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Strings propagating in the (2+1)-dimensional black hole anti —de Sitter spacetime
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We study the string propagation in the 2+1 black hole anti-de Sitter (2+1 BHAdS) background.
We find the first- and second-order Suctuations around the string center of mass and obtain the
expression for the string m~. The string motion is stable, all Suctuations oscillate with real
frequencies and are bounded, even at r = 0. We compare arith the string motion in the ordinary
black hole anti-de Sitter spacetime, and in the black string background, vrhere string instabilities
develop and the Suctuations blower up at r = 0. We find the exact general solution for the circular
string motion in all these backgrounds; it is given closely and completely in terms of elliptic functions.
For the nonrotating black hole backgrounds the circular strings have a maximal bounded size r
they contract and collapse into r = 0. No indefinitely growing strings nor multistring solutions
are present in these backgrounds. In rotating spacetimes, both the 2+1 BHAdS and the ordinary
Kerr-AdS backgrounds, the presence of angular momentum prevents the string kom collapsing into
r=0. The circular string motion is also completely solved in the black hole de Sitter spacetime and
in the black string background (dual of the 2+1 BHAdS spacetime), in which expanding unbounded
strings and multistring solutions appear.

PACS number(s): 11.27.+d, 04.62.+v, 04.70.—s, 97.60.Lf

I. INTRODUCTION AND RESULTS

The study of string dynamics in curved spacetime and
its associated physical phenomena that was started in
Refs. [1,2] has received a systematic and increasing atten-
tion. Approximate [1-4] and exact [5—9] methods of solu-
tion have been developed. Classical and quant»m string
dynamics have been investigated in black hole back-
grounds [10,11], cosmological spacetimes [1,12], cosmic
string spacetime [13], gravitational wave backgrounds
[14], supergravity backgrounds (which are necessary for
fermionic strings) [15], and near spacetime singularities
[16]. Physical phenomena such as the Hawking-Unruh
efFect in string theory [2,17], horizon string stretching
[2,17], particle transmutation [10,18], string scattering
[10,13], mass spectr»~ and critical dimension [1,10,13],
string instability [1,5—8,12], and multistring solutions
[6-8] have been found. It is also useful to consider sim-
ple tractable spacetimes of physical interest, and the re-
striction to lower dimensions. Although two-dimensional
models have many attractive tractable aspects and can
be used to test and get insight on particular features,
D = 2 is not a physically appealing dimension for string
theory or gravity [19]. In contrast, D = 2+ 1 theory pos-
sesses all the physical ingredients of string theory and
gravity in higher dimensions [6—8,20—26].

In this paper we investigate the string dynamics in
the 2+1 black hole anti —de Sitter (BHAdS) spacetime
recently found by Banados, Teitelboim, and Zanelli [20].

On leave of absence &oxn NORDITA, Blegdamsvej 17, Dk-
2100 Copenhagen, Denmark.

This spacetime background has stirred much interest re-
cently [21—25]. It describes a two-parameter family (mass
M and angular momentum J) of black holes in (2+1)-
dimensional general relativity with the metric

( r'i, (r' J2 )
ds =

/

M ——/dt2+
(

——M+
[

dr2
l ) g/ 4r&

Jdtdg+ r —dgP .

It has two horizons

Mls l 1/2
QM2l2 —J2—

2 2 )

and a static limit r„s ——~Ml, de6ning an ergosphere,
as for ordinary Kerr black holes. The spacetime is not
asymptotically Sat, however; it approaches anti —de Sitter
spacetime asymptotically with a cosmological constant
A = —1/ls. The curvature is constant R„„=—(2/l )g„„
everywhere, except probably at r = 0, where it has at
most a b-function singularity. Notice the weak nature
of the singularity at r = 0 in 2+1 dimensions as com-
pared with the power law divergence of curvature scalars
in D ) 3. (We will not discuss here the geometry near
r = 0. For a discussion, see Re&. [23,25].) The space-
time, Eq. (1.1), is also a solution of the low-energy ef-
fective action of string theory with a zero dilaton field
4' = 0, antisymmetric tensor Beld II„„~= (2/l )e„„~(i.e.,
B4,t ——r /l2) and k = i2 [21]. Moreover, it yields an ex
act solution of string theory in 2+1 dimensions, obtained
by gauging the Wess-Z»~ino-Witten-Novikov (WZWN)
o model of the group SL(2,R) x R at level ls [21,22] [for
noncompact groups, k does not need to be an integer, so
the central charge c = 3k/(k —2)=26 when k=52/23].

0556-2821/94/50(12)/7493(26)/$06. 00 50 7493 1994 The American Physical Society



A. L. I.ARSRN AND N. SANCHEZ

This solution is the black string background [26]:

2

r) ( Mr)

@2'+~1- r ) ( Mr) 4r'

B-; = —,4 = —2lnrl, (1.2)

The origi»ai method of Refs. [1,2] can be conveniently
formulated in covariant form. Is also useful to introduce
D —1 normal vectors n~& (R = 1, . . . , D —1), (which can
be chosen to be covsuiantly constant by gauge fixing),
and consider comoving perturbations hz~, i.e., those seen
by an observer traveling with the center of mass; thus,
g" = bz n&. After Fourier tra»sforming hz (r, o) =
Q„C„(r)e *",the first-order perturbations satisfy the
matrix Schrodinger-type equation in r:

~ 0

C„n + (n bye —R„~„nnnsq q )C„=0 . (1.4)

Second-order perturbations g" and constraints are simi-
larly covariantly treated, (" also satisfying Schrodinger-
type equations with source terms, see Eqs. (3.15)—(3.20).

For our purposes here it is enough to consider the non-
rotating (J = 0) 2+1 BHAdS background and a radi-
ally infsUing string. We solve completely the c.m. mo-
tion q"(r) and the first- and second-order perturbations
g&(r, 0) and ("(r,0) in this background. Equation (1.4)
becomes

m2
C„n +

(

n'+
[ C„n = 0, R =S,

/f
.

The 6rst-order perturbations are independent of the
black hole mass, only the AdS part emerges. All oscil-
lation frequencies u = gn2 + m2/P are real; there are
no»~~table modes in this case; the perturbations

which is related by duality [21,27] to the 2+1 BHAdS
spacetime, Eq. (1.1). It has two horizons ry
the same as the metric, Eq. (1.1), while the static limit
is r„s ——J/(2~M). Throughout the paper we use the
sign conventions of Misner, Thorne, and Wheeler [28]
and units where G = 1, c = 1, and the string tension
(2s'a') i = 1.

We 6rst investigate the string propagation in these
backgrounds by considering the perturbation series
around the exact center of mass of the string

z"(r, o) = q"(r) + g"(r, o) + ("(r,e) + . (1.3)

m2
m =2)

(
2n + )[A„pA „((+A„~A „~]. (1.7)

(2 z ~ 2Mm&
C„(( +

(
n + m a —

) C„)( = 0 .
r )

The transverse 3 perturbations are oscillating with real
frequencies and are bounded even for r + 0. For longi-
tudinal

~~
perturbations, however, imaginary frequencies

arise and instabilities develop. The (~n~ = 1) instability
sets in at

2M
g1+ m'H') (1.10)

Lower modes become»~~table even outside the horizon,
while higher modes develop instabilities at smaller r and
eventually only for r 0. For r + 0 (which implies
r pro) we find r(r) (3m/M/2) ~ (ro —r)z~ and

~ 0 2
& s~+ C g~ ——0, 8=1,2,9(r —ro) z

~ ~ 4
;2&-ii = 0 ~

9(7 —Tp)
(1.12)

For 7 m Tp the
[~

perturbations blow up while the string
ends trapped into the r = 0 singularity. We see the
important &terence between the string evolution in the
2+1 BHAdS background and the ordi»ary 3+1 (or higher
dimensio»~&) black hole anti —de Sitter spacetime.

We also compare with the string propagation in the
2+1 bhact string background, Eq. (1.2) (with J = 0). In
this case, Eqs. (1.4) become

The mass formula is mod!&ed (by the term m2/l2) with
respect to the usual fiat spacetime expression. This is due
to the asymptotic (here AdS) behavior of the spacetime.
In ordinary D & 3 black hole spacetimes (without cosmo-
logical constant), which are asymptotically fiat, the mass
spectr»~ is the same as in fiat space [10]. The quant»~
string dynamics and mass spectr»~ for the 2+1 BHAdS
spacetime are to be discussed elsewhere.

We compare with the string perturbations in the ordi-
nary (D & 3) black hole anti —de Sitter spacetime. In this
case Eqs. (1.4) become

Cnsz+~ n +m H + ~Cns&=0~ ~=1)2(», Mm'i
l rs

(1.8)

(r ~) ) [A
—%(tlo'+taP~1 ) + A l(%IT 4tggT)]—'—

(1.6)

&~i+&'&ni = o )

2m'M

(1.13)

(1.14)

are completely 6nite and regular. This is also true for
the second-order perturbations, which are bounded ev-
erywhere even for r ~ 0 (r -+ 0). We also compute the
conformal generators I, , Eq. (3.61), and the string mass

The J modes are stable, while C
~~

develop instabil-
ities. For r m 0 (which implies r -+ ro) we find

r(r) =,M(ro —r)2 and
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~0 2
r
(7p —7 )

with similar conclusions as for the ordinary 3+I (or
higher dimensional) black hole anti-de Sitter spacetime.

In order to extract more information about the string
evolution in these backgrounds, in particular exact prop-
erties, we consider the circular string ansatz

t = t(T), r = r(T), p = ~ + f(T), (1.16)

in the equatorial plane (8 = z /2) of the stationary axially
symmetric backgrounds:

ds = g~~(r)dt + g„(r)drz+ 2ggr(r)dtdp+ g~(r)diaz .
(i.i7)

as a string traveling between the H~Herent universes de-
scribed by the maximal M))aiytic extension of the mani-
fold. (ii) For Jz & 4Ez, there is only one positive zero
rp outside the static limit and there is no barrier pre-
venting the string &om collapsing into r = 0. The string
starts at 7 = 0 with maximal size 8 " outside the static
limit, it then contracts through the ergosphere and the
two horizons and eventually collapses into a point r = 0.
For J j 0, it may be still possible to continue this solu-
tion into another universe as in case (i). (iii) J = 4E
is the limiting case where the maximal string size equals

the static limit: S~"'~ = l~M. In this case V(0) = 0,
thus the string contracts through the two horizons and
eventually collapses into a point r = 0.

The exact general solution in the three cases (i)—(iii)
is given by

+ V(r) = 0, V(r) = g"'(gr, r, + E g '), (1.18)

t = Eg"
g f —= Eg'~g E—= Pg ——cons—t, (1.19)

This includes all the cases of interest here: the 2+1
BHAdS spacetime, the black string, as well as the equa-
torial plane of ordinary Einstein black holes. The string
dynamics is then reduced to a system of second-order
ordinary differential equations and constraints, also de-
scribed as a Hagg))ltonian system:

where

1r 7 r~
CyP(T —Tp) + C2

J2
V(0) = ——E

4

MP ( 4V(0)(r~=S 1+
2 ( MP)

(i.22)

(1.2S)

which in all backgrounds considered here are solved in
terms of either elementary or elliptic functions. The dy-
namics of the circular strings takes place at the r axis
in the {r,V(r)) diagram and from the properties of the
potential V(r) [minima, zeros, asymptotic behavior for
large r and the value V(0)], general knowledge about the
string motion can be obtained. On the other hand, the
line element of the circular string turns out to be

de = gdd(der —dr ), Le. , g(r) = (((g (r( )d)d, r

(1.20)

S(7) being the invariant string size. For all the static
black hole AdS spacetimes (2+1 and higher digg)ensionai)

S(T)=r(T), while for the black string background S(T) =
r(T) ~, reflecting the dual properties of the background
on the circular test string.

