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We discuss the canonical quantization of Chem-Simons theory in 2+ 1 dimensions, ~&~smally

coupled to a Dirac spinor field, first in the temporal gauge and then in the Coulomb gauge. In
our temporal gauge formulation, Gauss's law and the gauge condition Ao = 0 are implemented

by embedding the formulation in an appropriate physical subspace. We construct a Fock space of
charged particle states that satisfy Gauss's law, and show that they obey fermion, not fractional
statistics. The gauge-invariant spinor field that creates these charged states &om the vacuum obeys
the anticommutation rules that generally apply to spinor fields. The Ham~&tonian, when described in
the representation in which the charged fermions are the propagating particle excitations that obey
Gauss's law, contains an interaction between charge and transverse current densities. We observe
that the implementation of Gauss's law and the gauge condition does not require us to use fields with

graded commutator algebras or particle excitations with &actional statistics. In our Coulomb gauge
formulation, we implement Gauss's law and the gauge condition 8~A& = 0 by the Dirac-Bergmann
procedure. In this formulation, the constrained gauge fields become functionals of the spinor fields,
and are not independent degrees of freedom. The formulation in the Coulomb gauge confirms the
results we obtained. in the temporal gauge: The "Dirac-Bergmann" anticommutation rule for the
charged spinor fields Q and ft that have both been constrained to obey Gauss's law is precisely
identical to the canonical spinor antico~mutation rule that generates standard fermion statistics.
And we also show that the Ha~i&tonians for charged particle states in our temporaj, and Coulomb

gauge formulations are identical, once Gauss':s law has been implemented in both cases.

PACS number(s): 11.10.Ef, 03.70.+k, 11.15.—q

I. INTRODUCTION

In recent work, attention has been focused on any-
onic states in gauge theories with Chem-Simons (CS)
interactions [1—5]. In this work, gauge-invariant fields
have been constructed that create, from a vacuum state,
charged particle states with arbitrary spin and factional
statistics. Considerable eEort has been devoted to under-
standing the nature of these states, and the dynamical
laws they obey. Some authors have argued that anyons
are a consequence of the imposition of Gauss's law on
charged states in (2+ 1)-dimensional gauge theories with
CS terms in their Lagrangian [1—5]. In these authors'
treatment of these models, local operator-valued fields
that create charged particles kom the vacua' obey ei-
ther purely commutator or anticommutator algebras; the
graded commutator algebras, and the consequent arbi-
trary spin and kactional statistics, arise with the con-
struction of nonlocal gauge-invariant operators, which
these authors consider essential for the imposition of
Gauss's law. Other authors have questioned these conclu-
sions [6—9]. The dynamical implications of the CS term in
gauge theories coupled to charged matter have also been
discussed [5,10—12]. Jackiw and Pi have shown that CS
6elds coupled to charged matter do not generally produce
"pure gauge" interactions that have no eHect on the equa-
tions of motion [10]. They point out that, in relativistic
quantum 6eld theories, the CS vector potential cannot be
totally gauged away. In nonrelativistic quant»~ field the-
ory, in which the CS interaction is pure gauge, Jackiw and

Pi have exploited the pure gauge nature of the CS inter-
action to remove the entire gauge field from the Hami&to-
nian with a gauge transformation. The correspondingly
transformed charged Beld operator @o(r) does not com-
mute with @o(r'), but obeys a graded commutator alge-
bra. N-particle orbitals, represented by appropriately se-
lected matrix elements of products of these transformed
Schrodinger field operators, are multivalued. The con-
straint imposed by the multivalued boundary condition
carries the information contained in the gauge fieids be-
fore they were eliminated by the gauge transformation,
and produces charged N-particle orbitals that describe
an interacting system of particles. Other investigators
have used line integrals over gauge Belds to construct
gauge-invariant field operators that obey graded commu-
tator algebras for relativistic quant»m field theories inter-
acting with a CS field [4]. These authors have identified
the excitations of these gauge-invariant fields as anyonic
states with arbitrary spin and fractional statistics.

In our work, we address this question &om a some-
what different point of view. We investigate a (2+ 1)-
dimensional gauge theory in which the gauge field is m&~-

imally coupled to a charged spinor 6eld. The Lagrangian
contains a CS term, but no Maxwell »~etic-energy term.
The gauge Beld obeys canonical commutation rules, and
the spinor 6eld anticommutation rules. We construct
a Fock space of N-particle charged states [the (2 + 1)-
dimensional analogues of electrons and positrons] that
satisfy Gauss's law. In the process we construct a gauge-
invariant operator-valued spinor field that creates, &om
a vacuum state, the charged particle states that satisfy
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Gauss's law. We demonstrate that this gauge-invariant
spinor Geld obeys anticommutation rules; and the exci-
tations of the gauge-invariant spinor field, which satisfy
Gauss's law, obey fermion rather than &actional statis-
tics. Moreover, it is possible to define these states so that
they change sign in a 2m rotation, regardless of the value
of the CS coupling constant.

We do not argue that our results invalidate either the
anyonic descriptions of particle states in CS theory, or
the gauge invariance of the charged fields discussed in
Ref. [4]. We do argue that an anyonic description is
not the only possible one for this theory; and in par-
ticular, that it is not required for the implementation
of Gauss's law. We demonstrate in this work that it
is possible to formulate a consistent description of the
charged particle excitations as "normal" fermions which
obey Gauss's law and ordinary fermion statistics, and
which interact through a nonlocal interaction mediated
by the CS field. The availability, in this theory, of a Fock
space of states arith normal statistics is consistent with
the work of Jackiw and Pi [10];these authors have shown
that nonrelativistic charged bosons coupled to a CS field
can be described by either of two Schrodinger field op-
erators, 4(r) or 4' (r). cd(r) obeys "ordinary" canonical
commutation rules, while @P(r) is subject to a graded
commutator algebra, in which 4' (r) and O'P(r') do not
commute. In the representation in which 4'(r) is the
appropriate Schrodinger field operator, explicit nonlocal
charged particle interactions appear in the Hamiltonian.
In the representation in which 4' (r) is the appropri-
ate Schrodinger field operator, these explicit interactions
have been replaced by equivalent boundary conditions.
Both representations implement Gauss's law. We observe
that in our work, an explicit interaction between charge
and transverse current densities appears in the Hamil-
tonian, in the representation in which the electron and
positron operators create (or annihilate) charged parti-
cles that obey Gauss's law. A similar interaction also is
reported in Ref. [10] in the representation in which the
orbitals of the boson field @(r) are used to describe the
interacting particles. Our result, that CS theory coupled
to relativistic charged fermions can be formulated in a
Fock space of charged fermion states that satisfy Gauss's
law as well as normal statistics, is consistent with the re
suits of Jackiw and Pi for nonrelativistic charged bosons.

