’v—z Otjn. (99)

When we use Egs. (98) and (99) and the fermion an-
ticommutation relations for the constrained 3 and %,
we exactly reproduce the Dirac commutators given in
Eqgs. (94)-(97). The value GP of the gauge-fixing field G
on the constraint surface can be shown to be zero using
the relation

GP(x) = G(x)

-3 [dyas [6(0, I3, 5165 a).

i,j=1
(100)

Since GP = 0, then Eq. (75) reduces to me;, Fon —ji = 0
under the influence of the constraints. When these con-
strained representations of the gauge fields are substi-
tuted into the Hamiltonian, and all the other constraint
functions, C;, for 1 = 1,...,10, are set to zero, we obtain
the result that

He = / dx ¥ (voM — ivomdr) Y

i€k .
=Y 5 aik)o(—k). (101)
k
We observe that this form of the Hamiltonian is exactly
identical to Hgyot in the temporal gauge. This exact iden-
tity of Hc and I.Iquot provides a very compelling demon-
stration that the charged states that obey Gauss’s law
are subject to the identical dynamics in both our tempo-
ral gauge and Coulomb gauge formulations of this model.
Since the gauge independence of the physical predictions
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of this theory is a firm requirement, this identity serves as
a significant corroboration of the consistency and correct-
ness of both of our formulations of this model. Similarly,
our separate demonstrations, in the temporal gauge and
the Coulomb gauge formulations, of the anticommuta-
tion rules for the spinor fields that create and annihi-
late charged particles that obey Gauss’s law, show that
these charged particle states obey standard Fermi rather
than fractional statistics. The formalism employed for
each of these demonstrations is specific to each gauge—
we observe, for example, that Dy(x), given in Eq. (44),
whose properties play an essential role in the argument
that pertains to the temporal gauge, would vanish in
the Coulomb gauge. But the fact that the same result
is reached in both gauges, confirms that our conclusion
about the statistics of charged particle states is gauge
independent, and makes the argument particularly per-
suasive.

VI. DISCUSSION

In the preceding work, we have demonstrated that in
Chern-Simons theory coupled to a charged-fermion field,
the imposition of Gauss’s law does not cause the spinor
fields to develop an “exotic” graded commutator alge-
bra. In the process, we have constructed a Fock space
of charged excitations of these fields that are subject to
standard Fermi, and not fractional statistics, even when
they obey Gauss’s law. Our work applies to both the
temporal and the Coulomb gauge formulations of the the-
ory. We have also obtained a time evolution operator for
the single and multiparticle electron-positron states that
obey Gauss’s law, and have shown that this time evolu-
tion operator is identical in the two calculations we have
carried out, one in the temporal and the other in the
Coulomb gauge. This result provides further confirma-
tion that the quantization procedures and the conclusions
based on them are correct. We have also shown that the
charged states may or may not acquire arbitrary phases
in 27 rotations, depending upon the way we choose to
represent them. However, that choice of representation
can be made independently of whether the charged states
of the theory obey Gauss’s law; it is not a consequence of
the imposition of the constraints. Moreover, the choice
of representation that determines whether arbitrary rota-
tional phases result from 27 rotations does not have any
implications for the physical predictions of the theory.

ACKNOWLEDGMENTS

This research was supported by the Department of En-
ergy under Grant No. DE-FG02-92ER40716.00.

[1] G. W. Semenoff, in Physics, Geometry, and Topology,
edited by H. C. Lee (Plenum, New York, 1990); Phys.
Rev. Lett. 81, 517 (1988).

[2] G. W. Semenoff and P. Sodano, Nucl. Phys. B328, 753
(1989).

[3] M. Liischer, Nucl. Phys. B328, 557 (1989).

[4] R. Banerjee, Phys. Rev. Lett. 69, 17 (1992); Phys. Rev.
D 48, 2905 (1993); A. Foerster and H. O. Girotti, Phys.
Lett. B 230, 83 (1989).

[5] T. Matsuyama, Phys. Rev. D 42, 3469 (1990); 44, 2616
(1991).

[6] C. R. Hagen, Phys. Rev. D 31, 2135 (1985).



7530 KURT HALLER AND EDWIN LIM-LOMBRIDAS 50

[7] C. R. Hagen, Phys. Rev. Lett. 63, 1025 (1990).

[8] D. Boyanovsky, Phys. Rev. D 42, 1179 (1990); D. Boy-
anovsky, E. T. Newman, and C. Rovelli, ibid. 45, 1210
(1992).

[9] Y. Srivastava and A. Widom, Phys. Rep. 148, 1 (1987).

[10] R. Jackiw and So-Young Pi, Phys. Rev. D 42, 3500
(1990).

[11] M. Swanson, Phys. Rev. D 42, 552 (1990).

[12] G. W. Semenoff and L. C. R. Wijewardhana, Phys. Lett.
B 184, 397 (1987).

[13] C. Hagen, Ann. Phys. (N.Y.) 157, 342 (1984).

[14] K. Haller and E. Lim-Lombridas, Phys. Rev. D 46, 1737
(1992).

[15] P. A. M. Dirac, Lectures on Quantum Mechanics
(Yeshiva University Press, New York, 1964).

[16] P. G. Bergmann and I. Goldberg, Phys. Rev. 98, 531

(1955).

[17] L. D. Faddeev and R. Jackiw, Phys. Rev. Lett. 60, 1692
(1988); G. V. Dunne, R. Jackiw, and C. A. Trugenberger,
Ann. Phys. (N.Y.) 194, 197 (1989).

[18] K. Haller, Phys. Rev. D 36, 1830 (1987).

[19] We note that the gauge- invariant operators used by Boy-
anovsky et al. in Ref. [8] to project charged particle states
that implement Gauss’s law are similar to our ¥ (but not
to our ). Their results are in agreement with our obser-
vation that the implementation of Gauss’s law does not
affect the anticommutation rules for charged fermions.

[20] K. Haller and E. Lim-Lombridas, Found. Phys. 24, 217
(1994).

[21] K. Sundermeyer, Constrained Dynamics (Springer, New
York, 1982).