For the rotating 2+1 BHAdS spacetime,

J2
V(r) = r'

I

— M
I
+ —— E'—

gP y 4
(i.2i)

(see Fig. 1). V(r) has a global minimg)m V - & 0
between the two horizons r+, r (for Ml~ & J2, oth-
erwise there are no horizons). The vanishing of V(r)
at r = rpq z [see Eq. (4.18)] determines three differ-
ent types of solutions. (i) For J2 & 4Ez, there are
two Positive zeros rpq & rp2, the string never comes
outside the static limit, never falls into r = 0 neither
(there is a barrier between r = rpq and r = 0). The
mathematical solution oscillates between rpy and rp2 with
0 ( rpp ( r ( r+ ( rp2 & r,l. It may be interpreted

r(0) = r, r((d)) = QMlz —r2

r(2~) = r

(1.24)

In case (ii) (b, & 0) two roots (eq, es) become complex,
the string collapses into a point r = 0, and we have

r(0) =r, r —
~

=0, r(w2) =r
2 ) (1.25)

where ~2 is the real semiperiod of the Weierstrass func-
tion for this case. In case (iii) (E = 0) the elliptic func-
tions reduce to hyperbolic functions

M/
r(T) =

cosh(~MT)
(1.26)

so that

r(—oo) = 0, r(0) = r = ~Ml, r(+oo) = 0 . (1.27)

cq, cz are constants in terms of (l, M, r ), given by Eqs.
(4.21), and p is the Weierstrass elliptic p function with
invariants (gz, gs), discriminant b, and roots (eq, ez, es),
given by Eqs. (4.22)—(4.25). The three cases (i)—(iii)
correspond to the cases 6 & 0, b, & 0, and b. = 0, re-

spectively. Notice that S~"~ & S~~"'l = l~M & Sm~.
In the case (i), r(T) can be written in terms of the
Jacobian elliptic function sn[T', k], T' = geq —esT,
k = g(e2 —es)/(eq —es). It follows that the solution
(i) oscillates between the two zeros rpq and rpz of V(r),
with period 2(g), where (d) is the real semiperiod of the
Weierstrass function, (d) = K(k)/fez —es, in terms of
the complete elliptic integral of the Grst kind K(k). We
have
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Here, the string starts as a point, grows until r = r
(at r=o), and then it contracts until it collapses again
(r = 0) at 7 = +oo. In this case the string makes only
one oscillation between r = 0 and r = r

Notice that for the static background (J = 0), the only
allowed motion is (ii), i.e., r ) ri, , = v Ml (there is no
ergosphere and only one horizon in this case), with

4E )"
rf7L 1+ 1+

2
(1.28)

r(r) = 1 )cn[(1 + 4H E ),k]) (1.3o)

which is periodic with period 2~:

Z(l) (v1+4H~E2 —1)"
k=

(1+4H'E2)'~4'
I, 2+1+ 4H2E2

(1.31)

For J = 0, the string collapses into r = 0 and stops there.
The Penrose diagram of the 2+1 BHAdS spacetime for
J = 0 is very similar to the Penrose diagram of the or-
dinary (D ) 3) Schwarzschild spacetime, so the string
motion outwards from r = 0 is unphysical because of the
causal structure. The coordinate time t(7 ) is expressed in
terms of the incomplete elliptic integral of the third kind
II Eq. (4.40). The string has its maximal size r~ at
r=o, passes the horizon at r = »„[expressed in terms
of the incomplete elliptic integral of the first kind, Eq.
(4 41)] and falls into r = 0 for r = uz/2, az being the
real semiperiod of the Weierstrass function, Eq. (4.36).
That is, we have

r(0) = r, r(» ) = ~Ml, r((d2/2) = 0,
(1.29)

t(o) = o, t(».,) = ~ ,

and t(u2/2) is expressed in terms of the Jacobian ( func-

tion Z, Eq. (4.42). We also study the circular strings in

the ordinary D ) 3 spacetimes. In the 3+1 Kerr —anti-de
Sitter (or Kerr —de Sitter) spacetime, the potential V(r)
is given by Eq. (4.46), covering seven powers in r The.
general circular string solution involves higher genus el-
liptic functions and it is not necessary to go into details
here. We will compare with the nonrotating cases, only.

It is instructive to recall [29] the circular string in
Minkowski (Min) spacetime, for which V(r) = r —E2
[Fig. 2(a)], the string oscillates between its maximal size
r = E, and r = 0 with the solution r(r) = r )cos7~.

In the Schwarzschild black hole (8) V(r) = r2-
2Mr —E [Fig. 2(b)], the solution is remarkably sim-

ple: r(7) = M + v M2+ E2 cosa. The mathematical
solution oscillates between r = M + QM2+ E2 and
M —v M + E ( 0, but because of the causal struc-
ture and the curvature singularity the motion cannot be
continued after the string has collapsed into r = 0.

For anti —de Sitter spacetime (AdS), we find V(r) =
r (1+H r2) —E2 [Fig. 2(c)]. The string oscillates be-
tween r~ = (—1+v1+4H E )i~2 and r = 0 with

~2m
the solution

For Schwarzschild —auti —de Sitter spacetime (SAdS),
we find V(r) = r2(l + H~r2) —2Mr —E2 [Fig. 2(d)]
and

r(r) = r , r(O) = rd»(r)+ d,
(1.32)

di, d2 are constants given in terms of (M, H, r ) by Eqs.
(4.60) and (4.62) [r is the root of the equation V(r)=0,
which has in this case exactly one positive solution]. The
invariants, the discriminant and the roots are determined
by Eqs. (4.63) and (4.64). The string starts with r = r
at r = 0, it then contracts and eventually collapses into
the r = 0 singularity. The existence of elliptic function
solutions for the string motion is characteristic of the
presence of a cosmological constant. For A = 0 = 3H—
the circular string motion reduces to simple trigonomet-
ric functions. From Fig. 2 and our analysis we see that
the circular string motion is qualitatively very similar in
all these backgrounds (Min, S, AdS, SAdS): the string
has a maximal bounded size and then it contracts to-
wards r = 0. There are however physical and quanti-
tative differences: in M~nkowski and pure anti —de Sitter
spacetimes, the string truly oscillates between r and
r = 0, while in the black hole cases (S, SAdS), there
is only one half oscillation, the string motion stops at
r = 0. This also holds for the 2+1 BHAdS spacetime
with J = 0 [Fig. 1(b)]. Notice also that in all these cases,
V(0) = E2 ( 0—and V(r) r; (+=2,4) for r &) E

The similarity can be pushed one step further by con-
sidering small perturbations around the circular strings.
We 6nd

r da(r) r d a(r) 2E )

(1.33)

determining the Fourier components of the comoving per-
turbations. For the spacetimes of interest here, a(r) =
1—2M/r+Hzrs (Ni~, S, AdS, SAdS), or a(r) = rs/lz 1—
(2+1 BHAdS), the comoving perturbations are regu-
lar except near r = 0, where we find (for all cases)
r '7 ~ — 7 —To an

~ ~ 2 C„=0. (1.34)

It follows that not only the unperturbed circular strings,
but also the comoving perturbations around them behave
in a similar way in all these nonrotating backgrounds
(2+1 and higher dimensional). This should be contrasted
with the string perturbations around the center of xaass,
which behave ~iferently in these backgrounds. It must
be noticed that for rotating (J E 0) spacetimes, the cir-
cular string behavior is qualitatively diferent from the
nonrotating (J = 0) spacetimes. For large J, both in the
2+1 BHAdS was weO as in the 3+1 or+~~~ Kerr-AdS
spacetimes, noncoQapsing circular string solutions exist.
The potential V(r) -+ +oo for r -+ 0 and no collapse into
r = 0 ls possible.

The dynamics of circular strings in curved spacetimes
is determined by the string tension, which tends to con-
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J' M
V(r) = ——+ ——E',

4~4 ~2 l2 (1.36)

with V(r~) = E, V(oo) = 1/l ——E2, and V(0) = +oo
for J g 0, while V(0) = —oo for J = 0 (we only con-

tract the string, and by the local gravity (which may be
attractive or repulsive). In all the previous backgrounds,
the local gravity is attractive (i.e., da(r)/dr & 0), and
it acts together with the string tension in the sense of
contraction. But in spacetimes with regions in which re-
pulsion [i.e., da(r)/dr ( 0] dominates, the strings can
expand with unbounded radius (nnstable strings [6,8]).
It may also happen that the string tension and the lo-
cal gravity be of the same order, i.e., the two opposite
effects can balance, and the string is stationary. de Sit-
ter spacetime provides an exemple in which all such type
of solutions exist [6,8]. In de Sitter spacetime, V(r) is
unbounded from below for r ~ oo [V(r) r4—] and
unbounded expanding circular strings are present. In
addition, an interesting new feature appears in the pres-
ence of a positive cosmological constant: the existence of
multistring solutions [6—8]. The world-sheet time r turns
out to be a multivalued (finite or infinite) function of
the physical time. That is, one single world sheet where
—oo ( r & +oo, can describe many (even infinitely many

[8]) different and independent strings (in fiat spacetime,
one single world sheet describes only one string). In the
S, AdS, and SAdS spacetimes, the multistring feature is
absent.

We also study here the circular strings
in Schwarzschild —de Sitter spacetime, where regions with
da(r)/dr & 0 and da(r)/dr & 0 exist. The potential
in this case is V(r) = H2r4 +—r2 —2Mr —E2 with
V(0) = V(r+) = V(r ) = E2, where—the horizons r~
are given by Eqs. (5.6)—(5.8), and V(r) r for larg—e
r, see Fig. 3. It has a local minim»m between r = 0 and

, and a local maximum at r = ro given by Eq. (5.12),
& ro & r+. The motion is very complicated here, but

again, it can be exactly determined in terms of elliptic
functions, for which we analyze here only the degenerate
case. We find two different types of solutions ry (r) given
by Eqs. (5.15)—(5.19) with the properties

r+(—~) =r„r+(0) =0,
(1.35)

r (—oo) = ro, r (0) = oo, r (oo) = ro .

r+(7)describes o'ne contracting string starting with max-
imal size ro at v = —oo, passing the inner horizon r and
falling into the r = 0 singularity at v = 0. The solution
r (r) describes two different and independent strings:
String I starts with minimal size ro at 7. = —oo and
grows until infinite size at r=0 (unstable string). String
II starts with infinite size at v = 0 and contracts until
minimal size ro at r = +Do. They never collapse into
the r = 0 singularity. The r (r) solution is very similar
to the two-string solution discussed in Refs. [6,8] in the
pure de Sitter case.

Finally, we study the circular string in the black string
background. In this case (see Fig. 4),

sider positive M). One effect of the dual transformation
is to change the asymptotic behavior of V(r). We see
that if E2P & 1, then V(oo) ( 0, which gives rise to
solutions of unbounded r. This is to be contrasted with
the solutions in the BHAdS spacetimes in which the ring
solutions are always bounded. Another eEect of dual-
ity here is to change the invariant string size; we find

S(r) = 1/r(r). For J E0, all solutions are bounded (fi-

nite S), while for J = 0, unbounded (infinite S) exists as
well. For J g 0, the general solution can be expressed
in terms of eHiptic functions (elementary functions for
J = 0), whose description and physical interpretation
are to be described elsewhere.