As has been noted, CS theories do not possess any ob-
servable propagating modes of the gauge Beld [13]. Only
the charged fermion field gives rise to observable propa-
gating particle excitations which interact with each other
through their interaction with the gauge Geld. In our
work in the temporal gauge, we treat this model much
as we have previously treated the topologically massive
Maxwell-Chem-Simons (MCS) theory [14]. We introduce
a gauge-Bxing Beld in such a way that Ap has a conju-
gate momentum and obeys canonical commutation rules.
Although, as in our treatment of MCS theory, Gauss's
law and the gauge condition are not primary constraints,
there are nevertheless other primary constraints in CS
theory. Primary constraints relate the canonically conju-
gate momentum of Aq to A2, and vice versa, so that the
constrained gauge field A~ will be subject to Dirac rather

II. FORMULATION OF THE THEORY IN THE
TEMPORAL GAUGE

The Lagrangian for this model is given by

8 = 4m&i„(E)„Ap —2'„pAi) —BpApG

+JiAi —gpAp + Q(ip" 8„—M)g,

wh~~~ I"in = &~Ac —AA~ and +io = &iAo+ &oAi
follow conventions identical to those in Ref. [14].

The Euler-Lagrange equations are

m&)~+~p jf = 0)

mal~El~ + pt —jp —0

BpAp ——0, (4)

(M —ip"D„)g = 0,

where D„ is the gauge-covariant derivative D„= 0„+
i@A„. Current conservation leads to

Bp8pG = 0.

The momenta conjugate to the Gelds are given by

th Ln Poisson commutation rules. Furthermore, all com-
ponents of the CS gauge Geld, Aq and A2 as weD as Ap,
must be represented entirely in terms of ghost operators,
which can mediate interactions between charges and cur-
rents but do not carry energy-momentum, and have no
probability of being observed. Neither longitudinal nor
transverse components of the CS Gelds have any propa-
gating particle-like excitations.

In our Coulomb gauge formulation we implement all
constraints, including Gauss's law and the gauge condi-
tion, BiAi = 0, by the Dirac-Bergmann (DB) procedure
[15,16]. We include a gauge-fixing term —GBiAi in the
Lagrangian, in order to provide for the systematic de-
velopment of all constraints, including the gauge conch-
tion, &om the DB algorith~. In the Coulomb gauge,
the gauge fields have no independent degrees of &ee-
dom whatsoever, but are reduced to functionals of the
spinor fields. The constrained Belds obey Dirac com-
mutation (anticommutation) rules which must be evalu-
ated, and which may, and often do, differ &om the com-
mutation (anticommutation) rules of the corresponding
unconstrained fields. There is therefore an opportunity
for discrepancies between the commutator (anticommu-
tator) algebras for constrained and unconstrained fields
to arise. The Dirac anticommutation rules among the
constrained spinor fields are of particular significance,
because a graded anticommutation algebra among the
spinor fields may signal the development of "exotic" &ac-
tional statistics by their particle excitations.



50 ANYONIC STATPB IN CHERN-SIMONS THEORY 7521

and

II) = 2m&(„A„.

The H~~i&tonian density is given by

R = '—m-e~„Fj„Ao +joAo —jlAr + R~s i (s)

where 'g, s = @t(poM igo—p~8~) g and the total derivative

(9„(&me~„A~Ap) has been dropped.
The use of the gauge-fixing term —BoAoG in the La-

grangian 8 leads to the equal-time commutation rule
(ETCR)

constraints are generatmi. Having established that the
two primary constraints given in Eq. (15) do not give
rise to any secondary constraints, we recognize the two
primary constraints Ct 0 as a system of second-class
constraints, and use P(x, y), the inverse of M(x, y), to
obtain the Dirac commutator

[Ai(x)A~(, y)] = —f&~&~' [4(x),&a(&)]3'aa (»&')

x [Cs (z'), A„(y)].

The resulting correct expression for the commutator
[A~(x), A„(y)] is the Dirac commutator

[Ap(x), G(y)] = —i6(x —y), (10) [A) (x), A.„(y)]= —e)„6(x—y). (20)

and elementary considerations lead to the equal-time an-
ticommutation rule

We now construct the following moment»») space expan-
sions of the gauge fields in such a way that the ETCR
given in Eqs. (10) and (20) are satisfied:

for the fermion fields. But the naive use of Eq. (8) to set

[A)(x), II„(y)]= [A)(x), -'ime„sAs(y)]
= i6in6(x —y),

and, after contraction over e„s,

2i
[A)(x), A„(y)] = —e~„6(x—y),

A~(x) = ) aR(k)e' '"+ aR(k)ek'

k

+) i(QI(k)k) ag(k)e'"'" —aq(k)e '"'"
k

, (21)

is incorrect, because it ignores the fact that IIt-
sme~„A„= 0 constitutes a primary constraint. There
are various ways to arrive at the correct ETCR [15—17].
One way is to use the Dirac-Bergmann (DB) procedure
[15,16], for which we need the Poisson commutator ma-
trix

M~„(x,y) = [C~(x),C„(y)] = —ime(„6(x —y) (14)

for the primary constraints

G(x) = —) aR(k)e'"'"+ aR(k)e '"
k

(2$)

where $(k) is some arbitrary real and even function of k.
The magnetic field B and the electric field E are given
by

Ap(x) = ) ag(k)e' ' —a&(k)e ' ', (22)
Ic

and

~t ~l -m&l

To implement the DB procedure we form the total Hamil-
tonian density

B(x) = —) ~m aq(k)e' "+a&(k)e
k

and by E& = —@Ap —i[H, A~] so that

(24)

