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The equations of first-order perturbations are derived directly in a particular gauge for a sta-
tionary rotating string ring in a flat background. The perturbations are decoupled into equatorial
(i.e., in the plane of the loop) and. azimuthal (i.e., perpendicular to the plane of the loop) plane
waves with quantified wavelengths. A polynomial eigenvalue equation for the perturbations defining
the pulsation of the plane waves is then written and, after simplification, reduces the condition of
stability to the reality of the roots of a third degree polynomial with real coefficients. This condition
is equivalent to the positivity of a generalized discriminant and relies only on two parameters which
are the longitudinal and transverse characteristic speeds and depends on the internal structure of
the string. It is found that, although the azimuthal, axisymmetric, and lowest nonaxisymmetric
perturbations are stable, there exist configurations of instability in the equatorial perturbations for
all the other spatial modes, especially for classical and ultrarelativistic strings. The whole range of
parameters of the problem is then explored analytically and numerically, giving a complete solution
to the problem. So, the stability of a particular model of strings can be checked easily. A rate of
dynamical decay of the equilibrium state is also defined and calculated in some interesting cases to
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verify the effective cosmological instability of the loops.

PACS number(s): 11.27.4+d, 98.80.Cq

INTRODUCTION

It has recently been shown [1] that elastic circular ro-
tating string loops with any equation of state are always
dynamically stable with respect to azimuthal perturba-
tions whereas, with respect to equatorial perturbations,
there can appear unstable states when the velocity of
transverse perturbations v is lower than the longitudinal
group velocity ¢. The purpose of the present article is
to investigate in more detail the range of parameters for
which the loop is unstable, especially in the ultrarela-
tivistic limit which is of cosmological interest for cosmic
strings with currents. Although the electromagnetic in-
teraction is neglected in the following, this work effec-
tively covers the case of superconducting cosmic strings,
at least to lowest order, since the main effect of elec-
tromagnetism on cosmic strings applies to their internal
structure and is taken into account in their equation of
state. The effect of such interactions, although small,
could, however, lead to higher order modifications [2] in
some limit cases but this is left for a future work. As
for gravitational interactions, we suppose that the back-
ground metric is flat and neglect the action of gravita-
tional radiation of the loop, which is clearly justifiable in
the short run, and could possibly lead in the medium to
long run to a slow secular contraction [3] so that the equi-
librium state would remain of the kind discussed here.

David and Shellard [4-6] were the first to point out
that for closed cosmic string loops there can exist sta-
tionary states sustained by a centrifugal force. The earli-
est studies of circular equilibrium states of cosmic strings
supposed that the support mechanism was provided by
electromagnetic forces, but Peter [2] has shown that, for
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realistic parameter values, electromagnetic forces are too
weak to play a dominant role and can be allowed merely
as small correction effects. In their pioneering work,
Davis and Shellard limited themselves to circular rotat-
ing rings for a particular class of superconducting strings.
In fact, further investigations [1] have shown that such
states are more general: they exist for all kinds of elas-
tic strings and for any, not necessarily circular, shapes.
Although Davis and Shellard considered the question of
stability with respect to the underlying quantum field
theory, they did not investigate stability with respect to
macroscopic dynamical perturbations. It should be men-
tioned that stationary loop states are potentially inter-
esting as seeds in scenarios of galaxy formation [7].

As pointed out by Davis and Shellard [3], supracon-
ducting grand unified theory (GUT) cosmic string loops
of the kind considered here will not decay and may
therefore create a mass excess in the Universe similar
to the one introduced by monopoles, ruling out galaxy
formation scenarios using such strings. However, de-
cay by quantum tunneling, whose efficiency is uncertain,
may still save these scenarios. Another way to avoid
the mass excess problem is to consider strings gener-
ated at energies close to the electroweak scale such as
the lightweight strings considered by Peter [8]. In this
case, the small loops obtained from interaction of infinite
strings in galaxy formation scenarios would be equivalent
to very massive charged nonbaryonic particles or charged
ultramassive particles which could account for dark mat-
ter [9]. Another possibility for getting rid of excess loops
is the secular instability due to gravitational radiation
reaction [10,11] but, because of the weakness of the grav-
itational coupling constant, this seems very unlikely to
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be sufficiently rapid to be significant.

The purpose of this work is to consider the possibilities
of dynamical instability which, if it occurs, will be very
much more rapid than the gravitational back reaction
mechanism alluded to above. Section I recalls the basic
of elastic string dynamics that will be used throughout
this paper. Only the simplest kind of equilibrium state,
that of a circular rotating ring, is considered. This en-
ables the problem to be solved algebraically. It may be
hoped that other kinds of equilibrium states will have the
same general behavior. The equations and the condition
of equilibrium for such equilibrium states are derived in
Sec. IL. In Sec. III the first-order perturbations for the
circular loop are rewritten in a new gauge and related to
the system of equations obtained in the preceding work
[1] with a different gauge. The polynomial characteris-
tic eigenvalue equation for the plane wave perturbations
linking their pulsation to their discrete wavelengths is
calculated in Sec. IV. It is the same result as in the
preceding paper [1] confirming that both gauges lead, as
expected, to the same result. In Sec. V, the requirement
for stability of the rotating ring is shown to be the real-
ity of all its eigenmode pulsations. This condition can be
reduced to a simple criterion, the positivity of a polyno-
mial depending only on two parameters: namely, the two
speeds of transverse and longitudinal perturbation. This
is worked out numerically over the whole range of param-
eters so as to get the ranges of stability and instability
which are plotted in Fig. 5 below.

The main conclusion is that there is no simple general
result: there are values of the two parameters that lead
to both stable and unstable rings. In the case of instabil-
ity, a typical lifetime for the loop to leave the vicinity of
its equilibrium state is defined and is estimated in some
interesting cases in subsequent sections. Sections VI-XI
are devoted to the analysis of cases of particular interest.
It is confirmed in Sec. VI that in particular the axisym-
metric mode [12], the first nonaxisymmetric mode, and
the very short wavelength perturbations are always sta-
ble. In Sec. VII some particular equations of state are
studied such as the warm cosmic string model [13,14], the
constant trace equation of state, and the more familiar
Hookean equation of state, and it is shown that these are
all stable. Section VIII is devoted to the study of limit
values of the two parameters, including the so called “cos-
mic spring” limit. In Sec. IX, it is shown algebraically
that whenever the speed of longitudinal perturbation is
greater than that of transverse perturbations, the rotat-
ing circular string loop is stable. In the classical and in
the ultrarelativistic zones treated, respectively, in Secs.
X and XI stability and instability are both possible and
their respective ranges of parameters are evaluated. In
the ultrarelativistic case, which is of particular interest
for cosmic strings, an estimation of the rate of instability
of unstable states is evaluated using a set of equations of
state covering roughly the unstable zones. Finally, in the
Conclusion, the main results found in this paper are dis-
cussed. The main issue remaining for future work to in-
vestigate is that it is still unclear what happens to unsta-
ble rings in the long run: whether the cosmic string loop
would ultimately break down and transform its energy
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completely into radiation (which would resolve the cos-
mological excess problem mentioned above) or whether,
perhaps after self-intersection and production of multi-
ple daughter loops, new stable equilibrium states would
be attained. In particular, the qualitative validity of
the constant trace and constant determinant equation of
state for representing more specific models such as Wit-
ten superconducting rings is discussed. An order of mag-
nitude of the dynamical instability of unstable loops is
also estimated for the grand unification and electroweak
phase transitions.