This paper is organized as folloms: In Sec. II, we review
the 2+1 BHAdS and black string backgrounds. In Sec.
III we describe and solve the string perturbations around
the string center of mass in these backgrounds and in the
ordinary black hole AdS spacetime. In Sec. IV we solve
the exact circular string motion in all these backgrounds
and compare between them, and in Sec. V we discuss the
circular string motion in the black hole de Sitter case. A
s»mmary of our results and conclusions is presented in
Tables I and II.

II. REVIEW OF THE (2+1)-DIMENSIONAL
BLACK HOLE

In this section we give a short introduction to the
black hole anti —de Sitter (BHAdS) solution of (2+1)-
dimensional Einstein theory, recently found by Banados,
Teitelboim, and Zanelli [20]. There are now several ways
to obtain this solution [20—22]. A simple way is to take
as the starting point a line element in the form

2 dT
ds = —a(r)dt + + r dP

a(r)
(2.1)

where a(r) is an arbitrary function of r. The non-
vanishing components of the Einstein tensor, G„„
R„„—2Rg„„, take the form

a aa„ 2G~„=, Ggg =—
2ar 2r 2

(2.2)

T"„=diag(1, 1, 1)A, (2 3)

the solution to the Einstein equations becoxnes nontrivial:

a(r) = c —Ar (2.4)

where c is an arbitrary constant. Usually c is scaled to 1,
and then a positive A represents de Sitter space, while a
negative A represents anti —de Sitter space. On the other
h Lnd, since the constant c is completely arbitrary, we may
as well take a negative c and then we also find solutions
in the form

The only vacuum solution to the Einstein equations
is a=const, corresponding to Sat spacetime, as is well

known in three dimensions. However, if we introduce a
cosxnological constant
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ds =~1 ——~dt +~ ——1~ dr +rdP, (2.5)
2 I r 2 ~ ~ 2 2 2

l2& ~P

(r2 J2 )
—1

d" =
~

M- —i«'+
I

—-M+
l2 ) g

l2 4r2)
Jdtdg—+ r'dP', (2.6)

with two horizons (provided Ml ) J )

where L is a constant. This is in fact the simplest example
of the 2+1 BHAdS solutions of Ref. [20]. This particular
solution, where P is identified with P+ 2m, is a black hole
spacetime with mass M = 1 and angular momentum
J = 0. There is a horizon at r = l and asymptotically
it approaches anti —de Sitter space with A = —1/l2. A
two-parameter family (mass M and angular momentum
J) of black holes is obtained by periodically identifying a
linear combination of t and P. This leads to the solution
(the details can be found in Refs. [20,21])

t' J2 l z (r2 J2 )
da =

/

M —
f
dt's+

/

——M+
4r2) ( l2 4r )

2 d$2
+ dt-dP+ r

Byt, —— J/—2r, 4 = —lnr,

which after diagonalization of the metric becomes

ds'= —/1 — /dt + )1— fdz'
r )

Q' l l'd-'
r ) g Mr) 4r2

B-;=—
) 4= —2lnrL,r

where

(2.13)

(2.14)

(Ml2
r~ —

~

+ —QMzl2 —J2
~2 2

and a static limit

r„=VMl,

(2.7)

(2.8)

t= l(z —t)
2 —r2+

+t- "-

r+

(2.15)

+ppcru =
l2 (gpngvp gpugnp) (2 9)

so that the curvature is constant

2R„„— g„„.
L2

(2.10)

The geometry of the solution (2.6), near r = 0 in partic-
ular, is discussed in detail in Refs. [23,25].

We close this section with a few remarks on the rele-
vance of this solution in string theory [21,22]. To lowest
order in an expansion in o.', the string action is [30]

de6ning an ergosphere, as for ordinary Kerr black holes.
The Riemann tensor, corresponding to the line element
(2.6), is given by

The metric of (2.14) is exactly the black string solution in
three dimensions of Horne and Horowitz [26], obtained by
gauging the WZWN 0 model of the group SL(2,B) x R.

Notice that the spacetime (2.13) is stationary and ax-
ially symmetric, and that it has the same nonvanishing
components of the metric tensor as the original spacetime
(2.6). This will be important when we consider circular
strings in Sec. V. Another interesting observation is that
the duality transformation does not change the two hori-
zons (2.7), while the static limit is changed to r„s(black
string) =J/(2v M).

III. PERTURBATIONS AROUND THE STRING
CENTER OF MASS

8= d z —ge 4 k+B+4 V'4

~~ H„„pH""P], (2.11)

where 4 is the dilation ield and H„„~is the Geld strength
of the Kalb-Ramond field Bp„(Hp„p ——B~pB„„j) It is.
easy to show that the metric (2.6) is a solution to the
equations of motion corresponding to the action (2.11),
when supplemented by [21]

Byt ——r /l, 4=0, k=l (2.12)

Following Horowitz and Welch [21] the connection to the
WZWN o'-model approach is most easily established by
dualizing the solution (2.6), (2.12) on the cyclic coordi-
nate gk According to the well-known procedure [27], the
dual solution to (2.6), (2.12) is then given by [21]

One of the main purposes of the present paper is to
consider the classical propagation of a bosonic test string
in the 2+1 BHAdS spacetime (the spacetime is taken as a
6xed background and no backreactions of the strings are
included). The point particle geodesics were recently in-

vestigated in Ref. [24]. The string equations of motion are
highly nonlinear coupled partial difFerential equations, so
we will restrict ourselves by considering two din'erent ap-
proaches. In this section we calculate 6rst- and second-
order string Buctuations around the string center of mass,
following the approach originally developed by de Vega
and Sanchez [1], and in Sec. IV we consider exact cir-
cular strings winding around the black hole. In both
cases analysis and comparison with the ordinary black
hole AdS and (dS) solutions in 3+1 dimensions is done.
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A. General formalism

Let us solve the string equations of motion and con-
straints by considering perturbations around the exact
string center of mass solution. In this subsection, we

shortly review the method, and we demonstrate the sim-
pli6cations arising at first order in the expansion, when
considering only physical (perpendicular to the geodesic)
perturbations.

In an arbitrary curved spacetime of dimension D, the
string equations of motion and constraints, in the con-
formal gauge, take the form

q4V4nR ——0 . (3.1o)

This is achieved by choosing the basis (q", nR) obeying
conditions (3.8) at a given point, and defining it along the
geodesic by means of parallel transport. Another useful
formula is the completeness relation that takes the form

1
g = — q q +A A~.m2

(3.11)

rotations of the (D —1)-bein spa»»ed by the normal vec-

tors. For our purposes it is convenient to 6x the gauge
taking the normal vectors to be covariantly constant:

z~ - z"~+ r;.(*'z z"*-")= O, (3 1) Using Eqs. (3.7)—(3.10) in Eq. (3.6) we find after multi-
plication by g4„n& the spacetime invariant formula

g~~z z =g~~(z z +z z ) =0, (3.2) (B' —B')6zR —R„~„n"„nsq~q 6zs = 0 . (3.12)

for p = 0, 1, . . . , (D —1) and a prime and overdot rep-
resent derivatives with respect to 0 and 7, respectively.
Consider first the equations of motion (3.1). A particular
solution is provided by the string center of mass q"(r): 6zR(r, ~) =) C„R(r)e '" (3.13)

Since the last term depends on cr only through 6z it is
convenient to make a Fourier expansion

q4 + P4 qpq~ 0 (3.3)

Then a perturbative series around this solution is devel-
oped:

Then, Eq. (3.12) finally reduces to

C R + (n 6Rs RPgm»'Rnsq'q )& (3.14)

z"(7., o) = q" (r) + rl" (r, o) + ("(r,n) + (3 4)

After insertion of Eq. (3.4) in Eq. (3.1) the equations of
motion are to be solved order by order in the expansion.

To zeroth order we just get Eq. (3.3). To first order
we 6nd

which constitutes a matrix Schrodinger equation with 7

playing the role of the spatial coordinate.
For the second-order perturbations the picture is a lit-

tle more complicated. Since they couple to the first-order
perturbations we consider the full set of perturbations ("
t1,31:

ij4 + I'4 ~qPq g" + 2F4 qpg —g"4 = 0 . (3.5) q"&~(q'&sP) R,"~ q'q'(" ——(""= U", (3.15)
The 6rst three terms can be written in covariant form
[3j, c.f. the ordinary geodesic deviation equation:

q"V' (q V g") —R", „q'q rI"rl"" = o . (3.8)

However, we can go one step further. For a massive
string, corresponding to the string center of mass sat-
isfying

gpv(q)q q (3.7)

there are D —1 physical polarizations of string perturba-
tions around the geodesic q"(7). We therefore introduce
D —1 normal vectors n~&, R = 1,2, . . . , (D —1),

v v g
g4v ARq = 0~ g4v ARAg = vR+ (3.8)

and consider only 6rst-order perturbations in the form

(3.9)

where be+ are the comoving perturbations, i.e., the per-
turbations as seen by an observer traveling with the cen-
ter of mass of the string. The normal vectors are not
»»(quely defined by Eqs. (3.8). In fact, there is a gauge
invariance originating &om the freedom to make local

where the source U4 is bilinear in the 6rst-order pertur-
bations, and explicitly given by

U" = —I'" (r'I~r'I —r)'~rI' ) —21'" „q~rl"r'I

1p4 p o' (3.18)

Ty~ = g4v~+ ~gZ (3.17)

where By =
2 (B + B ). The world-sheet energy-

momentum tensor Tg~ is conserved, as can be easily
verified using Eq. (3.1), and therefore can be written

T ) L
—i»(n —~)

2'

) L
—i»(n+a)

2K

(3.18)

At the classical level under consideration in this paper,

After solving Eqs. (3.14) and (3.15) for the first- and
second-order perturbations, the constraints (3.2) have to
be imposed. In world-sheet light cone coordinates (o+ =
r + o) the constraints take the form
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the constraints are then simply

L„=I„=0. (s.19)
(3.27)

Up to second order in the expansion around the string
center of mass we Gnd

4m + gyve &mr/ + 4gpv, pÃg

+gpavg ~+0 + gpav~+r/ ~Sr/ + gpv, pl
+4g&,pg g ( + g&,~g g n n (320)

Let us now turn to the string perturbations around the
solution (3.23) and (3.24). The two covariantly constant
normal vectors satisfying Eqs. (3.8) and (3.10) are given
by

", =
( 00, —f,")

In the following subsections we apply this formalism to
the 2+1 BHAdS and to the black string solution of Sec.
II, as well as to ordinary (3+1)-dimensional black hole
AdS solutions.

n" =
II

(s.28)

B. Strings in the 2+1 BHAdS background

We now consider a string in the background of the
(2+1)-dimensional BHAdS spacetime. For simplicity we
take a non-rotating black hole (J = 0) and we consider
a radially infaihng string. This case is of sufficient com-
plexity for our purposes; the more general case of a string
with angular momentum in the rotating background is to
be considered elsewhere.