2

'RT —'8 + ) CP&, (16) E((x) = ) —e)„j„(k)e'"'"
k

(25)

where the Dt are arbitrary c-n»aber functions. The com-
mutator [HT, C;(x)] for HT = Jdx RT(x), then is

[ „c.(*)I = [0,c;(*)I+ & f ~& u~(r) [ci(r),c;(~)l,

where the brackets represent canonical "Poisson" com-
mutators. Equation (17) leads to

as shown in Eq. (2). The explicit form of 4(k) is im»)ate-
rial to the commutation rules given in Eqs. (10) and (20);
its form as well as its inclusion in Eq. (21) are therefore
entirely optional. The operators aq(k) and aR(k) and
their Hermitian adjoints a&(k) and aR(k) are the same
ghost operators previously used for the MCS theory [14];
they obey the commutation rules

[ao(k) a (q)l = [a (k) ag(q)l = 6

mrna(Q, +@Ao) —j; = 0,

so that Qt is identi6ed as Mt ——BOAt, and no secondary [ao(k), ag(q)l = [aR(k)) aR(q)] = o. (27)
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The use of ghosts is appropriate and necessary for com-
ponents of gauge fields which have nonvanishing com-
mutators with each other, but which d.o not exhibit any
observable, propagating excitations. The representation
of the gauge fields in terms of ghost excitations only,
therefore, tests the principle that no observable excita-
tion modes are required to represent the commutation
rules given in Eqs. (10) and (20).

The Ha~i&tonian H = f dx 'R(x) = Hp + Hy, where
Hp and Hp are given by

Hp ——— dx &me~ Ej„Ap+H &

= ) im aq(k)aq( —k) —a&(k)a&(—k) + H„
k

(28)

with H, s ——f dx 'R„-(x) and

ghosts, or if they contain ghosts, they are zero norm
states. Hp time translates all states in (~n)} so that
they remain cont+~red within it; and the matrix elements
of Hp within (~n) }, i.e., matrix elements of the form
(ns(Hp(n ), always vsmish when )n ) or (ns} contains any

a& ghosts. States in which a&(k) operators act on a state

~n), s«h as a&(qi) . a&(g)a&(4) ."a&(k )~N}, are
included in (~h}},but excluded from (~n}}.Such states
are not probabilistically interpretable and their appear-
ance in the course of time evolution signals an inconsis-
tency in the theory. In the next section we will show how
the implementation of Gauss's law and the gauge choice
averts the development of this inconsistency. Lastly, it
should be noted that the unit operator in the one-particle
ghost (OPG) sector is given by

1»G = ) a~(k) IO}(Ola„(k) + a"„(k)IO}(OI«(k) .

H~ ——) aq(k) jp( —k) —a&(k)jp(k)„-~m.
—) [aa(k) jr(—k) + az(k) ji(k)]2m3~'

For multiparticle ghost sectors, the obvious generaliza-
tion of Eq. (30) applies.

c~mel„~„—). ~2"
"

a~(k)j~( —k) —aq(k)j~(k)
k

—) iP(k)k~ aq(k) j~(—k) —aq(k) j~(k) (29)

III. THE ROLE OF GAUSS'S LAW'

As in all other gauge theories, Gauss's law is not an
equation of motion in CS theory. The operator g(x) used
to implement Gauss's law is

The total Hamiltonian HT reduces to the canonical
Hamiltonian H on the constraint surface on which all
C s are zero, and it correctly implements time evolution
when the Dirac commutation rule given in Eq. (20) is
used. This can easily be demonstrated by observing that
when the commutators i[H, A;], i[H, Ap], and i[H, G] are
substituted for BpA;, BpAp, and BpG, respectively, the
Euler-Lagrange equations are obtained. The other con-
straints, IIp + G = 0 and IIG = 0, have no further effect
on the commutation rules for the gauge fields.

We will implement the gauge constraint, Ap ——0, and
Gauss's law not by using the DB procedure but, as in
earlier work [14,18],by confining the dynamical time evo-
lution to an appropriately chosen subspace of the Hilbert
space ([h)} in which the Hamiltonian H operates. The
Hilbert space {~h}}very closely resembles the Hilbert
space used in Ref. [14]; {~h}}is based on the pertur-
bative vacun~ [0} a~~ihilated by all annihilation op-
erators, ag(k) and a~(k) as well as the electron and
positron annihilation operators e(k) an'd e(k), respec-
tively. The Hilbert space {~h}}contains a subspace (~n) }
that consists of all multiparticle electron-positron states
of the form [N} = et(qq) .et(qi)et(pq) . .et(p )[0},as
well as all other states of the form a&(kq) . a (k ) [N}.
We note that the commutation rules for t e ghost
operators given in Eqs. (26) and (27) demonstrate
that the states a&(kq). a&(k;)~N) have zero norm,
since (N~aq(k, ) . . aq(kq)a&(kq) . .a&(k;) ~N} can be
rewritten as (N[a&(k;) - - a&(kq)ag(kq) ~ ag(k;)[N}
and each of the ag(k;) annihilates any state [N}. The
states in the subspace (~n}}therefore are either free of

g(x) = jp(x) —2mei„E)„(x), (31)

and whereas BpG = g, BpBpG = Bpg = 0 is the equation
of motion that governs the behavior of this model. Fur-
ther measures must be taken to implement g = 0. We
can conveniently express g in the form

g(x) = ) m ~ aq(k)e'"'"
k

*
(l )

itx— JPK J ik x.fkh
a e

&
e

m

where jp(k) = f dx jp(x)e '"'". We can define an oper-
ator O(k) as

1
O(k) = ag(k) + jp(k), (33)

so that

g(x) = ) m ~ [O(k)e' '"+ O*(k)e ' '"j .

Si~i&arly, we can write Ap(x) as

A, (x) = ) O(k)e'"" —O*(k)e '""~.
„-~m-

We can therefore implement Gauss's law and the gauge
condition by embedding the theory in a subspace ()v}}
of another Hilbert space. The subspace ([v)}consists of
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the states [v) which satisfy the condition

O(k)[v) = 0.