I. BASICS OF STRING DYNAMICS

We restrict ourselves to a fixed Minkowskian back-
ground metric of signature (—1,1,1,1). As in the pre-
ceding work [1], we define an orthonormal base (u*,v*)
at each point of the two-dimensional world sheet of the
string. This enables us to write the fundamental tensor of
the world sheet (which is a projector on the world sheet
and its induced metric) as

™ = —utu¥ + vHo” .
We also define the complementary orthogonal projector

L= g —
which is equivalent in terms of information to the funda-
mental tensor 7*”. The two vectors of the base can be
taken to be respectively the timelike and spacelike eigen-
vectors of the stress-energy tensor T*¥, which therefore
becomes

T = Uutu” — Tv*v” (1)

where the first eigenvalue U is the energy density and the
second eigenvalue T is the tension. These are functionally
related by the equation of state, which can be used to
define a number density variable v and an effective mass
variable u given by [1,2]

dUu
Uu-T"

In(p) =/T—d_% ,

together with the relation

In(v) =

w=U-T,

which restricts the number of independent constants of
integration from 2 to 1, corresponding just to the freedom
to adjust the overall normalization of the number density.
These were the primary variables used in the preceding
work [1] to derive the equation of motion of a loop. A
covariant derivation along the world sheet is also needed:
¥V, =1n",V,, in terms of which the second fundamental
tensor of the string two-surface is given by [15]
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The internal structure of the particular elastic string
model studied is what determines the equation of state
relating the energy per unit length U to the tension T of
the string. By allowing for arbitrary equations of state,
the range of our study extends from classical strings to
cosmic ones. But in the following, only two parameters
will actually be necessary to explore the stability of a
ring: the velocity of transverse perturbations

cr =+/T/U, 4)

which describes the string at equilibrium, and the longi-
tudinal group velocity

cr = \/—dT/dU , (5)

which comes into play in the first-order perturbation
equations. A particular equation of state corresponds
just to a curve in the square parametrized by these two
parameters. The derivatives of the energy per unit length
U and of the tension T' can be expressed in terms of these
two parameters as

Vo(InU) = AV, (c) , (6)
(VoT)U™! = —Act V,(cT) (M
where we have defined A = —1/(c% +¢c2). The dynamical

equations of the free moving string are just given by the
conservation of the surface stress-energy tensor:

V. T" =0.

Since the method used [1,12,15] takes the basic unknowns
to be not the fundamental string imbedding coordinates
but the tangent vectors u# and v*, it will also be neces-
sary to include the Weingarten identity

Ki)? =0,
which is a nontrivial integrability condition to be solved
in conjunction with the equations of motion. The full set

of equations of motion can thus be written explicitly as
the system

Kipu)® =0 &L [W9,(0") =0V, (a)] =0, (8)

Ly VTP =Ly [uPV,(u") — c7vPV,(v")] =0,  (9)

u, V, T = AuPV  (c) — (1 — 2)u, v?V,(v¥) =0,
(10)

v,V ,T% = —Ac}v?V,(c2) + (1 — &) u,uPV,(v¥) =0 .

(11)
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II. EQUILIBRIUM OF THE ROTATING RING

As was shown in the previous work [1], the station-
ary equilibrium state of a string loop (i.e., a string loop
with a static timelike Killing vector k#) in a flat back-
ground can have an arbitrary geometrical configuration
but must have a running velocity v (the speed of the in-
trinsic rest frame of the string as characterized by the
timelike eigenvalue u* relative to the frame of the static
Killing vector k*) equal to the transverse perturbation
speed cr. Moreover, when the longitudinal group veloc-
ity and the velocity of transverse perturbations are not
equal (which excludes the case for a warm cosmic string
equation of state [13,14] UT = m?*), T and U (and so
also v) must be constant along the loop.

In this paper, we restrict ourselves to the case of a
circular loop, so that, because of the symmetries, every
physical scalar U, T, and v must be constant along the
loop. Let the ring have a radius 7y, an angular speed
, and a Lorentz factor v = 1/4/1 — r2Q2. The running
velocity of the ring is then v = rof2. Spacetime will be
described with cylindrical coordinates (t,r,6, z) so that
the equations of the ring will be just r = 7y and z = 0,
and [12]

u* = (v,0,vv,0) , v* = (yv,0,+,0) . (12)
The integrability condition (8) is then automatically sat-
isfied since both u* and v* derive direction from a world
sheet. Because of the symmetries, the longitudinal con-
servation laws (10) and (11) are also automatically sat-
isfied. This leaves (9) as the only nontrivial equation,
which gives the expected condition
cr=rofl=v. (13)
It will be convenient when perturbing these equations to
note that Egs. (8) and (9), when the equilibrium con-
dition (13) is satisfied, are still satisfied without the ex-
trinsic projector L, .