Equations (3.3) and (3.7) determining the string center
of mass lead to

(s.21)

t', m')
(= a+ I

n'+ l, ~

& a = o, (3.29)

where B takes the values "3 and "~~". Equations (3.29)
are easily solved and the comoving perturbations (3.13)
are given by

( ) ) [g —a(acr+~„) + g —a(acr —~ ~)]

which define transverse and longitudinal comoving per-
turbations through Eq. (3.9), respectively. It is however
remarkable that in this case we do not need the explicit
expressions for the normal vectors and for the Riemann
tensor to calculate the first-order perturbations (3.14).
Using Eq. (2.9) and the normalization equations (3.7)
and (3.8) we immediately get

(3 22) where

where E is an integration constant. These two equations
are solved by

~„=Qn2+ m2//~,

AnR = +-nR

(3.30)

{3.31)

(3.32)

/ 1 —(E/my M) tan mr//

2~M 1+ (E/m~M) tanmr//

m
r(r) = —— Mmz+ Ezsm r. —

m
(s.24)

Here the boundary conditions were chosen such that r
takes its maximal value at v = ——

2 and the string faHs

into r = 0 for v ~ 0

l . m~M
or arcsin

QMmz+ E2

and we find, from Eq. (3.23),

(s.26)

r = r
~

———
~

= —QMm2+E2, r(0) = 0.t' / x') l

m2)
(3.25)

The string center of mass passes the horizon rh, = ~M/
at

The string perturbations r/" introduced in Eq. (3.4) are

r E ~ 1

m(M —r2//2) ' m rrl 6+() ~ rl — 6&J

{3.33)

and are plagued by coordinate singularities at r = rh,
(for r/ ) and at r = 0 (for r/~). The comoving perturba-
tions 6z~, (3.30), are however completely finite and regu-
lar trigonometric functions. Notice that in the "pure" de
Sitter spacetime [1] the perturbations satisfy Eq. (3.30),
but with frequency ar = gn2 —m /l, thus unstable
modes (for ]n~ ( m/l) appear and the perturbations blow
up. The presence of such instabilities is a generic exact
feature in the de Sitter spacetime [5,12]. In the present
2+1 BHAdS background, all &equencies ~„are real and
instabilities do not occur.

Notice also that the comoving perturbations (3.30) are
independent of the black hole mass M (and of E) In.
fact, Eq. (3.29) is the "pure" anti-de Sitter result, where
the perturbations are independent of the polarization as
they of course should be in an isotropic spacetime. This
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suggests that we have to calculate at least the second-
order perturbations to ensure that the effects of the black
hole mass are included in the perturbations. The second-
order perturbations are determined by Eqs. (3.15) and
(3.16). It turns out that the ('4' equation decouples while
the (~ and (" equations constitute a set of two coupled
partial second-order linear differential equations.

We first consider the (4' equation. Explicitly it is given
by

where the matrices A and 8 are given by

5 ),
,

(0

rr Er
P (1r —M) P (~)

—M)
(3.43)

j4 g»4+ „j4 U4
r (3.34)

2Er' 2E'
&&(~~-M)' l2(~-M)

m2

)2

where

U4' = (g"~-4'-~'"~'4') + 2
"

~"~4'
r r2 (3.35)

The first-order r derivatives in Eq. (3.42) are eliminated
by the transformation

The source U4' is here written in terms of g" and rP&

and its explicit expression as a function of r and 0 can
be obtained using Eqs. (3.30), (3.33), and (3.24). It is
convenient to make the rede&nltions

(Z' 'i (
g = exp

I

— A(r')«'
I

E ')
(3.44)

Z'=—r(4', U4'=rU4'

and the Fourier expansions

(3.36)
1.e.)

( r E l
m(r2/l2 —M) I, E r' )I

~ (3.45)

Z~(r, o) = ) Z~(r)e '"

U4'(r, ~) = ) U~(r)e-'". .

Equation (3.34) then reduces to

(3.37)
Z'(r, a) = ) Z„'(r)e *"

Z'(r, o) = ) Z„'(r)e '" (3.46)

We now Fourier expand the second-order perturbations
and the sources,

m2
Z4 +

I

n'+
I

Z4' = U4,
P ) tl fl

that is solved by

~tlaPra T

Z~(r) =B„e ' " +B„e' " +
2441~

T

x U~(r')e * " dr'

~
—tlaPvs T

U~(r')e' " dr',
2'54J~

(3.38)

(3.39)

U'(r, o) = ) U„'(r)e '"

U'(r, 0) = ) U„'(r)e '"

and the matrix equation (3.42) reduces to

(3.47)

(3 43)

where B„=B~ and ur is defined in Eq. (3.31).
The perturbations (' and (" are somewhat more com-

plicated to derive. By redefining P and U"

where

V = g-'(n'I+ 8 —A' —A)g =
I

" + ~~
(n' ~ 0 l

0 n2&

$"—:
I

——M I(', (3.40) (3.49)

(r2U" —=
I

— M
I

U'—
$2 )

(3.41)

we find, from Eq. (3.15),

( j'e ) ((I» ) (ja ) ((a
I

—.
I

—
I P. I+2A

I

.. I+8I (. I

=
I U. I) E ) E J E )

(3.42)
(3.50)

i.e., two decoupled inhomogeneous second-order linear
differential equations with constant coefBcients. It fol-
lows that the complete solution is known, and given ex-
plicitly by

gt ( ) Ql lhlgg T+ g %4I~T'
tlaP~ T

+ . U(r')e '" dr'
2ccd~

U„'(r')e* " dr'
2tccp~
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and

anT T

Z„'(r) =D„e '" +D„e'" + . U„'(r')e '" dr'
2in

where

(3.52)

—MT
U„'(7')e'" d7.',

2in
(3.51) The string perturbations (" introduced in Eq. (3.4) are

6nally

(' = r') Z„'(r)e '" + E) Z„'(r)e '"

(~ = —) Z~(r)e
1
r (3.53)

These expressions are quite coznplicated because of the
integrals of the sources in Eqs. (3.39), (3.50), and
(3.51). To allow comparison with the ordinary (3+1)-
dimensional black hole cases (see next subsection) it is

enough to consider the region r ~ 0 (equivalent to the re-
gion r ~ 0 ). The sour ce s are cal cul ate d& omEq. (3.16)
using the first-order perturbations (3.30) and (3.33). To
leading order in 7. for 7 -+ 0 we 6nd

2E t' 1 l
U&(r, ~) = . . .) ) (A~~~+A„~~)(A„„~+A„,~)e '" +0] —

s [,&r')n p

(3.54)

U"(r, a) = I'11
Mm'+ E'r' (r' j) ) (Apl +Apl)(A „i+A pJ)e '" +0~

n p

while U' is 6nite for 7 ~ 0. It follows that

U„'(r) = E t' l 1
m Mm +Er ) (A„g + A„g)(A„~g + A„~g) + 0

~

—
~E"'Jp

(3.55)

U„'(r) = ) (A„g + A„g)(A„„g+ A„pg) + 0
~

—
~

1 f' 1

p

(3.56)

—2E
U„(r) = ) (A„(( + A~)~()(A„~~ + A„„~)+ 0

~

—
~

p

From Eqs. (3.39), (3.50), and (3.51) we find the asymptotic behavior of the Z„'s:

Z'„(r) = ) (A„~ + A„~)(A„~g + A„„~)+ 0(1),
2m+Mms+ E r

Z„'(r) = ) (A„g+ Qg)(A „g+A„)+ 0(1), (3.57)

and from Eqs. (3.36), (3.44), and (3.45) we have
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t'1)
(+(r, o) =,) ) (Q)(+Q)))(A -i'd+A -ii)e *" +O

mt. Er&
11 P

(3.5S)

( (r, 0) = ) ) (A~~+A ~)(A &~+A zg)e '" +O(1), (3.59)

X = sinh(QMx~),
M

z"
Y = cosh(V Mz~) .

M

(3.60)

It is easy to show that T, X, and Y are Snite for
r -+ 0 when z', z", and z~ are expanded up to second
order (3.4) using Eqs. (3.88), (8.58), and (8.59). Having
calculated the first- and second-order perturbations, we
can now also calculate the world-sheet energy-moment»~
tensor Ty~ (3.18)—(3.20). This calculation is simplified
using the fact that T~~ are functions of ri(0 + r) while
the first-order perturbations rl" are functions of (no +
ur„r). The first-order perturbations can therefore only
give constant contributions to Tyy. A straightforward
but tedious calculation gives

L„=—2zimnD„, L„=2ximnD„; n g 0,

Lo —n ) (~«+n) [A«lA «)(+A«~A «~] ——m

(3.61)

while ( is finite for r -+ 0 (r -+ 0 ). The singularities of
(4' and (" for r = 0 are coordinate artifacts like the singu-
larity of rl& in Eq. (3.33). Such singularities appear even
in fiat Minkowski space when parametrized in terms of
polar coordinates. In the present case the coordinate sin-
gularities are removed by introducing pseudo-Cartesian
coordinates near r = 0:

asymptotic character of the spacetime; in particular, the
presence of a cosmological constant. In the ordinary
black hole spacetime without a A term, which is asymp-
totically fiat (and in which bounded orbits do not ap-
pear), the mass formula is the same as in fiat spacetime
[10]. In the "pure" de Sitter spacetime, however, the
mass formula is modi6ed exactly in the same way as Eq.
(8.62), but for a positive A, i.e., with a term (2n2 —m2/l~)
in the s»m. The quantization of the string in the 2+1
BHAdS background and the consequences of Eq. (3.62)
for the quantum mass spectr»~, are to be discussed else-
where.

This concludes our analysis of the first- and second-
order perturbations around the string center of mass, for
a string embedded in the 2+1 BHAdS spacetime of Sec.
II.

C. Strings in the ordinary black hole anti —de Sitter
spacetime

String perturbations around the center of mass of a
string embedded in ordinary higher dimensional black
hole and de Sitter backgrounds were already considered
in Reh. [1,10,11]. Here we take the equatorial plane of
(8+1)-dimensional Schwarzschild anti —de Sitter space, to
better allow comparison with the results of subsection
IIIB. We furthermore use the formalism of subsection
IIIA, where only physical first-order perturbations are
considered. This simplifies the analysis considerably as
compared to Refs. [1,10,11].

The line element is taken in the form

Lo = z ) (4p« —ri) [A«([A «[] + A«J A «J ]
——m

d1 2
ds = —a(r)dt + +r de +r sin ed/ . (3.63)

a(r)

and from Eq. (3.19) we obtain the constraints In the first place we take a(r) to be an arbitrary function
of r, but we will eventually be interested in the case

D„=D„=O, ) duo„[A«[[A «l+A«LA «z] =0, 2M
a(r) =1— +H r2, (3.64)

as well as

m2m'=2) 12~'+,
I

[A»[[A „(+A„LA „~],

corresponding to Schwarzschild —anti —de Sitter space. For
a radially infalling string in the equatorial plane (8 =
z/2, /=const) the geodesic equations (3.3) and (3.7) for
the string center of mass are solved by

(3.62) t = E/a(r), (3.65)

determ~~ing the mass of the string. Notice that the mass
formula of the string is modi6ed with respect to the
usual fiat space expression (mz = 4+„n [A„~~A „~~ +
A ~A «~]). The reason for this modification is the

r +m a(r) = Ez, (3.66)

generalizing Eqs. (3.21) and (3.22). The r' equation
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(3.66) is solved by negative. In that case imaginary frequencies arise and
instabilities develop. The (~n~=l) instability sets in at

dx
'T —70

, QE2 —m2a(x)
(3.67)

"-"=i1+ H ' (3.74)

and after inversion, giving r as an explicit function of 7.,
the coordinate time t is obtained by the integration of Eq.
(3.65). In the case of a Schwarzschild black hole this gives
the well-known results in terms of elementary functions
(see, for instance Ref. [28], section 25.5), while in the
case under consideration here, where the function a(r) is
gi~~n by Eq. (3.64), r(v) and t(w) will be expressed in
terms of elliptic functions.