It can be easily seen from Eqs. (34) and (35) that, in the
physical subspace {[v)},(v'[g)v) = 0 and (v'[Ap)v) = 0,
so that both Gauss's law and the gauge condition Ao ——0
hold. Moreover, the condition O(k) ~v) = 0, once estab-
lished, continues to hold at all other times because

[H, O(k)] = 0

ik (~—y)
D = —i dxdy

k
&&Ai(x)jp(y) (38)

It is easy to show that

U O(k) U = aq(k). (39)

We can use U to establish a mapping that maps O(k) ~
ag(k) and {~v)}-+ {~n)},where {~n)} is the subspace
described in the preceding section. In this mapping, op-
erators 'P map into 'P, i.e., U PU = 'P. For example,
O(k) = aq(k), and H = U iHU is given by

H =Hp —) '" "ji(k)jp(—k)

—): I,,
" "

aO(k)ji( —k) —aq(k) ji(k) (4o)

The similarly transformed fields are
x

Ai(x) = Ai(x) —) ( P(k)jp(k)e'"'"
k

k
2 (4i)

Ap(x) = Ap(x), G(x) = G(x), (42)

and

where

@(x) = exp ['DU(x)] @(x),

ik-(x —y)
'Dv{x) = —ie J dz P 8&A&{z). (44)

The tr~~sformed electric and magnetic fields are

Ei(x) = Ei(x)
and

(45)

B(x) = B(x) + 8(x), (46)

so that O(k) is an operator-valued constant. This demon-
strates that a state initially in the physical subspace {[v)}
will always remain entirely contained within it as it de-
velops under time evolution.

Consider now the unitary transformation U = e
where

where Ei(x) and B(x) are given by Eqs. (25) and (24),
respectively, and

B( )
jp(x)

(47)

Equations (43) and (44) are of particular importance to
one of the questions we are investigating, i.e., whether
imposing Gauss's law on the charged particle states
of this theory causes them to develop "exotic" kac-
tional statistics. If the anticommutators for the spinor
fields that implement Gauss's law, {g(x),gt(y)} and

{g(x),g(y)}, differ from the canonical spinor anticom-
mutators {@(x),gt(y)} = b(x —y) and {@(x),@(y)}= 0
that account for the fact that the excitations of g and
gt are subject to Fermi statistics, then that difference
may signal that the excitations of g and gt are subject
to fractional statistics. We also note that @(x) is gauge
invariant; if we gauge transform @(x) within the con-
fines of the temporal gauge, then the efFect of that gauge
transformation on 'DU(x) and on g(x) cancel, so that the
spinor field g(x) is gauge invariant. This gauge invari-

ance is necessary for excitations of g(x) to obey Gauss's
law.

To show that the anticommutation rules for @ and @t
are identical to the anticommutation rules for the uncon-
strained Q and gt, we observe that @(x) and Ai(y) [and
therefore also g(x) and DU(y)] commute at equal times,
so that {@(x),vjt(y)} = b(x —y) and {g(x),g(y) }= 0.
The constrained fields Q and gt obey the same anticom-
mutation rules as the unconstrained g and gt, and are
not subject to any exotic graded anticommutator algebra.
The electron and positron states that implement Gauss's
law therefore obey standard Fermi, not &actional, statis-
tics. This result can also be demonstrated from the fact
the the transformed fields g, gt, Ai(x), and IIi(x) are
imitarily equivalent to g, Qt, Ai(x), and II&(x) respec-
tively, and that commutators and anticommutators that
are equal to c numbers, are invariant to unitary transfor-
mations. It is, of course, important to keep in mind that
the particular form of @(x)given in Eq. (43) only applies
to the temporal gauge and to this method of quantiza-
tion. In other gauges, and with other methods of im-
plementing constraints, the spinor fields that implement
Gauss's law will have a diferent representation, and ques-
tions about the statistics of electron-positron states that
obey Gauss's law arise in a difFerent way. We will formu-
late this theory in the Coulomb gauge in later sections of
this paper, and in that work co~&~m the result that the
charged particle states obey standard Fermi statistics.

It is convenient to establish an entirely equivalent, al-
ternative formalism, in which all operators and states
are unitarily transformed by the unitary transforma-
tion U. Since all matrix elements and eigenvalues are
invariant to such a simi&arity transformation, we can
construct a map {[v)}-+ {[n)},O(k) j ag(k), and,
in general, for all other operators P, 'P + 'P, where

= U PU. We may then use the transformed rep-
resentation as an equivalent formulation of the theory, in
which Gauss's Law and the gauge constraint, A.o

——0,
have been implemented. In this equivalent alternative
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representation, (]n)} is the physical subspace in which
Gauss's law and the gauge condition are implemented,
and exp( —iHt) is the time-translation operator. A time-
tra~~lation operator will time translate state vectors en-
tirely within the physical subspace in the transformed
representation, if it is entirely devoid of a&(k) and a~(k)
operators, or if it contai»u them at most in the combina-
tion [a&(k)aq(k) + aq(k)az(k)]. T»spection of Eq. (40)
confirms that H is, in fact, entirely devoid of a&(k)
and a~(k) operators, so that the time-translation op-
erator, exp( —iHt), correctly satisfies this requirement
Observable multiparticle states in the alternative trans-
formed representation are described by state vectors in

(~n)} which we have previously designated by ~N). In
GS theory, the only such positive-norm observable states
are charged excitations of the spinor field (we will refer
to them as electrons and positrons for simplicity). The
time-translation operator e '~' translates state vectors
~N) by transforming them into new state vectors, at a
later time t,; these time-translated state vectors consist
of further positive-norm state vectors ~N'), as well as ad-
ditional ghost states. All of the latter are represented
by products of aeq(k) operators acting on positive-norm
states ~N'). At all times, the positive-norm states alone
exactly saturate unitarity. We will refer to a quotient
space, which is the set of all [N), and also is the residue
of (~n) }after all zero-norm states have been excised from
it.