III. EQUATIONS FOR THE PERTURBATIONS
OF THE RING

As in previous work [1], it will be convenient to work
not just with the single ring state in which we are ul-
timately interested, but with a space-filling congruence
of such states. Whereas the previous analysis started
from a family of equilibrium states characterized by a
fixed uniform running velocity v, or, equivalently, a fixed
velocity of transverse perturbations cr after Eq. (13),
in the present work we shall instead postulate that the
angular velocity 2 of the equilibrium states has a fixed
uniform value so that the running velocity v will be a lin-
ear function of r. Thus each ring state will have its own
cr = v = r§) whose variations are equivalent to those of
r. These are just two possible gauge-fixing conditions for
the space-filling congruence of equilibrium loops which
do not change the characteristic eigenvalue equation and
thus the stability results, as will be shown in Sec. IV.
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As this paper considers the linear perturbations of a
stationary, axially symmetric state, any perturbed quan-
tity = of the problem can be expanded in plane waves
of the form z = z¢ + dze*«t="8) where z, is the value
of z at equilibrium, éz is a first-order constant, n is an
integer akin to an angular quantum number, and w is
the pulsation of the perturbation. In particular, the ge-
ometry of the perturbed ring can be described in terms
of two kinds of modes which are mutually decoupled [1].
In the cylindrical coordinates (r, 6, z) defined in the pre-
vious section, where the unperturbed ring is given by
r = rg and z = 0, the first kind consists of azimuthal
perturbations characterized by

r=ro and z = dze*wt—"9)

(14)
while the second kind consists of equatorial perturbations
characterized by

r =10+ 6Re!“t ™) and z=0. (15)
Figures 1 and 2 illustrate the configurations (15) and
(14), respectively, for some values of n at a given time.
The time evolution of these loops is just a uniform rota-
tion around the z axis.

There are five equations in this problem: the four dy-
namical equations (9)-(11) obtained by conservation of
the stress-energy tensor and the equation of state. On
the other side, the displacement of the world sheet of the
string gives two unknowns (only the transverse displace-
ment of the world sheet is physically significant), and
the stress-energy tensor which is a symmetric tensor of
rank 2 gives three unknowns. The physical problem is
therefore well defined. As the system (9)—(11) depends

n=4

FIG. 1. Illustration of equatorial perturbations for various
modes n as expressed in (15).
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n=8

n=2

FIG. 2. Perspective views of rings with azimuthal pertur-
bations for some modes n as expressed in (14).

on the spacetime coordinates of the string only through
the eigenvectors u* and v*, we will take the variations of
these two vectors as unknowns in

out =¢e*, v =n*.
The orthonormality of these two vectors immediately
gives three relations between the perturbed variables:

_ o _ 6
ufu, = —-1=> ¢ =cre’ ,

v, = —1=2 7% = er®
utv, = 0= n°=¢%.

However, the seven remaining variables are still not in-
dependent since there is also a condition of integrability
that needs to be obeyed by u* and v* to be able to go
back to the world sheet itself: it is the Weingarten iden-
tity (8) that must therefore be added to the set of equa-
tions of motion. Furthermore, the two thermodynamical
unknowns appearing in the equations of motion (9)-(11)
are the two speeds cZ and c2 which can be taken as un-
knowns instead of U and T'. We consider in the following
the unperturbed values of these two speeds to be given
as input parameters (related a priori by the equation of
state). The perturbation of the speed of transverse per-
turbations 6cZ = §v? is denoted a in the following. For
convenience, we also define

V=c§~,

C= c% s
X =u?(V,)/iv=w—-nQ,
Y = —rvP(V,) /iy =n—r’Quw .

As remarked at the end of Sec. II, when varying Egs.
(8) and (9), we need not vary 1,, and thus we get four
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transverse equations, two by projecting on the r coordi-
nate and two by projecting on the z coordinate:

Ye"+rXn" =0, (16)

rXe" + VY7 +2irQ/y%e® —iva =0, (17)
Ye* +rXn* =0, (18)

rXe*+VYn®=0. (19)

The two longitudinal equations derived from (10) and
(11) are

(2AV + 1)e" — iY/4%e% 4+ iArXya =0, (20)

20e™ + (24C — 1)Vq" +irX/v%€® —iACYya=0.
(21)

The system (16)—(21) completely describes the dynamics
of the perturbations.

If instead of the gauge condition © constant adopted
at the beginning of this section one uses the condition
v constant adopted in the preceding paper [1], then Egs.
(16)—(19) remain unchanged and the two other equations
reduce just to

e — vy —iY/y%% + iArXya =0,
ve" — V' +irX/y%€® —iACYva =0.

By switching to the variables used in the other paper [1],
the perturbation equations are recovered.

IV. THE CHARACTERISTIC EIGENVALUE
EQUATIONS

The perturbation equations form a homogeneous lin-
ear system of six equations (16)—(21) with six variables
which must have nonzero solutions. This condition is
equivalent to the annulation of the determinant of the
system which gives the eigenvalue equation: a sixth de-
gree polynomial equation giving w as a function of » and
of the two only parameters C and V. In fact, we have
a first obvious simplification: as stated in Sec. III, the
azimuthal perturbations (¢* and #*) of the system de-
couple from the equatorial perturbations (the rest of the
unknowns: €", €%, 7%, and ).

J

v2(1 + v?)(1 - 2v?)o? + 2v%[c — v? — 2(1 — c?v?)]no?

7483

The eigenvalue equation of the azimuthal part of the
system, including (18) and (19), can be easily solved:

2nv } . (22)

l Y rX 0
Tr(1 4+ v?)

rX VY’=°““’€{

Thus there are two azimuthal modes: one is static and
represents the backward moving extrinsic perturbations
(moving at speed cr against the speed v of the loop) and
the other is rw = nv, where v; = 2v/(1 + V) is twice
the velocity v (using the Lorentzian sum) and represents
the forward moving extrinsic perturbations [1] (moving at
speed cr with the speed v of the loop). The straight lines
of solutions for w = 0 and w = nv4/r are, respectively,
€* = crn® and €* = —crn®*. It only remains now to
express the amplitude of the oscillations of the loop 4z,
as defined in (14), in terms of the basic unknowns of the
problem. This is done by equating the plane tangent to
the world sheet defined by (14) with the plane defined by
the two perturbed eigenvectors u* and v#. This gives,
when n # 0,

5z = X (ng* —ve?) .
n

When n = 0, the system (22) becomes trivial and the
world sheet works out to be

z = (e* —vn®)t + (n* — ve*)RO (23)

which corresponds to two geometries: a circular loop
slowly boosted in the z direction or a helix with an al-
most flat pitch (static or slowly rotating). The helix,
although mathematically an approximation of a rotating
circle, must be rejected here as an unphysical solution:
there is an implicit boundary condition saying that the
loop should remain closed during its evolution which in
general is automatically satisfied because of the period-
icity of the plane wave perturbations.

The equatorial part of the eigenvalue equation ob-
tained from the system (16), (17), (20), and (21) can
be computed from the determinant

Y rX 0 0
rX VY 2iv/~? —1y ~0
14+ 2AV 0 —iY/y? iAryX |

2v (2AC - 1)V irX/y? —iyACY

to get one static mode w = 0 and a third degree polyno-
mial

+[4v%(1 = ?)(n® — 1) — (1 + v?)(? = v?)(n® + 1)]o + 2(c* —v?)(R®2 —1)n =0, (24)

where 0 = rw/v = w/Q. The amplitude of the oscilla-
tions of the loop d R, as defined in (15), is given as in the
azimuthal case above when n # 0 by

= Y (e
SR=—(n"—ve"),

or when w # 0 by the similar formula

S
6R—w(v1] e") .