There are now three covariantly constant normal vec-
tors satisfying Eqs. (3.8) and (3.10):

r(7-) = (3m/M/2) 2~'(ro —~)'~3, (3.75)

which may be inside or outside the horizon, depending on
the relation between the various parameters (M, H, m)
involved. The higher modes develop instabilities for
smaller r.

These results are easily confirmed by the exact time
evolution of the perturbations. For r m 0 we find, from
Eq. (3.66),

1
",~

——
~

0, 0, —,0
~)

n2~ ~

0, 0, 0,
r&

( r' E
()'

(3.68)
~ ~ 2

& s~+ C„g~ ——0, S= 1,2,
9(70 —T)2 (3.76)

where the integration constant is chosen such that r ~ 0
corresponds to r —i ro. Then for 7 -+ ro Eqs. (3.72) and
(3.73) are

The nonvanishing components of the Riemann tensor,
corresponding to the line element (3.63), are

1+ t t 2avr)
r

+ee~e = —aa
2

—r
R srs — a, r)2a

r 2
+tyty aa r sin 6 )

2

r ~ 2
+r@rp —,r2a

Rgysd, = r (1 —a) sin 8 .

Equations (3.14), deterxnining the Fourier coxnponents
of the comoving Grst-order perturbations, separate and
reduce to

4 ~ 4

9(

with complete solutions

C~si(r) = ~ si(ro —~)' '+ P~si(ro —r)' ',
9= &, 2,

C~(((~) = p~)((7o —r)' '+4)((~o —~) ' '
)

(3.77)

(3.78)

(3.79)

( 2 m'a„)
C„s~+

~

n + '" ~C„s~=0, S=1,2, (3.70)
2t'

(2 ma„„)
C„ii+ I

& + (3.71)

C„s~+~n +mH + ~C„s~ ——0, S=12,(. . . Mm2i
r3

(3.72)

while, for the longitudinal polarization,

2Mm' )
C„()+ J

n +m H — [C„()=0.r (3.73)

For the two transverse polarizations we find, from Eq.
(3.64),

where (cx„s~,P„s~,p„~~, b'„~~) are constants. It follows
that C s~(v) is finite for r ~ 0 (w ~ ro) while C„~~(r)
blows up because of the b„~~ term. This result demon-
strates the important difference between the 2+1 BHAdS
solution of Sec. II and the equatorial plane of an ordi-
nary higher-dimensional black hole. In the first case we

found finite bounded perturbations, while in the latter
case instabilities develop already in the first-order comov-

ing perturbations near r = 0. For the ordinary black hole
anti —de Sitter spacetime it is then meaningless to analyze
higher-order perturbations for r m 0, in contrast, as we

have seen, to the 2+1 BHAdS background. In the ordi-
nary black hole anti —de Sitter spacetime the string falls
to the center (r = 0) and is trapped by the singularity.
For 7. m ~0 the potential for the radial perturbations, Eq.
(3.77), is of the type —p/(r —ro) with p=4/9, which is
a singular attractive potential.

From these equations it is obvious that we need only look
for singularities in the region r m 0. However, for the
transverse perturbations (3.72) the bracket is always pos-
itive. We therefore expect that the solution is oscillating
and bounded even for r -+ 0. For the longitudinal per-
turbations (3.73), on the other hand, the bracket can be

D. Strings in the black string background

Vfe close this section with the analysis of the string
propagation in the black string background. It is conve-
nient to take the metric in the form (2.14) and for sim-

plicity we consider the uncharged (Q = 0) black string:
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t' M) „2 ( M) l2dr2
ds = —il — dt + 1— +dxr & g r &

4r'
Et= l1 —Al/r

(3.81)

(s.8o)

where the tildes have been deleted [cf. Eq. (2.14)]. This
spacetime is just the direct product of Witten's two-
dimensional black hole [31]and the real line space. It has
a horizon at r = M = M/ and, contrary to its dual, the
2+1 BHAdS solution, it has a strong curvature singular-
ity at r = 0. To compare with the results of subsections
IIIB and III C we consider a radially infalling string, cor-
responding to +=const. Equations (3.3) and (3.7) for the
string center of mass become

4'
E —m+

l2
(s.82)

m'u . 2/m2 —E2
r(r) =

2( 2 E2)
1 —sin (3.83)

and

which can be solved in terms of elementary functions
(taking for simplicity m2 ) E2)

l 1 + [(m2 —2E2)/(m2 —2E/m —E )]tan(/ms —E2/l)T
t(r) = Er ——ln

1+ [(m —2E )/(m + 2E/m —E )] tan(Qm —E /l)T
(s.84)

where the integration constants were chosen such that
t(0)=0 and r(Tp)=0 for

m2M
T 7 ~ 70 7 (3.91)

ml

4/m2 —E2

Notice that the horizon is passed for v = rh,

(s.85)
where the integration constant is chosen such that r ~ 0
corresponds to r -+ rp. Equation (3.90) is now, for T M
«)

l (2E2
arcsin

~

—1
~2+m' —E2 ( m' (3.86)

with the solution

(3.92)

and that t(~, ) = oo.
The two covariantly constant normal vectors, satisfy-

ing Eqs. (3.8) and (3.10), are given by
C„(((r) = a„)((rp —r) (s.9s)

n~~ ——(0, 0, 1),

lr' 2Er
g2m(r —m)' ml '

&

(s.87)

+grgr 3 )2r
(s.88)

and then Eqs. (3.14), determining the string perturba-
tions, take the form

C„g+n C„g ——0, (3.89)

The only nonvanishing component of the Riemann ten-
sor, corresponding to the line element (3.80), is

The solution indeed blows up for r + 0 (r ~ rp) with
conclusions similar to the ordinary black hole case, sub-
section III C.

IV. CIRCULAR STRINGS IN STATIONARY
AXIALLY SYMMETRIC BACKGROUNDS

In this section we consider circular strings embedded
in stationary axially symmetric backgrounds. Circular
strings in curved spacetimes have attracted important
interest recently [6,8,32—38]. The analysis is carried out
in 2+1 dimensions, but the results will hold for the equa-
torial plane of higher-dimensional backgrounds as well.
To be more speci6c we consider the line element

( 2 2mMI
&~((+ I

n'—
l2r (3.9o)

ds = gqq(r)dt + g„„(r)dr + 2gt~(r)dtdg

+gd~(r) d&' (4.1)

Not surprisingly, the perturbations in the x direction are
completely ~~ate and regular. For the longitudinal per-
turbations we see that the term in the parentheses in Eq.
(3.90) becomes negative and approaches —oo for r -+0,
suggesting an instability. This is con6~med by the exact
time evolution near r =0. Using Eq. (3.82) we Bnd, for
rm0,

that will be general enough for our purposes here. It
obviously includes as special cases the BHAdS solution
of Sec. II (as well as the black string) and the equatorial
plane of the black hole solutions of Einstein theory in
3+1 H~mensions.

The circular string ansatz, consistent with the symme-
tries of the background, is taken to be
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t =t(r), r =r(r), y= &+f(r), (4 2)

where the three functions t(r), r(r), and f(r) are to be
determined by the equations of motion and constraints
(3.1)—(3.2). The equations of motion (3.1) for the ansatz
(4.2) and the background (4.1) lead to

For the cases that we will consider in the following, Eq.
(4.12) will be solved in terms of either elementary or el-
liptic functions.

%e close this subsection by the following interesting
observation: Insertion of the ansatz (4.2), using the re-
sults (4.9)—(4.11), in the line element (4.1) leads to

t+2r', „tr. +2r~~rf = O,

r + r„"„r'+ r,",t'+ r~~(f' —i) + 2r,"~tf = O,

f'+ 2r4„'t'+ 2r~4'„f' = o,
while the constraints become

(4.3)

dsz = gpss(do —dr ) .

We can then identify the invariant string size as

S(.) = )(A~(r(r)) .

(4.i3)

(4.14)

&~t +9 " +gyp(f +1) +29tgtf = 0

gtyt+gyyf = 0 .
(4.4)

This system of second-order ordinary diHerential equa-
tions and constraints is most easily described as a Hamil-
tonian system:

'R = -g"P, + -g""P„+-g~~P + g'~PgPp + -gpy,

(4.5)

supplemented by the constraints

'R=O, Py ——0. (4.6)

The function f(r) introduced ia Eq. (4.2) does not rep-
resent any physical degrees of freedom. It describes the
"longitudinal" rotation of the circular string and is there-
fore a pure gauge artifact. This interpretation is con-
sistent with Eq. (4.6) saying that there is no angular
momentum Py.

The Hamilton equations of the two cyclic coordinates
t and f are

For the (2+1)-dimensional BHAdS spacetime the invari-
ant string size is then simply r, as well as for the or-
dinary (3+1)-dimensional Schwarzschild and Reissner-
Nordstrom black hole backgrounds. For the black string
background (2.13) the invariant string size is actually
r —1

A. Circular strings in the 2+1 BHA, ckS spacetime

In the (2+1)-dimensional BHAdS spacetime (2.6),
Equation (4.11) determining the invariant string size
r(r), takes the explicit form

+V(r) =0; V(r) =r
~

——M ~+ ——E~ 2 2
)r2 l J2
(l' y 4

(4.15)

Here we have defined the potential V(r) such that the
dynamics takes place at the r axis in a (r, V(r)) diagram,
see Fig. 1. The potential (4.15) has a global minimum
between the two horizons:

f = g~~P~ + 9'~Pq, t = g"P(, + 9'~P~,

as well as

(4.7)
V;„=V = ——,'(M'l' —J'+ 4E') & 0,

)
(4.16)

P~ ——const = 0, Pq ——const —= —E, (4.8)

where E is an integration constant and we used Eq. (4.6).
The two functions t(r) and f(r) are thea determined by

which is always negative, since we only consider the case
when M/2 & Jz [otherwise there are no horizons, see Eq.
(2.7)]. For large values of r the potential goes as r4 and
at r = 0 we have

f = —Eg'~, (4.9)
J2

V(0) = ——E2,
4

(4.i7)

t = —Eg (4.10)
that can be either positive, negative, or zero. Notice also
that the potential vanishes provided

"= -9""(E'9"+ W4) (4.11)

that can be integrated provided r(r) is kaowa. Using
Eqs. (4.6), (4.9), and (4.10) the Hamilton equation of r
becomes, after one integration,

V(r()) = 0 m rp) 2

+ -gM'/' —J'+4E'
I

l(M/2 l

2 2
(4.is)

so that r(r) caa be obtained by iaversion of

7 70
dx

(4.12)" V' 9""(*)[E'9"(*)+ 9~-~(*)]

Equatioa (4.18) leads to three fundamentally diferent
types of solutions.