We can define another Hami&tonian Hq„q, which con-

sists of those parts of H that remain after we have re-
moved all the terms in which aq(k) or aq(k) is a factor;

Hq„« is given by

.i&7„k„.
Hquot = Hee ) 2 jl(k)jo( k) ~

k
(48)

The Hay»i&tonian Hqu t contains H s, wehich describes the
kinetic energy of noninteracting electrons and positrons;
it also contains a part that describes a singular nonlocal
interaction between the charge density and the transverse
current density. The projections of exp[—iHt]~N) and

exp[—iHquoqt]~N) on other state vectors in the quotient
space are identical. The parts of H that contain aq(k)
or aq(k) as factors therefore do not play any role in the
time evolution of state vectors wit&i» the quotient space
of observable states, and ca»»ot have any efFect on the
physical predictions of the theory. The time-evolution
operator that time translates physical states in the quo-
tient space of observable states can therefore be given as
exp[ iHquogt].

If we expand D in moment»m space we get D = Dq +
Dg where

Since D2 co~~utes with aq(k), it has no role in trans-
forming 0(k) into aq(k), and the operator V = e+' by
itself achieves the same end. as U, i.e.,

V 0(k)V = aq(k).

%'e can use V to estabhsh a second mapping of this the-
ory, in which operators map according to 'P -+ V ~'PV =
'P. 0(k) = aq(k), so that 0 and 0 are identical; un-

der the mapping P m V PV = P, the subspace (~v)}
maps into the same subspace (~n) }as under the mapping
'P -+ U 'PU = P. But, in the case of other operators,
P divers from P. For exemple, H is given by

H = Ho —). ji(k) jo(—k)
k

—). 4(k)ki jr(k) jo(—k)
k

—) iP(k)k) aq(k) j((—k) —aq(k) jr(k)

Similarly, J and J are the forms into which the Noether
angular moment»y» operator J is mapped when it is uni-

tarily transformed by U and V, respectively. Both these
forms, J and J, are therefore significant for the rotation
of states, and it is of particular importance to observe
that J and J differ &om each other. J is given by

J= Jg+J, (54)

where Jz and J, are the angular momenta of the gauge
field and the spinors, respectively. J~ and J, are given
by

J = — dx~7 II;+78 A Gx78 Ao+ II7A 55

and

Similarly, @ and g &iver lrom each otheral, though both
are gauge invariant and project, from the correspondingly
defined vacu»y» states, electron states that implemeat
Gauss's law. g is given by @(x) = exp[tv(x)] @(x) [19],
where

'k(x-y)-
27~(x) = ie f dy —) 8(A((y)

k
k2

+ P(k)ei„8)A„(y) .

(49) J~ = — dx i x767~8~ + 2

D2 = ) '&(k) t.aq(k)js(-k)+ aq(k)jo(k)' (50)

Under the transformation mediated by U, J ~ J, and
J = J, so that J remains untransformed. But, under the
transformation mediated by V, J ~ J where J = J+ g
and
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S = —) el»4 ag(k) jo(k) + ag(k) js(—k)
8$(k) - „

+) 2 sg, g~ je(k)jo(—k).
. e) k) 8$(k) .

(57)

We can support the preceding demonstration that J
try~forms into itself under the»~itary transformation
mediated by U, whereas it transforms into J+ t' under
the»»notary transformation mediated by V, with the fol-
lowing observation: D is an integral over operators and
functions which all transform as scalars under spatial ro-
tations. Since J is the generator of spatial rotations, the
co~~utator [J,D] must vanish. Dq is not necessarily
such an integral over scalars, and there is therefore no
sinai&ar requirement that [J,Dq] vanishes.

Since U and V map O(k) into ag(k) in identical ways,
we can conclude that the implementation of Gauss's law
is not responsible for the fact that J is transformed into
J+ t' when V is used to efFect the mapping. In fact, we
can use the Baker-HausdoriF-Campbell relation to con-

~Istruct an operator W = e+, mhere

D' = ).2,(, &(k)js(k)jo(—k)„-2m3i2

—):~&(k) .aQ(k)j (—k) + aq(k)j (k). (5S)

so that V = UW. W has the same efFect as V on J, i.e.,
we find that

W-'JW = J+ g, (59)

although W leaves Q(k) and g(x) untransformed and
does not play any role in implementing Gauss's law; P(k)
is arbitrary, and if we choose to set P(k) = 0, U and V
become identical. If we choose

P(k) = ~m tanb(k), ks
k kg' (60)

and if we ass»~e that we can carry out the integration
over dk while jo(k) is still operator valued, then J' be-
comes g = Qs/4nm, and accounts for the well-known
anyonic phase in the rotation of charged states through
2'.

In comparing H with H we note that they dMer by
some terms that include ag(k) or a&(k) as factors. Since

both H and H are entirely free of a~(k) and a&(k) op-
erators, ag(k) and a~&(k) co~~ute with every other op-

erator that appears in H or H. The terms mhich in-
clude ag(k) or a&(k) as factors therefore do not affect
the time evolution of state vectors in the previously de-
fined quotient space of observable particles (i.e., electrons
or positrons); they can neither produce projections on
physical states, nor can they contribute internal loops to
radiative corrections. They have no eEect mhatsoever on
the physical predictions of the theory and if they are ar-
bitrarily amputated Rom H or H, none of the physical
predictions of the theory are adkcted. The only other
difference between H and H is

,g, &(k)&~j~(k)js(—k)
k

h is a total time derivative in H, mhich can be expressed
alternatively as h = i[Ho, y], as h = i[H, y], as h =
i[H, g], or as h = i[H, g] where

X = —).2,q, 4 (k)jo(k)jo(—k).
1

(62)

We will discuss the significance of y in the next section.