The case n = w = 0 will be treated specifically in Sec. VI
with the » = 0 mode.

The two above results (22) and (24) agree with those
already obtained in the preceding paper [1] in a differ-
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ent gauge, which was expected as the eigenvalue pulsa-
tions for the perturbations are scalars independent of any
gauge-fixing condition.

V. DYNAMIC STABILITY CONDITIONS FOR
THE ROTATING LOOP

The eigenvalue equation found above generically de-
fines six distinct modes for each n. The corresponding
eigenvectors will then generate a base of the set of solu-
tions. It is clear in this case that if for each n all the pul-
sations are real, the corresponding perturbed solutions
will always remain bounded (they are plane waves with
constant amplitude) and so the loop will be stable. On
the other hand, if for any one n there is at least one
complex pulsation, there will necessarily be a pulsation
with negative imaginary part which leads to an exponen-
tially growing perturbation, so that the loop will not be
stable. If for a given n there is a (real) multiple solu-
tion to the eigenvalue equation and that the dimension
of the corresponding subspace of eigenvectors is less than
the multiplicity of the eigenvalue, then this mode will be
marginally unstable, growing polynomially instead of ex-
ponentially.

As was pointed out in the preceding work [1], the above
criterion gives immediately that the azimuthal perturba-
tions are all stable, as when n # 0 there are two real and
distinct solutions given by (22), while in the case n = 0
it has been found in (23) that there is only one physical
solution, that of a loop slowly boosted in the z direction,
which is also stable.

In the equatorial case, the problem is to find whether
the third degree equation (24) has three real roots with-
out multiple solutions, three real roots with multiple so-
lutions, or only one real root. Using the Cardan formulas,
it is possible for a general third degree polynomial

aY?® +bY24+cY +d=0 (25)
to find a generalized discriminant given by
b%c? + 18abed — dac® — 4b3d — 27a%d? (26)

whose sign provides the required information: if it is
strictly positive then there are three distinct real roots, if
it is zero then there are three real roots with multiple so-
lutions, and if it is strictly negative then there is only one
real solution. Before applying this criterion, Eq. (24) can
be simplified by noting that only the squares of v and ¢
appear in it. The range of variation of the last parameter
n can also be compactified by letting ¢ = o/n = rw/nv
and

K =1/n?

(27)
with K € F = {1/m?, m a nonzero integer} U {oo} .

Equation (24) then becomes
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VA+V)1-CV)3 +2V[C -V —2(1-CV)]s?
+4V(1-C)1-K)- (14 V)(C-V)1+K)|s

+2(C-V)(1-K)=0. (28)

The condition of stability of the ring is thus that the
modified eigenvalue equation (28), which depends only
on the two parameters (V,C'), have three real roots for
every K € F [as defined in (27)]. The condition ob-
tained by replacing the eigenvalue equation (28) in the
pseudodiscriminant (26), expanding, and simplifying is

P(K,V,C)>0 forall K € F, (29)
where
P(K,V,C) = a3K® + a;K? + a1 K + ao (30)
and

a=(1-V)¢C-V)C,

a1 = (1-V)*(=V3+21V3C + 28V3C + 3ViC 4+ 41V C?
+72V2C?% + 41V3C? 4+ 3C° + 28V C?
+21VviC3 —veY),

az = (1-V)?(—18V?3 — 24V* — 2V5 — 57V3C + 4V3C
+78V*C + 20V3C + 3VeC — 56V C? + 104V3C?
—56V°C? 4+ 3C3 + 20V C3 + 78V2C? +4V3C3
—57V4C? — 2V et — 24V3C* —18V3CY)

az=(1+V)1-CV)(3V -V24+C-3CV)3.

In the limiting case when the polynomial P(K,C,V) = 0,
there is a (real) multiple solution. The loop is still stable
if the dimension of the associated subspace of eigenvalue
solutions is equal to the multiplicity of the eigenvalue,
while if it is not there are polynomially growing solutions
and the loop is marginally unstable. So, in this special
case, additional care must be taken and the dimension of
the eigenvalue subspace must be worked out.

As stated above, the criterion of stability (29) depends
only on the two speeds (cr,cr) which can vary between
0 and the speed of light, set here to 1. It is therefore pos-
sible to plot numerically the regions in the (C, V) plane
where the equilibrium states are unstable over the whole
range of parameters. In this plane, after the definition
(5) of C = c% and (4) of V = c%., an equation of state
is given by a curve in the plane. To get a numerical
plot of the regions of instability, I have evaluated numer-
ically for a given mode of perturbations n the polyno-
mial P(1/n%,C,V) on a 500 x 500 regular grid covering
all the possible values of C and V. The points where
this value is negative are equilibrium states for which the
corresponding mode is unstable. These points have been
plotted on Figs. 3 and 4 for, respectively, the n = 2 and
n = 3 modes. The regions of instability of an equilibrium
state are obtained when the regions of instability for all
modes are superimposed. I have done this in Fig. 5 by
superimposing the regions of instability of all the modes
n < 400.



50 ZONES OF DYNAMICAL INSTABILITY FOR ROTATING ...

0.6

2
<

0.4

0.2 J

FIG. 3. The region of instability is plotted (in black) on the
plane parametrized by the squared longitudinal and trans-
verse perturbations, ¢ and c¢Z, on the basis of numerical
evaluation of the polynomial P(1/n?,C,V) given by (38) on
a regular grid of 500x 500 points for the particular case of the
mode n = 2.

When one mode is unstable, then the rate of decay of
the equilibrium state can be estimated from C, V, and n
only as

[Im(w/$2)| = [Im(o)| = njlm(s)| .

The effective lifetime 7 of the equilibrium state can also
be defined as

7 = |Im(w)|™? . (31)

This is proportional to an unknown parameter €2, the
angular speed of the circular loop. An estimation of the

2.8

2
<

04 _

0.2 _

2
CL‘

FIG. 4. Same as Fig. 3 for the mode n = 3.
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FIG. 5. Same as Figs. 3 and 4 for a superposition of all
modes up to n = 400 (the more extended region of potential
secular instability due to gravitational radiation reaction is
indicated by dots).

order of magnitude of this parameter for cosmic strings
has been given in the Conclusion. Anyway, the rate of
decay (31) can be deduced algebraically from the eigen-
value equations (24) or (28) with the Cardan formulas,
although as a very unwieldly formula. This formula can,
however, be useful to compute numerically this rate of
decay in some interesting cases.