(i) For Jz ) 4E there are two positive-r zeros of'

the potential [Fig. 1(a)]. The smallest zero is located
between the inner horizon and r = 0, while the other
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&(r)/I'

0. 8

0. 6

0. 4

0.2

I

1.5

-0.2

-0 4

FIG. 1. The potential V(r), Eq. (4.15), for a circular string in the (2+1)-dimensional black hole anti —de Sitter (BHAdS)
spacetime. In (a) we have J ) 4E and a barrier between the inner horizon snd r = 0, while (b) represents a case where
J ( 4E and a string will always fall into r = 0. In the cases shown, the values of the various parameters sre M = 1, J = I/~2
as well as E=0.1 [case (a)] and E=0.5 [case (b)]. The static limit is r„s ——l.

zero is between the outer horizon and the static limit.
Therefore, this string solution never comes outside the
static limit. On the other hand, it never falls into r = 0.
The mathematical solution oscillating between these two
positive zeros of the potential may be interpreted as a
string traveling between the difFerent umverses described
by the maximal analytic extension of the spacetime (2.6)
[the Penrose diagram of the (2+1)-dimensional BHAdS
spacetime is discussed in Refs. [23,25]]. Such type of cir-
cular string solutions also exist in other stringy black hole
backgrounds [36].

(ii) For J2 ( 4Ez there is only one positive-r zero of
the potential, which is always located outside the static
limit [Fig. 1(b)]. The potential is negative for r = 0, so
there is no barrier preventing the string from collapsing
into r = 0. By suitably 6xing the initial conditions the
string starts with its maximal size outside the static limit
at r=0. It then contracts through the ergosphere and the
two horizons and eventually falls into r = 0. If J $0 it
may, however, still be possible to continue this solution
into another imiverse as in case (i).

(iii) Jz = 4Ez is the limiting case where the maximal
string radius equals the static limit. The potential is ex-
actly zero for r=0 so also in this case the string contracts
through the two horizons and eventually falls into r = 0.

Let us now look at the exact mathematical solution of
Eq. (4.15). In the general case (arbitrary J) the non-
negative solution can be represented as

(MP /

+ gM'P —-Jz+ 4Ez
~2 2

cq and c2 are two constants given by

discriminant

M2 Mr 2 r4

12 /2 /4 '

M3 M2r2 Mr4
216

+
6/2 6/4

and roots

QMP —rz(
M1(M
6'2 g6 P

(rs Mr
(P 2 )
1 (6rz ) (rs Mr
12gP ) gl' 2

and p is the Weierstrass elliptic p function [39],

P =4P AP 93 ~

with invariants

(4.20)

(4.21)

(4.22)

(4.23)

(4.25)

r(r) = r
cyp(T —Tp) + cz

where r is the maximal string radius,

(4.19) The qualitatively different solutions (i), (ii), and (iii) dis-
cussed before, are now distinguished by the sign of the
discrimin Lnt 4:
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J —4E' & (&)0 m r' & (&)M/' m 4 & (&)0, (4.26)

M r—+ QM/2 —r2 &0& e,
2l2

M r M
QM/2 —r2

12 2l2 6
(4.27)

and the solution (4.19) can be written in terms of Jaco-
bian elliptic functions:

b —sn2[7', k]r T rzzi b+ sn2[r', k]
(4.28)

where

4l'(ei —es)7' = i/ei —esr, h =
Ml& '

1/2

k=j(e2 —es1
hei —es)

(4.29)

It follows that

r(0) = r, r(u) = gM/2 —r2, r(2u) = r

(4.30)

where we used M/2 & 2r2 (otherwise there are no hori-
zons). We then analyze the three types of solutions in
terms of the mathematical formalism above.

(i), 4 & 0: In this case the roots (4.25) are given by

now

K(k)
H2

(4.36)

(iii), b,=0: In this limiting case the elliptic functions
reduce to hyperbolic functions. Explicitly we find

so that

( )
y/M/

cosh(~Mr)
(4.37)

r( oo)—= 0, r(0) = r = v Ml, r(oo) = 0 . (4.38)

In this limiting case L=O, the mathematical solution only
makes one oscillation between r = 0 and the maximal
radius.

Let us close this section with a few more words on the
nonrotating black hole case. For J=O we are always in
case (ii); i.e., if the black hole has no angular momen-
tum the circular string has its maximal invariant size
larger than the horizon (there is no ergosphere and only
one horizon in this case) and it always falls into r = 0.
The Penrose diagram for J = 0 [23] is similar to the Pen-
rose diagram of ordinary Schwarzschild spacetime, so the
string motion outwards from r = 0 is unphysical because
of the causal structure. The string motion stops when
the string falls into r = 0.

The physical string size is given by Eq. (4.33) for J =
0, and the coordinate time t(r) is then obtained from Eq.
(4.10),

where co is the real semiperiod of the Weierstrass func-
tion,

dx
t(r) = El'—

MP —rz cn2[2i/H2z, k]
'

which leads to

(4.39)

K(k)
(4.31)

and K(k) is the complete elliptic integral of first kind.
From Eqs. (4.28) and (4.30) it is seen that the solution
oscillates between the two positive zeros (4.18) of the
potential, with the period 2~.

(ii), b, & 0: Now two of the roots (4.25) become non-
real:

(4.40)

Here II is the incomplete elliptic integral of third kind
and r, k, H2 and A&2 are given by Eqs. (4.20), (4.34),
and (4.36), respectively, with J = 0. The string has its
maximal size for r=0, passes the horizon ri,~z = ~M/ at

M
ei =——+ i Qr2 —MP,

12 2l2
M .r

es = ——i Qr2 —Ml2
2l2

M
82 = ——

6

and Eq. (4.19) leads to

r(7) = r (cn[2+H2r, k](,

where

02 —
2 163 k =

2
—382 4~2 ~

(4.32)

(4.33)

(4.34)

MPE
~

arcsin 1—,k"-'' )
(4.41)

where E is the incomplete elliptic integral of first kind,
and falls into r = 0 for r = ~2/2 [Eq. (4.35)]. The
corresponding values of the coordinate time are given by

t(0) = 0, t(rb.,) = ~ ,

(4.42)
cup Elr Z[e, k]

2i/MH Qrz —MP Qrz (1 —k2) + k*MP

where Z[e, k] is the Jacobian ( function [39]and sn[e, k] =
(r2 —MP)/r2

It follows that

r(0) = r, r(w2/2) = 0, r(m2) = r, . . . , (4.35)

where the real semiperiod of the Weierstrass function is

B. Circular strings in arckinary spacetimes

We will now compare the circular strings in the (2+1)-
dimensional BHAdS spacetime and in the equatorial
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plane of ordinary (3+1)-dimensional black holes. In the
most general case it is natural to compare the spacetime
metric (2.6) to the ordinary (3+1)-dimensional Kerr—
anti —de Sitter spacetime with metric components

sjn2 g Q p2
ger =

p2

2 g
gpss

= [6„—(r2+ az)6e]
p2

2 2

gee = [6e(r +a ) —a A„sin 8] z 2& gee =s1n 8 p

4„=(1—sAr )(r +a ) —2Mr, be = 1+—Aa cos g,

1A 2 2 2+ 2 2g (4.44)

Here the mass is represented by M while a is the specific
angular moment»m, and a positive A corresponds to de
Sitter while a negative A corresponds to anti —de Sitter
spacetime. In the equatorial plane (g = w/2) the metric
(4.43) is in the general form (4.1) and it is easy to see
that the analysis of Sec. IV goes through, so that we can
take over the general results of Eqs. (4.9)—(4.11) for the
circular strings. In the most general case the t equation
(4.10) and the r equation (4.11) take the form

where we have introduced the notation

(4.43) t= [(r +a ) —a 6„], r' +V(r) =0, (4.45)L„r2

where the potential is given explicitly by

A 4 1 —2Aa2/3 2 2M(1 + 2Aa~/3) 2a —Aal/3 —E2b, oV(r) = — + —
2 +

3 0 0 0 0

a [As(a —E 4 ) —4M ] 1 2Ma (a —E b, ) 1+ '
62

' —2+
0 r ~2 3

0 r

4MAa4 S

3402 r

(4.46)

i.e., the potential covers seven powers in r. The gen-
eral solution will therefore involve higher genus elliptic
functions and we shall not go into any detail here. It
is furthermore very complicated to deduce the physical
properties of the circular strings &om the shape of the
potential (the zeros, etc.) since the invariant string size
(4.14) is nontrivially connected to r:

a =M,

t=E, V(r) =r —E (4.48)

i.e. , [see Fig. 2(a)]:

V(0) = E, r —= E, V(r) oc r for r » E . (4.49)

r' + a''( ) = '(1+A. /3'
2M 2 ) 1/2

r (1 + Aal/3) z
&

. (4.47)

The string oscillates between its maximal size r = E and
r = 0, with the solution of Eqs. (4.45) given explicitly
by

We will leave the general Kerr —anti —de Sitter case for
analysis elsewhere, and concentrate here on the nonrotat-
ing case a = 0, that should be compared with the J = 0
case of the 2+1 BHAdS solution discussed at the end of
subsection IVA. Our strategy will be to start with the
simplest case of a circular string in Sat Minkowski space-
time and then introduce a mass (Schwarzschild) and a
negative cosmological constant (antique Sitter).

r(r) = r [c osr), t = Er . (4.50)

S. Schwa''sschild Mack hole

This case was already considered in Ref. [36] for E =
0 and in Ref. [38] for arbitrary E. The potential and
coordinate time are obtained from Eqs. (4.45) and (4.46)
with a = 0 = A:

X. Minkowski space t=, V(r) = r —2Mr —E
1 —2M/r ' (4.51)

This case was originally discussed by Vile~kin [29], and
is obtained from Eqs. (4.45) and (4.46) taking A = 0 = i.e. [see Fig. 2(b)],

V(0) = E, r~ = M+ QM—2+El & E, V(r) oc r for r && (M, E) . (4.52)
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V(r)/E'

—2

FIG. 2. The potential V(r ), Eq. (4.46), for a circular string in the equatorial plane of the four (3+1)-dimensional spacetimes:
(a) Minkowski (Min) space, (b) Schwarzschild (S) black hole, (c) anti-de Sitter (AdS) space, and (d) Schwarzschild —anti —de
Sitter (SAdS) space. The potentials are plotted for fixed E and we notice the following general relations between the maximal
sgr~~g r~g~~ ~, ps ) pMin ) ~Ads ~s ) ~sAds ) ~Ads @~g ~Min ) ~sAds ~ ~2@3 ) 2M

The mathematical solution oscillates between r = M +
QM2+ Ez and r = M —QM2+ E2 ( 0, but because
of the causal structure and the curvature singularity the
motion stops at r = 0. The solution of Eqs. (4.45) is
remarkably simple (compare with the point particle case,
see, for instance, Ref. [28]),

r(r) = M+ QM2+E2 cosr,

tanr/2+ (gM'+ E2 —M)/E
tan r/2 —(i/M2 + E2 —M)/E

(4.53)

8. Anti —de Sitter ence

Here we take a = 0 = M and A = —3H2 & 0 in Eqs.
(4.45) and (4.46) and find

V(0) = E', r = (——1+ gl+4H'E')'~' & E,
~2H

V(r) oc r for r » (1/H, E) . (4.55)

t = . .. V(r) = r'(1+ H'r') —E', (4.54)S+ H2~2'

i.e. [see Fig. 2(c)],

The string is oscillating between r = ~ (—1 +
pl+ 4HzE2) ~ and r = 0. The solution of Eqs. (4.45)
for r(r) is

r(r) = r ~cn[(1+4H E ) r, k]~,

which is periodic with period 2',

(4.56)