IV. ROTATIONAL ANOMALIES AND
STATISTICS

H = —):' '"~," ji(k)jo(—k).
k

We can use W to unitarily transform the operators in the
Prepres'entation so that all operators P are transformed
to the P representation, as shown by

W 'PW = $'. (64)

The Hamiltonian H, and the angular moment»~ J, will
then have the forms given in Eqs. (52) and (59), respec-
tively. By itself, this change in the form of the operators
has no significance. For example, if me combine these
transformed operators mith the correspondingly trans-
formed Hilbert space (~n')), where each ~n,

'.) = W ~n;),
then me have merely regenerated the D system of oper-
ators and states in another representation. There mill
be no rotational anomaly, although g appears as part of
the angular moment»~ J. The combined transformation
of operators and states guarantees that the rotated state
e'&~++&s[n';) returns to (—l)N~n,'.) in a 2m N rotation, in
spite of the arbitrary parameter in t', which appears to
imply arbitrary phases in 2m rotations. To demonstrate
this in detail, me examine

R(8)[n';) = e'~ ++l ~n';) = e* e*+ W '~n;) (65)

Conclusions about the physical implications of this the-
ory depend not only on the structure of the operators,
but also on the properties of the Hilbert space in which
these operators act. The choice of a Hilbert space can
have significant consequences, even though these may not
be refiected in the field equations or the commutation
rules. We can, for example, decide to assign the previ-
ously defined Hilbert space ([n)) to the representation
in which the Ha»»etonian and the angular moment»~
take the forms H, given in Eq. (40), and J = J, given in
Eq. (54), respectively. We will designate this representa-
tion of operators as the P representation, and the system
consisting of operators in the 'P representation acting in
the Hilbert space (~n)) as the Q system. This system
of operators and states constitutes a theory in which the
charged fermions rotate "normally, " acquiring a factor of
(—1)N in a 2sN rotation. The sole interaction between
electrons in the M system is given by
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i JHrxr —1 Irr —1 iJ8 —i+8 (66)

so that

(67)

J' commutes with W ~; and, for 4(k) given by Eq. (60),J commutes with g, but not with W ~; we can show
that

arg»~ent that co~&~ms this result is based on a theo-
rem about the relationship between two representations,
in which the Hamiltonian in one is a unitary transforxn
of the Hamiltonian in the other, but the states in both
representations are left untransformed, and are identical
[18,20]. When this theorem is applied to the question we
have raised here, we Bnd that the on-shell transition am-
plitudes determined by the two Hamiltonians are related
by

and the state In';) rotates "normally, " to acquire a fac-
tor of (—1)+ in a 2m% rotation, as is required by the
similarity transformation.

Alternatively, we could just as well assign the Hilbert
space (In)} to the 'P representation of operators. We
will designate the system consisting of operators in the
'P representation and the Hilbert space (In)} as the W
system. The systems W and Q both implement the equa-
tions of motion, as well as Gauss's law and the gauge
choice Ae ——0. There is no reason to prefer one system
over the other on the basis of dynamics or constraints.
In the W system of operator and states, however, the g
in J would be responsible for an anomalous rotational
phase that we associate with anyonic behavior. Subse-
quent similarity transformations that transform to the
operator representation 'P and the states WIn; ), would
preserve that rotational phase anomaly, although then
the arbitrary parameter would not reside in J. We can
conclude from these observations that rotational phase
anomalies are possible; but they are not an inevitable
feature of this gauge theory. However, contrary to what
has been suggested by some authors [1,2,12], it is not
the implementation of Gauss's law that is responsible for
anyonic rotational phases. Gauss's law can be imple-
mented with or without producing arbitrary rotational
phases. Moreover, in corroboration of a result obtained
by other means [6), we Bnd that regardless of whether the
arbitrary rotational phase develops, the anticommutation
rule that governs the electron Beld operator remains un-
changed by the unitary tra~sformations (U or V) that are
instrumental in implementing Gauss's law in the (In)}
space. And that observation applies equally to the &ee
Dirac Geld and to the gauge-invariant electron Geld that
projects electrons that obey Gauss's law. The "normal"
and the "anyonic" operators are»~tarily equivalent and
both obey Fermi-Dirac statistics. Graded commutator
algebras and "exotic" fractional statistics do not arise in
the process of implementing Gauss's law and establishing
the Ll and W systems of operators and states.

We next turn our attention to the extra term h that
appears in the Ha~i&tonian H in the YV system; h is the
only part of (H —H) that describes interactions between
charges and currents, and which therefore might possi-
bly account for physically observa. ble discrepancies be-
tween H and H. Since the Q and YV systems of operators
and states both implement the same dyne~Mcal equations
and constra~nts, the question whether both these systems
make identical physical predictions is of considerable in-
terest. The fact that h given in Eq. (61) is a total time
derivative gives us a priori conGdence that it will not
aHect the S matrix produced by this theory. A formal

Tgi ——Tg i+ieB,
where Ty; and Ty i are the scattering amplitudes

t'-
r~, ; = y ( e, + e, ex

( a)l E —H+ i& j
and

Hj and H~ are given by

Hy ——H —Hp

and

Hs ——H —Hp, (72)

and R is given by

(-R= Hg I —e '"«-H+, ,

(73)

«„(fIHq + Hr(E —H + ie) 'Hi In)

x(nIH, + H((E —H+ ie)-'H, Ii)(E —E„+i~)-',

where k is an integer. %hen g and Hp do not co~~ute,
R will not give rise to any 1/ie singularities to cancel
the is on the right-h~~d side of Eq. (68), except perhaps,
for contributions that represent Self-energy insertions in
external lines. These contributions only afFect renormal-
ization constants and do not affect physical quantities.

Ii) and If) are two multiparticle electron-positron states
in (In)} with identical energy E, and represent initial
aud Gnal states in scattering events, respectively. We
note that if Hp and g commute, then h vauishes. H
Hp and y fail to commute, then R wiO consist of terms
proportional to
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%e conclude, therefore, that the physical predictions
of this model, i.e., the 8-matrix elements that determine
scattering amplitudes and energy level shifts for electron-
positron systems, are insensitive to whether the charged
states develop anomalous phases.

The Euler-Lagrange equations generated by the La-
grangian are

m«~+~0 —ji —i& = o,

V- FORMULATION OF THE THEORY IN THE
COULOMB GAUGE

1
2 m6ln Eln jp —0~

8&A&
——0

(76)

(77)

& = 4m&i~(+i~Ao —&P oAg) —GBgAg + jgAg

—jpAp + @(i7"8„—M)@. (74)

This Lagrangian divers Rom Eq. (1) only in that the
gauge-6xing term —GBoAp is replaced by —t 8~A~. We
have included a gauge-6xing term for the Coulomb gauge
in Eq. (74) to enable us to develop all the constraints
systematically &om the Lagrangian.