In the following Secs. VI-XI, the criterion (29) is inves-
tigated algebraically in some interesting cases to clarify
and complete the understanding of Figs. 3-5.

VI. STABILITY FOR PARTICULAR SIMPLE
MODES

We first consider the axisymmetric mode n = 0, which
corresponds to K = +o0o [where K was defined in (27)].
This mode corresponds to a perturbed loop which, after
Eq. (15), remains circular. As

a3 = (1+ V)(1-CV){V][(1-V)+2(1-C)]+C(1-V)}

is positive, we see that the criterion (29) is satisfied, in
agreement with previous results obtained through a dif-
ferent method [12] and with our previous conclusion [1]
obtained directly from (24):

o(V(1+ V)1 - CV)o? — {V[(1- V) +2(1 - C)]
+C(1-V)}) =0.

It is clear that this equation always has three real so-
lutions. But with the static mode which always exists
with (24), 0 is a multiple solution. Thus the dimension of
the corresponding eigenvector subspace must be found by
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solving (16), (17), (20), and (21) with X =Y = 0. There
are two cases. If ¢ = v, which is always the case for the
warm cosmic string model [13,14], the subspace of eigen-
vectors has two dimensions, so that the ring is stable. If
¢ # v, the subspace of eigenvectors has only one dimen-
sion: €” = 7" = 0 and a = 2ve® /43, so linearly growing
solutions must be allowed for. The above solution simply
shows a loop at equilibrium with a slightly enlarged ra-
dius and a correspondingly enlarged speed of transverse
perturbation cr to keep the condition of equilibrium (13)
satisfied. The second solution for this mode must be a
linearly growing radius and nonzero radial components
of the eigenvectors u* and v* but, when integrated to
recover the string world sheet, the solution appears to be
that of an infinite spiraling string, which must be dropped
as unphysical as the loop should remain closed during its
evolution. This problem does not arise for other modes as
the periodicity of the nonconstant plane wave solutions
found for the perturbation ensure the same periodicity
for the geometry of the loop, and thus its closure. This
is the same problem as for the helix solution found for
the n = 0 azimuthal perturbations in (23).

The first nonaxisymmetric case n = 1 whose geometry
is that of an ellipse is easy to solve, as w = 0 is a solution
of (28). This also makes 0 a multiple solution that must
be investigated in more detail. Letting A =V — C and
B =1 - CV, after extraction of the second static mode
(28) reduces to a quadratic equation whose discriminant
is positive for A < 0, while for A > 0, it is also positive:

A =(A+2B)’ - 24B(1+V)’V> (A+2B)’ - 84B
>(A-2B)>>0.

Exactly the same result would have been obtained from
(29) as the pseudodiscriminant (30) reduces exactly to
the discriminant computed above. To establish the sta-
bility of these n = 1 modes, the eigenstate subspace
of static perturbations remains to be computed. Once
more, there are two cases: either ¢ = v and the sub-
space of eigenvectors has two dimensions while 0 has a
multiplicity of 3, or ¢ # v and the subspace has one di-
mension while 0 has a multiplicity of 2, so in any case
one dimension is missing from the eigenstate subspace
and there exists in both cases a linearly growing solu-
tion. In fact, after integration of the world sheet, it can
be seen that this linearly growing solution corresponds
to a slowly Lorentz boosted nonperturbed solution. So
this mode also is stable.

At the opposite limit when n — oo are the very wiggly
rings, to which corresponds the case K = 0. In fact, this
limit is outside the range of physical validity of the model,
as when the wavelength of the perturbations decreases, it
will eventually reach the order of magnitude of the thick-
ness of the string, at which time the string approximation
ceases to be valid. For instance, for electroweak cosmic
strings, the radius of a typical equilibrium ring is about
a hundred times the thickness of the string, which means
that beyond the n = 10 mode this formalism would not
be valid anymore. In the K = 0 limit, the criterion (29)
is obviously always satisfied whenever ag # 0 (i.e., ¢ # v,
¢ # 0, and v # 1) and by continuity of the polynomial
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P(K,V,C), the loop is stable for all large n = 1/vK. In
the cases when ay = 0, the loop is only marginally sta-
ble for n — oo and therefore nothing can be deduced by
continuity on the stability of the loop for n large. The
corresponding cases ¢ = v, ¢ = 0, and v = 1 will be
studied specifically in Secs. VII and VIII.

In the following, when the stability of some sets of the
parameters cr and cy, is investigated, we need only check
it for n > 2 or equivalently for K < %, as we have shown
that the other first two modes are stable.

VII. STABILITY FOR PARTICULAR SIMPLE
EQUATIONS OF STATE

Among the specially simple equations of state that can
be envisaged for a cosmic string, the one most frequently
used in earlier discussions [16,17] is that characterized
by the constant trace equation U + T = 2T, which cor-
responds to the case ¢ = 1, subject to the supposition
that V # 1 (leaving the special case V =1 to be consid-
ered later in the ultrarelativistic limit in Sec. XI). The
polynomial P(K,V,1) can be simplified to

(1-V)*(1+V)*K® +3(1 + VY)K(1 + K)
+(32VZ 4+ 70V + 32)VK(1 - K)
+(36V2 + 44V + 36)VK + (1 — V)¥]

Z(l_v)8>07

which shows that the ring is stable in the neighborhood
of the segment v € [0;1] and ¢ = 1. This agrees with the
numerical results shown in Fig. 5 at the right border of
the square corresponding to ¢ = 1.

The “warm” cosmic string model [13,14] or constant
determinant equation of state UT = m* gives the case
¢ = v (and v # 0). Zero is obviously a solution of the
characteristic eigenvalue equation (28), which reduces to
a quadratic equation and can be exactly solved as

V1 -V)1+V)ove — (n+ 1)vi]fvo — (n—1)vy] =0,

where vy = 2v/(1 + V) was defined before as the
Lorentzian double of v. It is easy to verify that for all
modes n the eigenvalue subspace of static solutions is of
dimension 2 and that the loop is therefore stable when
¢ = v. This result has already been observed [1] and was
to be expected as the warm cosmic string model has been
shown [13] to be completely integrable in flat space. The
criterion (29) gives

P(K,V,V)=64V3(1+V)?(1-V)*K(K —1)*. (32)

The stability of loops for which C —V is small cannot be
deduced because the polynomial (30) tends to zero for n
large (K = 0). In this limit, the eigenvalue equation (24)
has two equal solutions o = nvy /v. As the first deriva-
tives of P(0,V,C) are all zero when C = V/, to check the
stability of the ring at K = 0 around the segment C =V,
we must consider the Hessian of P(0,C,V) when C =V
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which gives
PO, V+X,V+Y)=2V3(1-V)8(X? - XY +Y?).