Schtsarzschild —anti —de Sitter space

By taking a = 0 and A = —3H2 ( 0 in Eqs. (4.45) and
(4.46) we are finally in the case of Schwarzschild —anti —de

K(k) (Ql+4H2E2 —11
'"

(1+4H'E')'~' ( 2y'1+ 4H'E'

(4.57)

Equation (4.54) can then be integrated, and we obtain,
for t(r),

E
(1+4HzE')'~ (1+H rz )

H2r2
xn

~

-,(1+4H'E2)'~4r, k ~,
q 1 + Hzrz '

(4.58)

where II is the incomplete elliptic integral of the third
kind.
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Sitter spacetime:

E
1 + H zr z —2M/r '

(4.59)

i = E/a(r), (4.65)

(2.1) the circular string is determined by Eqs. (4.10) and
(4.11):

V(r) = H r +rz —2Mr —Ez, r' +r a(r)=E (4.66)

i.e. [see Fig. 2(d)],

V(0) = E—, H r +r —2Mr —E =0,
V(r)oc r for r » (M, H, E) . (4.6o) gpvz A =gy x A =0 gp A A = 1

~ p v Ip v gl V (4.67)

We can introduce a normal vector n" perpendicular to
the string world sheet (x" = t, r, P):

Notice that V(r) ( —Ez inside the horizon, and that
dV/dr has only one real (positive) zero It f.ollows that
the r equation (4.60) has exactly one positive solution
which is then by definition r . The explicit (but not
very enlightening) expression for r as a function of M,
H, and E can of course be written down by solving the
quartic equation, but we sbeJ& not give the result here.
The solution of Eqs. (4.45) for r(r) can be written in
terms of the Weierstrass elliptic p function:

explicitly given by

En" = , —,0rar 'r'
and satisfying the completeness relation

1g"" = —(z'"z'" —i"x")+ n"n" .
r2

(4.68)

(4.69)

1
r(r) = r

dip(r —rp)+dz '

where the two constants dq and d2 are given by

dg ——2(r —M+ 2H r )

(4.61)
For circular strings in the equatorial plane of a higher-
dimensional spacetime there will also be normal vectors
in the directions perpendicular to the plane of the string
but they will not concern us here. By de6ning the comov-
ing physical perturbations hx to be the perturbations in
the nI' direction,

(4.62)

dz ——s (1 + 6H r )(r —M + 2H rs
)

The invariants of the Weierstrass function are given by
it can be shown that [38]

(4.7o)

g2 ———+2Mr H —H r (1+H r ), (4.63)
(q. q.)q

~

() " ' ()
g2 dr 2 drz r2

(4.71)

g3 =
2ye +

2 2 2Mr~H H r

(4.64)

to first order in the perturbation. To solve this equation
one has to first solve Eq. (4.66) for r(r). After Fourier
expanding bx we get the Schrodinger equation [38]

from which one can calculate the discriminant, the roots,
etc. From Eq. (4.61) it is, however, already clear that the
string starts with maximal size r for r=o, it then con-
tracts and eventually collapses into the singularity r = 0
(ta¹~ng for convenience rp ——0).

From Fig. 2 and the above analysis we conclude that
the circular string motion is in fact very simi&ar in the
equatorial plane of the four backgrounds of Minkowski
space, anti —de Sitter space, Schwarzschild black hole, and
Schwarzschild —anti —de Sitter space. In all these cases the
string has a maximal size, and then contracts towards
r=o. Quantitatively there are of course differences but
qualitatively the motion &om r = r to r = 0 is the
same. This also includes the (2+1)-dimensional BHAdS
spacetime when J = 0: according to Fig. 1(b) and Eq.
(4.35), the J = 0 circular string motion is qualitatively
sing&ar to the four cases described above.

This sing&arity can actually be pushed one step Auther
by considering small perturbations propagating around
the circular strings, using the covariant approach of
Larsen and Frolov [4]. For a line element in the form

~ |'
z r da(r) r d a(r)C+ +2 d +2 d

2E )
r2 )

(4.72)

determining the Fourier components of the comoving per-
turbations.

The four nonrotating spacetimes considered in this
subsection are special cases of a(r) = 1 —2M/r + Hzrz,
while the J=O case of the 2+1 BHAdS spacetime corre-

2
sponds to a(r) =

~&

—M. However, in all these cases it
is clear from Eq. (4.72) that the comoving perturbations
are regular except near r = 0, where the dominant term
in the "potential" (4.72) is the E2 term. The Ez term
depends on a(r) through the denominator r2 that is ob-
tained by solving Eq. (4.66). In all the nonrotating cases
considered in this section it is easy, however, to see that
for r -+ 0 we have r = E(r Tp). It follows th—at no—t only
the unperturbed circular strings but also the comoving
perturbations around them behave in a qualitatively sim-
ilar way in all the nonrotating backgrounds considered in
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this section. This should be contrasted with the analy-
sis of the string perturbations around the string center
of mass (Sec. III), where we found qualitative differences
between strings in ordinary (3+1)-dimensional black hole
spacetimes and strings in the (2+1)-dimensional BHAdS
spacetime. Notice, however, that in both approaches we
have only made the comparison for nonrotating space-
times.

V. CIRCULAR STRINGS W'ITH UNBOUNDED
RADIUS

and in the (2+1)-dimensional spacetime

dr
ds = a(r)dt—+ + r dP

a(r)
(5.3)

with

r
a(r) = ——M .

)2
(5.4)

This similarity can be physically understood in the fol-

lowing way: The dynamics of a circular string in a curved
spacetime is determined by the string tension and by the
local gravity. The string tension will always try to con-
tract the circular string, while the local gravity can be
either attractive or repulsive. For the spacetimes (5.1)
and (5.3) the local gravity is proportional to the deriva-
tive of a(r) It follow. s that in the cases represented by
Eqs. (5.2) and (5.4) the local gravity is always positive
[considering only positive M in Eq. (5.2)], corresponding
to attraction. So in these cases both the string tension
and the local gravity work in the direction of contraction
of the circular string, and therefore all strings collapse to
r=0.

The above argument also suggests that we can fiad
qualitatively difFerent circular string motions by consid-
ering spacetimes with regions of negative local gravity
(repulsion). In such spacetimes we can expect to find
regions where the string tension is dominating, regions
where the negative local gravity is dominating, and re-
gions where the two opposite efFects are of the same order,
being a natural balance ensuring the existence of station-
ary circular strings (such a solution actually exists in de
Sitter space [4,6,8]).

We have already seen that in the rotating (J g 0)
(2+1)-dimensional BHAdS spacetime we can have string
solutioas qualitatively cMerent &om the J=O solutioas,
namely noncollapsing circular strings (provided J
4E ). The same happens in the equatorial plane of ro-

In the previous section we concluded that the circular
string motion is qualitatively similar in the equatorial
plane of spacetimes with the line element

dr2
ds = —a(r)dt + + r d8 + r sin Hdqrs, (5.1)

a(r)

with

a(r)=Hr +1- 2M
r

tating (a g 0) (3+1)-dimensional spacetimes in the form
(4.43). If a2 & Emb, 02 we see from Eq. (4.46) that the
potential is positive in6nite for r ~0, so that no collapse
into r = 0 is possible.

A somewhat simpler example is provided by the
Reissner-Nordstrom black hole, which has a region of
negative local gravity inside the (outer) horizon. Cir-
cular strings in Reissaer-Nordstrom background were in-
vestigated in Ref. [38] and indeed noncollapsing solutions
were found.

It is also easy to find spacetimes with negative local
gravity in the asymptotic region r m oo. The sim-
plest example is ordinary de Sitter space, which in the
static parametrization takes the form (5.1) with a(r) =
1 —H r . In that case the potential (4.46) goes to mi-
nus infinity [V(r) oc r4] —for r -+ oo and unbounded
expanding circular strings are found [6,8]. These solu-
tions and the other types of circular string solutions in
de Sitter space were discussed in great detail in Ref. [8],
so we shall not say too much about it here. One of the
most important results in de Sitter space is the existence
of multistring solutions [6—8]. It turns out that for cer-
tain ranges of the integration constant E (which is called

+b/H —in Ref. [8]) the internal world-sheet time 7. is
a multivalued (finite or infinite) function of the cosmic
time. This means that one single world sheet, where r
runs from —oo to +oo, can describe finitely or infinitely
many diferent and iadependent strings in de Sitter space.
It is an interesting question whether this feature is also
present in other curved backgrounds. Let us aow consider
briefiy two other curved spacetimes in which we find cir-
cular string solutions with unbounded r, and multistring
solutions.

A. Circular strings in Schvrarsschild —eke Sitter space

Schwarmschild —de Sitter space is in the form of Eq.
(5.1) with

a(r) =1 — —H r2M
r

It is a very interesting spacetime for circular strings for
several reasons. First of all it has regions of both posi-
tive [da(r)/dr & 0] local gravity and regions of negative
[da(r)/dr ( 0] local gravity. Second, it is asymptoti-
cally de Sitter, so we expect to find features similar to
the "pure" de Sitter case, for instance, the existence of
multistrings, as discussed above.

The mathematics of the circular strings is ~~+fortu-

nately going to be more complicated here, as compared
to the cases discussed in Sec. IV and in Ref. [8]. From
Eq. (5.5) it follows that Schwarzschild —de Sitter space-
time has two horizons (one horizon when equahty) pro-
vided that ~27HM &l. Explicitly they are given by
(+& -)

( 1 —iv 3 (1+i~3)Z(HM) )
22~sZ(HM) 6H2M22~/s
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Z(HM)
Z(HM) 3H2M22i)'s

where we introduced the notation

Z(HM)—:[ 54—H M

+Q—108HsMs(1 —27H M )]'~s

(s.7)

(s.8)

Since the string dynamics takes place at the r axis in
a (r, V(r)) diagra~, it is important to know exactly the
shape of the potential. If V(rp) & 0 the potential has two
zeros between the two horizons, and it will act efFectively
as a barrier, see Fig. 3. On the other hand, if V(rp) ( 0
there is no barrier and nothing can prevent a contracting
string &om collapsing into the singularity r = 0. One
finds

and we only consider the region HM C ]0, 1/~27]. The
circular string potential (4.46) for a = 0 and A = 3H2 &
0 takes the form

82 harp l 4
V(rp) & On, & H'M— '(—

~&M&

+
M& &M&

(5.14)

V(r) = Hr—+r —2Mr —E (5 9)

so that

V(0) = V(r+) = V(r ) = E—
V (r) (x r for —r )) (M, H ~, E) .

(5.10)

dV(r)
dr

d2V(r)
dr2 &0, (5.11)

where

2~)'s W(HM)
W(HM) 6HsMs2i~s (s.12)

and

W(HM) =—[—108H M

+g—432HsMs(2 —27HsMs)]'~s .
(5.13)

The potential has a local minimum between r = 0 and the
inner horizon, and a local maxim»~ at r = rp between
the two horizons,

where the right-hand side of the (second) inequality de-
pends on HM only. The inequality (5.14) also provides
the critical value of (E/M) in terms of HM, when the
potential equals zero for r = rp.

The mathematical solution of Eqs. (4.45) for r(r), de-
termining the invariant string size as a function of w, can
be formally obtained from the Schwarzschild —anti —de Sit-
ter case, discussed in subsection IV B, by simply changing
the sign of H2 in Eqs. (4.59)—(4.64). The parameter r
defined in Eq. (4.60), however, can no longer be inter-
preted as the maximal string size. In the present case
we can just take r to be any of the complex roots of
the quartic equation (4.60) (with H2 replaced by —H2),
and then also the (complex) constant Tp introduced in
Eq. (4.61) must be carefuHy chosen to obtain a real r(r)
for real v.