To con6rm the results we obtained in the preceding
discussion of CS theory in the temporal gauge, we now
also formulate the same model in the Coulomb gauge.
The Coulomb gauge formulation mates use of a quanti-
zation procedure that is dHFerent &om the one we used
for the temporal gauge, and therefore can provide inde-
pendent corroboration of our earlier conclusions. In the
Coulomb gauge, the gauge field Ap is not involved in
the gauge condition, so that a gauge-6xing term cannot
be used to generate a canonical momentum conjugate
to Ap. The most convenient ways to quantize CS the-
ory in the Coulomb gauge are the Dirac-Bergmann (DB)
procedure [15,16] and the symplectic method of Faddeev
and Jackiw [17]. We will here use the DB procedure to
impose the constraints. In this method, the canonical
"Poisson" commutators (anticommutators) are replaced
by their respective Dirac commutators (anticommuta-
tors), which apply to the fields that obey all the con-
straints of the theory. Since the Dirac and the canonical
commutators (anticommutators) can, and often do, dif-
fer from each other, this method enables us to investigate
whether the Dirac anticommutator for the spinor field g
and its adjoint gt differ from the corresponding canonical
anticommutator. A discrepancy between the Dirac and
canonical anticommutators for the spinor fields could sig-
nal the development of "exotic" fractional statistics due
to the imposition of Gauss's law. On the other hand,
identity of the Dirac and the canonical anticommutators
for the spinor fields demonstrate that the excitations of
the charged spinor field that obey Gauss's law (as well
as all other constraints) also obey standard Fermi statis-
tics. The question of whether the imposition of Gauss's
law produces charged particle excitations that are sub-
ject to exotic statistics, therefore, arises in a new way in
the Coulomb gauge. In this section we will carry out this
quantization procedure and demonstrate explicitly that
the implementation of Gauss's law for the charged spinor
field does not change the anticommutation rule for @ and
Qt, and does not cause the excitations of these fields to
develop exotic fractional statistics.

The Lagrangian for CS theory in the Coulomb gauge
is given by

and

(M —ip"D„)@= 0. (78)

The momenta conjugate to the gauge 6elds are II~ ——

&m~~„A„, for l = 1,2; IIp ——0, where IIp is the mo-
ment»~ conjugate to Ap, and IIG ——0, where IIG is the
momentnrn conjugate to the gauge-fixing field t". For
the spinor fields, we obtain the momenta Ily = igt and

Ilgwu

= 0 which are conjugate to @ and Q~, respectively.
The corresponding primary constraints can be expressed
as C; 0 for i = 1, . . . , 4, as well as Cy 0 and C~t 0,
where

Cg ——Ilg —2mA2,1

C2 = 112+ -', mAz,

C3 ——IIp,

(So)

(SI)

C4 ——IIG, (s2)

(83)

and

C~t = II~t. (64)

The total Coulomb gauge He~~ltonian HT is given by

H~ —— dx AM —ipo yt t

dx —-', mei„Ei Ao+ G' iA

+jp Ap —j~A~ —MlC& —MBC2 —M3C3 M4C4

LlyCy —Mgt Cgg—], (s5)

where Mq, . . . , D4 designate arbitrary functions that com-
mute with all operators; L4p and M~t designate arbi-
trary functions that are Grassmann n»~bers, which an-
ticommute with all fermion 6elds and with Grassmann
numbers, but commute with bosonic operators and with
Ql, . . . , M4. In the imposition of constraints we will use
the Poisson brackets [A, B) of two operators A. and B,
defined as [[A, B]= AB—(—l)~&+&~&+&BA, where n(P) is
an index for the operators P;~ n(P) = 0 if P is a bosonic

We generally follow the conventions in Snndermeyer [21].
The definition of Poisson brackets used here, however, difFers
from Sundermeyer's definition by a factor i.
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operator, such as a gauge Beld or a bilinear combination
of fermion 6elds; and n(P) = 1 if P is a Grassmann
number, or a fermionic operator such as Q or gt. The
Poisson bracket [A, B] is the commutator [A, Bj when A
and Bare both bosonic operators, or if one is bosonic and
the other fermionic. But [A, B] is the anticommutator
(A, B) when A and B are both fermionic operators.

We use the total Hamiltonian to generate the further
constraints needed to maintain the stability of the pri-
mary constraints under time evolution. For this purpose
we evaluate time derivatives of the primary constraints
by using the equation 8()C; = [Hg, C;], and set BOC' 0.
In this way we find that 8()Cq 0 and 8()C2 = 0 lead to
equations for M1 and Q2, but do not generate any sec-
ondary constraints. The equation 80C3 0 leads to the
secondary constraint C5 0 where

Cs = m«~iA~+ jo, {S6)

which implements Gauss's law. t90Cs 0 leads to a fur-
ther, tertiary constraint, Cs 0 where

C, = 8&8&G. (87)

This constraint is necessary for consistency between
Eq. (75) and Gauss's law. To demonstrate this we
observe that taking the two-dimensional divergence of
Eq. (75), and applying current conservation, lead to
8() zme~~+j„—j() + B~B~G = 0, which is inconsistent
with Gauss's law unless 8&8&G = 0. The tertiary con-
straint Cs —— B~B~G = 0 ends this particular chain
of unfolding constraints; imposing the condition that
8()(B~B~G) —0, leads to an equation for M4, but gener-
ates no further constraints. To ensure the stability of the
constraint II~ 0, we set 8()IIG 0 and obtain Cr —0
where

Cv = AA~,

which implements the gauge condition for the Coulomb
gauge. The equation BOC& 0 leads to the tertiary con-
straint Cs 0 where

1
Cs = ~iiA0 + —«~l3~.

m

The constraint C8 0 is an expression of the fact that
Eq. (75), which is an equation of motion for the gauge
field A~ in most gauges, reduces to a constraint in the
Coulomb gauge. Equation (75), which has a longitudinal
as well as a transverse component, can be expressed as
me~ (8 Ao + 8()A„) —j~ —B~G = 0. The longitudinal
component has just been shown to lead to the constraint
B~OgG 0. The transverse component can be extracted
by contracting over egB;, and noting that e;~a~„= —b,„.
In the resulting equation, the sole remaining time deriva-
tive, 808~A~, vanishes because of the Coulomb gauge con-
dition, leaving Cs 0 as a constraint. The equation
PCS 0 leads to no further constraint, so that Cs = 0
terminates the chain of constraints that develops &om
II~ = 0. In the case of the spinor Belds, the equations
80Cy = 0 and BoC+t 0 lead to equations for the Grass-
mann functions Dy and M@t, but they do not lead to any
further constraints.