This is definite positive when v ¢ {0,1} which ensures
that in the neighborhood of (0,V,V) the stability crite-
rion (29) is satisfied everywhere. Thus we can conclude
that the ring is stable in the neighborhood of the di-
agonal ¢ = v and v ¢{0,1}. This result agrees with
the numerical results shown in Fig. 5 where the diagonal
corresponds to the case ¢ = v.

We consider now the constant tension equation of state
T = T, # 0 which corresponds to ¢ = 0 (and v # 0). This
is a simple equation of state which, however, does not
correspond to any physical model. P(K,V,0) reduces to

VIK[1+V)(3-V)}K?

—2(1-V)}(VZ-12V +9)K — (1 - V)%

which is necessarily negative near K = 0. This can also
be checked directly on Eq. (28) by making an expansion
for K = 0 around the multiple solution ( = 1. The insta-
bility of the loop when ¢ = 0 is verified by the numerical
results shown in Fig. 5 as the left border of the square
corresponding to ¢ = 0 is plotted in black. To get the rate
of decay of these unstable modes, the imaginary part of
o must be calculated for each n using the general Car-
dan formulas and the largest must be retained, leading
to the dominant rate of decay. This imaginary part has
been plotted numerically as a function of 1/[n(1 — V)]
in Fig. 6 and shows that the maximum imaginary part
(leading to the dominant instability) is reached when, for
a given V, n is much larger than 1/(1 — V). In this case,
as expressed in (31), the rate of decay is simply

T=1/Q.
If instead of cosmic strings we are concerned with
strings of the kind familiar under terrestrial laboratory
conditions, the simplest kind of equation of state that

is relevant will have the form traditionally named after
Hooke, with a tension proportional to the elongation. I

[ Im(aw)l
1

0.6 p

0.4

1/&

FIG. 6. Plot of the module of the imaginary part of the
complex reduced pulsations ¢ when c = 0.
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show here that for a Hookean equation of state the rotat-
ing rings will always be stable. Using the number density
v as defined in (2), the Hookean equation of state is ex-

pressible as
rov(i-1),
v Vo

and the energy per unit length U can be derived from
the relations (2) as

U=Y(mu+—!———1—> )
2v

(33)

(34)

where m is an integration constant. The speeds cr and
cr, can then be deduced from their expressions in (4) and
(5), and their ratio is

cz v 1-=
T _(1-Y)[1-— 2 35
2 ( Vo) mu2+%—i’; ’ (35)

which is always smaller than 1, using the positivity of cZ
and of the elongation 1/v — 1/yg of the string. By the
theorem (1] proved in Sec. IX that the relation ¢z < cr,
guarantees the stability of a circular string loop, it follows
that circular string loops of this Hookean kind are never
unstable.

VIII. STABILITY AT THE LIMIT VALUES OF
THE PARAMETERS

The case v = 0 (and ¢ # 0) corresponds to the limit of
an equation of state where T' vanishes. Unlike the above
cases, it cannot be associated with an equation of state
because T' = 0 would also entail ¢ = 0. However, strings
with vanishing tension have been studied in the so called
“cosmic spring” limit [18-20]. The criterion (29) reduces
just to

C}K+1)3*>0.

Thus, by continuity of P(K,V,C), the ring is stable in
the neighborhood of the segment ¢ €]0;1] and v = 0.
This is in agreement with the numerical results shown in
Fig. 5.

The case v = 1 (and ¢ # 1) is also a limiting case of
other models as it corresponds to U = T. This relation
cannot be extrapolated as a valid equation of state as it
would give c> = —1. But it is an interesting limit, as the
equation of state for cosmic strings of the kind studied
by Witten [21] is in this zone ¢y ~ 1. In this case, Eq.
(24) can easily be solved:

21-C)o—-1)(c—1/n)(c+1/n)=0.

This evidently has three real roots so that this case is
clearly stable. However, no simple conclusion can be
deduced for v < 1 because, when n tends to infinity,
there are three equal solutions and so complex solutions
and instability may arise in the vicinity. These results
can be verified using the criterion (29): P(K,1,C) =
[2(1 — C)]*K3 > 0 and goes to zero for K = 0. To study
the stability around V =1, we let V = 1 —( and expand
P(K,V,C) at first order for small ( and K, which gives
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T(x,0) = 7P(K,1-(,0)
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~16(1 — C)*k3 — (1 — C)?(44C? + 40C? + 40C + 44)x?
+(—C* +52C% +154C% + 52C — 1)k + C(1 - C)?, (36)

where k = K/(? in the set {1/(n{)?} (n is an integer
greater than 2). The only influence of { =1 — V on the
sign of T'(k,C) is to enlarge the interval of variation of
K arbitrarily, so that the sign is now to be studied for
k varying over the whole range of real positive numbers.
The derivative of T'(k,C) with respect to x is quadratic
and always has a positive discriminant. Its larger solution
is

oo 114100+ 11C? + 2(1 4+ C)/31 — 46C + 31C?
0 12(1-C)? '

(37)

If T(x,C) as defined by (36) reaches a negative value,
it must be at kK = Kko. Figure 7 gives a numerical plot
of (1 — C)2T(ko,C) as a function of C, and this shows
that the zone around V' = 0 is always unstable except for
C ~ 1, where some more caution is required, and which
will be treated fully in Sec. XI in the ultrarelativistic
limit. So when v < 1 the loop is always unstable. This
agrees with the numerical simulation shown in Fig. 5 at
the upper border of the square corresponding to v = 1.

IX. THE STABILITY OF THE ZONE c; > cr

It has been shown in the preceding work [1] that when
¢ > v the ring is always stable. This is in agreement
with the numerical results shown in Fig. 5. In other
words, all the regions of short time scale dynamic in-
stability are confined within the region ¢ > v (marked
by dots in Fig. 5) that is expected to be subject to the
very weak gravitational reaction instability effect that
was mentioned in the Introduction [10,11].

The proof of stability for ¢ > v is recalled and ex-
tended to show a particular set of curves in the (C,V)
plane which always lead to unstable loops. It will prove
interesting to study a particular set of unstable points in

T(x0,C)

FIG. 7. Plot of (1—C)?T(xo, C) as given by the expressions
(36) and (37).