In the present paper we shall not go into a complete
analysis of the various types of solutions. We will re-
strict ourselves by considering only the "degenerate" case
V(rp)=0, where the Weierstrass function reduces to an
elementary function. In that case it is tempting to take
rp ——r, but then the constants d~ and d2, defined in
Eq. (4.62), diverge, so we have to take one of the other
roots of Eq. (4.60). After a little algebra we find

4(6H2rps —1) exp[—/6H2rp —1(& —&p)]
r(T) = rp +

H(exp[ —/6H r —1(r —rp)] —4H rp) —4H(6H rp —1)
(5.15)

It is clear from the potential (Fig. 3) that there are two qualitatively different types of solutions, which we shall call

r+(r) and r (r)
For

70
1 2 —8H r + 2/6H r —1/3H r —1

/6H'r, ' —1 Hrp
(5.16)

we have the solution r+(7 ) with the properties

r+( oo) = rp, r—+(0) = 0 . (s.17)

1
rr = lii(4Hrr + 2)t6Hrrrr —1) (4.18)/6H'r p2 —1

This circular string starts with its maximal size rp at
r = —oo, passes the inner horizon and falls into the sin-
gularity r = 0 at r=O.

The choice

leads to a different type of solution, r (r), with

r (—oo) =rp, r (0) =oo, r (oo) =r, . (5.19)

This solution is very simi&ar to the multistring solution
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V(r)/&'
3

2

r/E
5

-2

3

—4

-5

FIG. 3. The potential V(r), Eq. (5.9), for a circular string in the ordinary Schwarzschiid —de Sitter spacetime (SdS). For
V(re) & 0 there are qualitatively different types of solutions, since V(r) acts as a barrier.

discussed in Refs. [6,8] for strings in de Sitter space. Each
of the two world-sheet time intervals r g] —oo, 0] and
~ E [O, oo[ corresponds to the physical time interval

]
—oo, oo[, that is, the world-sheet time 7 is a two-valued

function of the physical time, and Eqs. (5.15), (5.18),
and (5.19) describe a multistring (two) solution.

More generally, from the potential (Fig. 3) and the
similarity between the Schwarzschild —de Sitter and the

"pure" de Sitter spacetimes outside the horizon, we can
expect multistrings for any values of the parameters
(M, H, E).

B. Circular strings in the black string background

As our final example of circular strings in curved space-
times, we consider the (2+1)-dimensional black string

V(S)/P

0.2-
[ (d)

0.1-

0. 2

-0. 1

—0 2

—0 3

—0.4

FIG. 4. The potential V(S), Eq. (5.27), for a circular string in the black string background. For M & 0 and M I —J & 0

(the latter is the condition for the existence of horizons) there are four qualitatively different cases: (a) J = 0, E I ( 1; (b)
J=0, 8/ &1;(c)J$0, E I &1;(d) J$0, E I (l.



50 STRINGS PROPAGATING IN THE (2+ 1)-DIMENSIONAL. . . 7515

of Horne and Horowitz [26]. For our purposes it is
most convenient to use the stationary (but nonstatic)
parametrization (2.13), which in the general form (4.1)
xs V(&) = g""(E'g"+ g44) (5.22)

potential for the (2+1)-dimensional BHAdS spacetime,
in the sense that

J2 /rl J' &
gag

——M —,g„„= I

——M+
[compare with Eqs. (4.11) and (4.15)], and given explic-
itly by

1 1
44= 2

(5.20)
V(r) =, , +, E'.J' I

4r4

It follows that

(5.23)

r'2 + V r = 0 M —J2/4r2 —r2/l2 '

E
(l/r )(M —J'/4r ) —1/l

'

(5.21)

For the r equation we find a potential which is dual to the

where the tilde reminds us that the black string is dual
to the (2+1)-dimensional BHAdS spacetime (2.6). From
the analysis of Sec. IV we can then write down the Eqs.
(4.9)—(4.11), determining the circular string motion in
the background (5.20):

V(r~) = E, —V(oo) = ——E
I2

(5.24)

where r~ are the two horizons (2.7), unchanged by the
duality transformation. For r ~ 0 the potential is pos-
itive infinite for J g 0, and negative infinite for J=O
(taking M positive).

One efFect of the duality transformation has been to
change the asymptotic behavior of the circular string
potential, compare with Eq. (4.15). In the case that
1/(l2) —E2 ( 0 the potential approaches a negative con-
stant value, which gives rise to string solutions of un-
bounded r. In this sense we will find solutions of coax-

TABLE I. String motion described by the string perturbation series approach in the 2+1 BHAdS,
ord(~ary black hole AdS, de Sitter (dS), and black string backgrounds. Notice the difFerence between
the string motion in the 2+1 BHAdS and in the other spacetimes, vrhile the strings in the black
string background behave simi&arly as in the ordinary black hole backgrounds.

String perturbation series approach
z"(r, o) = q" (r) + g"(r, o) + P(r, o) +

rl" = n~zhz, bz (r, o) = ) C„(r)e '";R = 1, . . . , (D —1)
~0

C R+ (n &Rs —R„nRnsq q )C„=0
2+1 black hole AdS Ordinary (D & 4) black hole AdS

C~
+(

n+ ~((Cg= 0 C i+ in'+rn'H'+ „, (C i =0
)

C-II+ I
n'+

~g C-II = of C„II+ n +rn H —,(C„II = 0
)

( &M~No instability, ru„= gns + ms /P
hz, (" bounded everywhere. Unbounded perturbations C

ll
for

) (A
i(rao+~ ~) + A

—i(n~--ur ~)) .(r)=( s+mM/ )'2~'( .r—r)''~O:

m'=2).
~

2n'+
Is ~):A.RA') „-"

Cnll 9(~ ~)Q Cnll
4

rn (H=o)=4) n ) A~RA „n

Ordinary (D ) 4) de Sitter
C„n+ (n —rn H )C„n = 0

Unbounded modes For (n( ( fnH

Instability, ~ = Qns —rnsHs

i(no yw„~) A
-—s(racr —~„~)]

Black string
CnJ + + Cnl =0

Instability, ranst ——

Unbounded perturbations Cnll f.(r) = M-, *(«-r)'~0:

rn =2) (2n —m H )) A nA

C-ll —(~- ) C-ll ='
String mass formula not yet known.
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pletely different type than the solutions discussed in sub-
section IV A, that were always bounded. Another eKect
of the duality transformation however, is, to change the
expression for the invariant string size, de6ned in Eq.
(4.14),

For nonzero J, which means nonzero charge for the black
string [26], we have only bounded con6gurations (finite
S), while for J=O and M & 0, unbounded configurations
will exist as well. The potential (5.27) is shown in Fig. 4
for various values of the parameters. The simplest case
(J = 0, E2L = 1) Eqs. (5.26) and (5.27) are solved by

S(r) = V r(r)
(5.25)

Writing Eqs. (5.21) in terms of the invariant string size
yields

S(r) =
)/)2&Mr)

(5.28)

where

E
L [M —(Jz/4) Sz]S2 —1/L

—ES +V(S) =0,
M —(Jz/4) S —(LS)—

(5.26)

1 2E2

2Ev/M v M

vM 2E2
ct)(r, o) = o —7 — ln r —1

(5.29)

(5.30)

V(S) = S'
l

—S' —MS'+ ——E'
l

.
I, 4 so that

TABLE II. Circular exact string solutions in the indicated backgrounds. S(r) is the invariant
string size. The motion is exactly and completely solved in terms of elliptic functions; [p(r —rp)
stands for the Weierstrass elliptic function which reduces to elementary functions for zero cosmo-
logical constant or for particular combinations of the spacetime parameters]. The properties of
the potential V (r) [V(r) in the dual black string background] determine general properties of the
string dynamics. Unstable strings (expanding with unbounded size) and multistring solutions are
present for potentials unbounded from below for r -+ oo, while bounded strings (and no multistring
solutions) correspond to V(oo) = +oo. When V(0) ( 0, strings can collapse into a point.

Exact circular strings
ds = ggt(r)dt + g„„(r)dr + 2gge(r)dtdg+ geld/

t =t(r), r =r(r), 4 =o+ f(r), (8 =z/2)
"+V(r) =0 V(r) =g""(E'g"+gee) t = Eg", f =-Eg"-

ds = gee( dr + da—), i.e., S(r) = jgee(r(r))
2+1 black hole AdS Ordinary (D & 4) black hole AdS

V(r) = r (r /L —M) + J /4 —E
V(0) = J /4 —E, V(r -+ oo) oc r -+ oo

S(r) = r(7.) = r —[cip(r —ro) + cz]
z/zs = = Q(MP/2) (1+Ql —4V(0)/Ml

For J )4E, S;„)0, no collapse.
For J C 4E, S~;n = 0, collapse.

No unbounded string size.
No multistring solutions.

V(r) = r (1+H r ) —2Mr —E
V(0) = E, V(r -+ oo—) oc r -+ oo

S(r) = r(r) = r~ —[cip(r —ro) + cg]

V(r ) =0, S „=r =r (M, H, E)
String contracts f'rom r(0) = r until
it collapses into the @=0 singularity.

No unbounded string size.
No multistring solutions.

Ordinary (D & 4) black hole dS
V(r) = r (1 —H r ) —2Mr —E

V(0) = E, V(r -+ oo—) oc r-+ —oo—

Contracting, expanding or stationary
solutions, depending on the balance
between the string tension and the

local gravity.
M =0: S'(r) = H 'p(r —ro)+H '/3

Contracting, expanding, or oscillating.
Unbounded string size.
Multistring solutions.

Black string
V(r) = J /(4r ) —M/r + 1/I —E

V(0) = oo (J g 0), V(0) = —oo (J = 0)
S(r) = 1/r(r), V(oo) = 1/L —E

For J g 0, all solutions are bounded
(Suite S). For J = 0 unbounded size

solutions exist as well.
J = o, EL = 1: S(r) = (12~Mr])-'/'

S(—oo) = 0, S(0) = oo, S(oo)=0
Unbounded string size.
Multistring solutions.
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8(—oo) = 0, S(O) = oo, S(+oo) = 0,

t(-~) = ~, t(o) = o, t(~) = ~ .

This solution is somewhat simi&ar to the two-string so-
lution found in de Sitter space (Refs. [6,8]) and in
Schwarzschild —de Sitter space (subsection VA), and in-
dicates that multistring solutions are a generic feature of
the black string spacetime, too.

In the general case the mathematical solution of Eqs.
(5.26) and (5.27), or alternatively of Eqs. (5.21) and
(5.22), can be obtained in terms of elliptic functions (el-
ementary functions for J = 0). This solution and its
physical interpretation are to be discussed elsewhere.

VI. CONCLUSION

We have studied the string propagation in the 2+1
BHAdS and black string backgrounds. We found the
6rst- and second-order perturbations around the string
center of mass as well as the mass formula, and compared
with the ordinary black hole AdS spacetime. We found
the exact general evolution of circular strings in all these
backgrounds, and in the black hole de Sitter spacetime:
in all these cases the solutions were expressed closely and
completely in terms of either elementary or elliptic func-
tions. The physical properties of the string motion in
these backgrounds have been discussed. A summary of
the main features and conclusions of our paper is given
in Tables I and II.
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