The preceding analysis leads to ten second-class con-
straints for this gauge theory. Imposition of the con-
straints requires that we form the matrix M (x, y), whose
elements are M;z(x, y) = [C;(x),Cz(y)]. We assign
the values C1, . . . , C10 to the descending horizontal rows
of the matrix, as well as to the sequence of vertical
cob~mns, where C1, . . . , C8 refer to the previously defined
constraints; for simplicity we will designate C@ and C@t
as C() and Cq(), respectively. The matrix M(x, y) is eval-
uated and inverted; its inverse, P(x, y), which obeys

dx ddt (x x)Xa (x y) = f dz P x( x x) ada ( x y)

= b;,.b(x —y) (90)

is used to calculate the Dirac commutators (anticommu-
tators) by applying the equation

g(x), q(y)] = [((x),((y)]
10

—) f dxdx' [((x),C;(x))
i,j=1

xP;, (z, z') [C, (z'), ((y)].

[4(x) 4(y)] = H(x) &(y)) = o (93)

I[A.(x) &(y)] = [A.(x) 4(y)]
ie (2: —y)~

„vow 0(y)m 2' x
—y~~

[Ai(x), @(y)] = [Al(x) 4'(y)j
ie (z —y)= ——« ",@(y),m "2xIx —yI2

[A)(x), A()(y)] = [A)(x), Ao(y)] = 0, (96)

( ),A„(y)] = [A, ( ), A„(y)] = 0.

Equations (92) and (93) demonstrate that the con-
strained spinor Beld obeys standard anticommutation
rules, and not a graded anticommutator algebra; and that
the charged excitations of that spinor field are subject to
standard Fermi statistics, and not the exotic fractional
statistics that would result &om a graded anticommuta-
tor algebra. In contrast with the spinor Beld, the Dirac
commutators of the gauge Belds H~Her substantially both
&om the unconstrained canonical commutators, and also
&om their corresponding values in the temporal gauge.
The observation that the spinor antico~mutation rule is
unaffected by constraints, and identical in the Coulomb
and temporal gauges, therefore is not trivial.

We observe that the resulting Dirac commutators (anti-
commutators) are given by

[@(x) @'(y)] = 8( ) 4'(y)) =~( -y) (92)
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1 1 (9
A](x) = ——et„jp(x), (9S)

and Cs ——0 can be solved for

1 1
Ap=

m
(99)

When we use Eqs. (98) and (99) and the fermion an-
ticommutation relations for the constrained g and Qt,
we exactly reproduce the Dirac commutators given in
Eqs. (94)—(97). The value G+ of the gauge-fixing field G
on the constraint surface can be shown to be zero using
the relation

G (x) = G(x)
10

—) fdyds]G(x), c;(y)]+~(y, s)c, (s).
i,j=l

(100)

Since G+ = 0, then Eq. (75) reduces to me] Ep —j] = 0
under the in8uence of the constraints. When these con-
strained representations of the gauge Belds are substi-
tuted into the Ha~i&tonian, and all the other constraint
functions, C;, for i = 1, . . . , 10, are set to zero, we obtain
the result that

He = dx t PoM —&to

(101)

We observe that this form of the Hamiltonian is exactly
identical to Hq„ t in the temporal gauge. This exact iden-

tity of Hg and H~„«provides a very compelling demon-
stration that the charged states that obey Gauss's law
are subject to the identical dynamics in both our tempo-
ral gauge and Coulomb gauge formulations of this model.
Since the gauge independence of the physical predictions

The Dirac commutators (anticommutators) imply re-
lationships among the constrained operators that reduce
the independent degrees of &eedom of this theory. There
are various procedures for mak~ng these relationships
explicit, but in this model the simplest way is to use
the constraint equations to express the gauge Selds as
functionals of the charge and current densities. Since
the gauge Selds have no observable, propagating degrees
of &eedom, this procedure can completely eliminate all
gauge fields &om the Ha~iltonian. We find, for example,
that Cs ——0 can be solved to yield

of this theory is a Brm requirement, this identity serves as
a significant corroboration of the consistency and correct-
ness of both of our formulations of this model. Simi&arly,

our separate demonstrations, in the temporal gauge and
the Coulomb gauge formulations, of the anticommuta-
tion rules for the spinor Belds that create and annihi-
late charged particles that obey Gauss's law, show that
these charged particle states obey standard Fermi rather
than kactional statistics. The form~b~m employed for
each of these demonstrations is specific to each gaug-
we observe, for example, that 17U(x), given in Eq. (44),
whose properties play an essential role in the ar@~~ent
that pertains to the temporal gauge, would vanish in
the Coulomb gauge. But the fact that the same result
is reached in both gauges, con&~ms that our conclusion
about the statistics of charged particle states is gauge
independent, and makes the ar~]~ent particularly per-
suasive.

VI. DISCUSSION

In the preceding work, we have demonstrated that in
Chem-Simous theory coupled to a charged-fermion Beld,
the imposition of Gauss's law does not cause the spinor
fields to develop an "exotic" graded commutator alge-
bra. In the process, we have constructed a Fock space
of charged excitations of these fields that are subject to
standard Fermi, and not fractional statistics, even when
they obey Gauss's law. Our work applies to both the
temporal and the Coulomb gauge formulations of the the-
ory. We have also obtained a time evolution operator for
the single and multiparticle electron-positron states that
obey Gauss's law, and have shown that this time evolu-
tion operator is identical in the two calculations we have
carried out, one in the temporal and the other in the
Coulomb gauge. This result provides further confirma-
tion that the quantization procedures and the conclusions
based on them are correct. We have also shown that the
charged states may or may not acquire arbitrary phases
in 2z' rotations, depending upon the way we choose to
represent them. However, that choice of representation
can be made independently of whether the charged states
of the theory obey Gauss's law; it is not a consequence of
the imposition of the constraints. Moreover, the choice
of representation that determines whether arbitrary rota-
tional phases result &om 2x rotations does not have any
implications for the physical predictions of the theory.
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