-
the ultrarelativistic limit in Sec. XI and estimate their

rate of instability. For ¢ > v, Eq. (28) is first reduced to
the intersection of a parabola depending on the parame-
ters only through the rescaled variable
T = 1+ V§
T2
with a hyperbola whose vertical scale is proportional to
the dimensionless “distention” parameter

. Cc-V

T Wi(l-cv)
In terms of this parameter, Eq. (28) can be written in
the convenient form

(m—1)2~£§=I‘(1-v§_)(x—l+:’—}‘;)mir. (38)

4 -2 N 2 4

-1

FIG. 8. (a) Plot of the parabola and the hyperbola ex-
pressed in (38) for the particular set of parameters ¢ = 2,
v = 1, and n = 2 as expressed in (39). (b) Plot of the
parabola and the hyperbola expressed in (38) for the par-
ticular set of unstable parameters corresponding to v = 0.5,
n=3,and I' = —2 as given by (40).
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The parabola and the hyperbola have been plotted nu-
merically in Fig. 8(a) for the particular set of values of
parameters

(39)

win
N

c=%£, v=35, n=2,
which are generic for the case ¢ > v and correspond to
= ;—I—g If the difference between the two sides of Eq.

(38) is called R(z), then its limits are

lim R = +o0, l_’i_gR=+oo,
lip R=sgn(T+1- —
im K =sgn + 2 oo ,

ll%‘g R=sgn(—F—-1+%)oo,

_ 1 1 (1-12%)
RO)=1- 520, R0) = (1+75 5

Thus in the case when I' > 0 the polynomial R(z) goes
to zero three times: once for —-I' < z < 0, once for
0 < z < 1, and one last time for z > 1. It can be
verified in Fig. 8(a) that the parabola and the hyperbola
expressed in (38) intersect each other three times in the
intervals where the polynomial R(z) goes to zero. The
other interesting result worth mentioning is that for each
positive integer n there is a corresponding value

'=-1+4+1/n (40)
of the distention parameter for which the system is always
unstable. Figure 8(b) shows the parabola and hyperbola
expressed in (38) for a generic value vy = 1, n = 2,
and the corresponding value I' = =1 + 1/n = —1. The
equation of the unstable lines defined above in (40) can
be expanded as

—B+V)1-V)+4/n

C=Varsma-v+4avi/n

(41)

These lines of unstable loops will prove interesting for
studying the rate of decay of the rings for a particular set
of curves and especially around (c¢,v) = (1,1) where the
unstable zones shrink to lines. This case will be further
studied in Sec. XI in the ultrarelativistic case.

X. THE CLASSICAL LIMIT

The classical limit corresponds to the limit where ¢ = 0
and v = 0. In this limit, the eigenvalue equation (24)
reduces to nothing and as expected the polynomial (30)
goes to zero: P(K,0,0) = 0. An expansion of P(K,V,C)
must be made. The first significant order is the third, and
using A = C/V we get
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P(K,V,AV) ~ [(3+ A)3K® — (18 + 57X + 56A% — 3A%)K?
+(=1+4 212 + 4122 + 3A3)K

FA1 =NV = F(\, K)V3.

A first analysis of f(A, K) shows that the loop is always
unstable around A = 0, which is in agreement with the
result already obtained in the case C = 0 in Sec. VII. At
the other extreme, when A tends to infinity which cor-
responds to V = 0, f(A\,K) ~ A3(1 + K)3, the loop is
always stable as already shown at the beginning of Sec.
VIL. So there exists a transition between a stability and
an instability zone around this point. We intend to find
the steepness A of this frontier between stability and in-
stability that appears clearly in Fig. 5. Because this is a
transition between stability and instability, the polyno-
mial (30) must go to zero, or equivalently f(A,K) = 0.
There are an infinity of solutions to this equation in A cor-
responding to the infinity of possible values of K = 1/n?
with n > 1, but because of the overlapping of instability
zones for each n only one appears in Fig. 5. This one can
be seen by comparing Figs. 3 and 5 to correspond to the
mode n = 2 or else K = ;. The equation

_ 125)3 4 313)% + 199 — 61 _

64 0

f %)

gives only one positive solution A ~ 0.222, which must
therefore be the gradient of the tangent to the transition
between stability and instability in Fig. 5. The transi-
tion from stability to instability around the classical limit
cr = ¢g, = 0 thus happens around

°L _o047.

(42)
cr

Since the case of classical strings applies to the kinds of
strings that are found in an ordinary laboratory context,
an experiment can be made to determine the effective sta-
bility of rotating rings with this kind of equation of state,
and instability should be found to arise in some cases.
However, as shown above, the strings with a Hookean
equation of state are always stable, so, to find instabil-
ity, such an experiment would have to be conducted with
strings having a stiffer kind of equation of state.

XI. ULTRARELATIVISTIC LIMIT

The ultrarelativistic limit corresponding to strings
with ¢ ~ 1 and v ~ 1 is of particular interest as cosmic
strings fall in this regime. The limit ¢ = v = 1 is very
singular as Eq. (24) disappears. This can be checked on
the polynomial (30) which goes to zero: P(K,1,1) = 0.
Therefore we work around this limit by letting V =1—¢
and C = 1—¢ and expanding P(K,C,V) for small £ and
¢, keeping only the lowest order for each coefficient ao,
ai, az, and as of the polynomial in (30):
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P(K,1-(,1-¢) ~ 16K[(C+()*K —4C*)* +¢°(¢ - €)* .

In the ultrarelativistic limit, the loop is thus stable when-
ever the first significant order does not vanish, i.e., when-
ever ( # € and £ # ((2n—1). The first case, correspond-
ing to ¢ = v, has already been studied with the warm
cosmic string equation of state in Sec. VII and is stable.
In the latter case £ = ((2n — 1) the calculations must be
taken to second order, which gives

P(K,1-(1-((2n—1+z))

~ 25671,2(4{[1: + (n—1)(2n — 1)¢]® — 2n(n — 1)3¢?} .

Therefore there are always values of  and ¢ for which
the loop is unstable except in the cases n = 0,1 which are
already known to be stable [for instance, at z = —(n —
1)(2n — 1)¢]. The zones of instability are delimited by
two parabolas with the same tangent and on the same
side of their tangent which is explicitly given by

C=0@n-1)V-2n-1). (43)

This has been verified using the numerical results shown
in Figs. 3-5. In Figs. 3 and 4, the gradients of the shrink-
ing lines of instability are, respectively, about } and § in
agreement with the above result of 1/(2n—1). Moreover,
it can be seen in Fig. 5 that the lines of instability are,
as expected, on the same side of their tangent.

To study more precisely these vanishing lines of insta-
bility, I will use the particular set of unstable lines found
at the end of Sec. IX, defined by Egs. (40) or (41).
Figure 9(a) shows in the plane (C,V’) these curves for
various values of n and it is seen that these curves tend
to the V = 1 line when n becomes large. The expression
(40) for the lines can be put in Eq. (38) to get a charac-
teristic equation depending on vi and k = 1/n only, in
the form

23 — 24 (1 - k)vi]z?
+(1—k)[2+k+k+ (1 - k)i]z

+(1-k)?2(1+k)=0. (44)

There is also a condition of positivity of C in (41) which
is

V>2y1-1/n—-1.

Applying the Cardan formula to the third degree equa-
tion (44) above to get the imaginary part of the complex
solutions, we get an algebraic expression for

2n
1+V

Tm(w/Q)| = [Im(z)| ,
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which has been plotted for n € {2,3,4,5,6} in Fig. 9(b)
as a function of C (because V is varying on a vanishing
interval when n tends to infinity). The imaginary part of
the complex solutions of the characteristic equation (24)
are interesting to know as they are closely related to the
rate of decay of the unstable stationary equilibrium state
through the expression (31). The tangent to the above
curves at C = V = 1 can be expressed algebraically in
the form

dimo/m)) 1 (1)

— 45
dC C=1- (45)

It appears clearly in Fig. 9(b) that the curves seem to

0.2

[Im(a) |

FIG. 9. (a) Plot of the unstable lines as expressed in (40)
or (41) for various values of n. (b) Plot of the module of the
imaginary part of the complex solutions of (44) or (24) for the
unstable lines shown in (a).
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tend to a limit when n tends to infinity. This can be
confirmed from (44) by letting

a=(1-V)/k=(1-C)/(1+C),

A=(x-1)/k=(1+V)o/2=0,

and working at first significant order in k and (z — 1).
Then [Im(o)| = |Im(A)| with X satisfying the equation
N+ 4 (@?/a-1)A-1=0. (46)
In particular, at C = 0 for large n, the value of |Im(c)]|
tends to the imaginary part of the complex solutions of
the equation A3 +A2 —3)X/4—1 = 0, that is, about 0.358;
at C = 1 for large n, (46) becomes A3 +A2—X—1= (A—
1)(A+1)2 = 0, so a development must be made around
A= —1and C = 1, giving a complex part (1 — C)/4V?2,
which is of course the limit of (45) for large n. These two

results are in good agreement with what can be seen in
Fig. 9(b).

CONCLUSION

This investigation has shown the complexity of the sit-
uation in the ultrarelativistic regime that is of interest for
cosmic string applications. The main remaining problem
left for future work is the long term outcome for unsta-
ble loops. Further work will also be necessary to establish
the precise location of the equilibrium states for particu-
lar (more or less realistic) cosmic string niodels, starting
with the Witten type toy model analyzed by Peter [10,22]
(which lies in the zone ¢y ~ 1 and must therefore have
a nontrivial behavior with respect to dynamical stability
of loops) in relation to the interpenetrating zones of sta-
bility and instability that are illustrated in Fig. 5. This
only requires that the two speeds cr and ¢y obtained
from the particular model of superconducting strings be
put in the criterion (29).

It has been seen that, being always stable, the equa-
tions of state for which the speed of transverse pertur-
bation is lower than that for longitudinal perturbations,
cr < cr, have qualitatively a different dynamic behav-
ior than the other equations of state for which cr > cr,,
where the situation is less conclusive. As pointed out
above, it seems that Witten superconducting strings lie in
the latter, less decisive zone where c > cr,. The constant
trace equation of state U + T = 2Ty, which corresponds
to the simplest correction to the Goto-Nambu model, can
be seen to rest in the first zone where ¢z < cr. The great
stability of these strings does not correctly represent the
situation for cosmic strings, in which it has been seen that
instability may arise. The constant determinant equation
of state UT = T2 (which characterizes the “warmi string”
model for a wiggly Goto-Nambu string), although stable
also, has a nontrivial speed of longitudinal perturbations
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cr and is more “central” in the ultrarelativistic zone in
the sense that it lies between the two zones cr < ¢z and
cr > cr. Thus this equation of state appears to be dy-
namically a better approximation to Witten models than
the constant trace model. This model has also the inter-
esting property [13] of being completely solvable in flat
background.

It is to be remarked that the results obtained in this
formalism could be tested in the classical zone, as de-
scribed in Sec. X, by looking for the instability predicted
in Eq. (42) when cp/cr < 0.47. This could probably
be reached with material in the nonlinear regime (as the
Hookean equation of state is stable) by taking rapidly
rotating loops, thereby increasing cr, which is equal to
the rotational speed at equilibrium by Eq. (13).

It is also possible to estimate an order of magnitude
for the rate of instability 7 of a loop. It appears numer-
ically, from the expression for the imaginary part of a
complex solution, that for an unstable loop the imagi-
nary part of the solutions for w /2 of the characteristic
equation (24) remains bounded by 1, and is generally of
order unity except in the transition zones between stabil-
ity and instability, where it can be lower by some orders
of magnitude:

[Im(w/Q)| < 1. 47
The typical radius of a loop at equilibriumi has been
roughly estimated by Carter [9]. If we call 5 the niass
scale (expressed in Planck mass) at which the strings are
formed, the typical radius of a loop (expressed in Planck
length unit) was found to be

ranT/S (48)

Thus for unstable loops not in the classical zone, the time
scale of instability of a circular loop (expressed in Planck
time) can be estimated from (47), (13), and (31) as

L (49)
For cosmic strings formed at electroweak mass scale, the
time scale of instability is extremely short:
TR107¥ s,

It can be seen that for heavier cosniic strings, like those
arising at grand unification, the time scale of instability
will be even shorter. We thus conclude that unstable
circular loops will not survive long enough in the Universe
to be of any cosmological importance.
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FIG. 3. The region of instability is plotted (in black) on the
plane parametrized by the squared longitudinal and trans-
verse perturbations, ¢ and c2, on the basis of numerical
evaluation of the polynomial P(1/n?%, C,V) given by (38) on
a regular grid of 500500 points for the particular case of the
mode n = 2.
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FIG. 4. Same as Fig. 3 for the mode n = 3.



FIG. 5. Same as Figs. 3 and 4 for a superposition of all
modes up to n = 400 (the more extended region of potential
secular instability due to gravitational radiation reaction is
indicated by dots).



