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We construct the string field Hamiltonian for c = 1 —6/m(m+ 1) string theory in the temporal
gauge. In order to do so, we erst examine the Schwinger-Dyson equations of the matrix chain models
and propose the continuum version of them. The results of boundary conformal field theory are
useful in making a connection between the discrete and continuum pictures. The W constraints are
derived kom the continuum Schwinger-Dyson equations. We also check that these equations are
consistent with other known results about noncritical string theory. The string Beld Hami&tonian

is easily obtained &om the continuum Schwinger-Dyson equations. It looks s~~I&ar to the Kaku-
Kik~wa HamHtonian and may readily be generalized to c ) 1 cases.

PACS number(s): 11.25.Sq, 11.25.Pm

I. INTRODUCTION

String theory provides us with the most promising
&amework for describing physics at the Planck scale.
However, a nonperturbative treatment of string theory
is indispensable for relating it to the lower energy phe-
nomena we see. String Beld theory [1] is expected to
make such treatment possible. A string field theory cor-
responds to a rule to cut the string world sheets into
vertices and propagators, or in other words, a way to fix
the reparametrization invariance.

Recently a new class of string field theory was pro-
posed for c = 0 noncritical string [2]. It is based on
a gauge fixing [3] of the reparametrization invariance,
which can naturally be considered on dynamically trian-
gulated world sheets. The gauge, which can be called the
temporal gauge [4] or the proper time gauge [5], is pecu-
liar in many respects. For example, in this gauge, even a
disk amplitude is expressed as a s»m of infinitely many
processes involving innumerable splitting of strings. It
forms a striking contrast to the case of the conformal
gauge. The amplitudes can be calculated by using the
Schwinger-Dyson (SD) equations of the string Beld. Ac-
tually the SD equations are powerful enough to make a
nonperturbative treatment of the c = 0 string possible.
Indeed, the Virasoro constraints [6] can be derived from
the SD equation, and all the results of the matrix model
are reproduced. Conversely it was pointed out by Jevicki
and Rodrigues [7] that the string field Hamiltonian can
be derived &om the stochastic quantization of the ma-
trix model. Also in [8], the string Beld Hamiltonian was
deduced &om the matrix model.

Therefore if the temporal gauge string field theory is
constructed for the critical string, it may be a useful tool
to study the nonperturbative eH'ects of string theory. In
order to go &om c = 0 to the critical string, one needs to
know a way to introduce matter degrees of freedom on
the world sheet. In [9],c & 1 string field Hamiltonian was

constructed by changing the way of gauge fixing a little.
However, it was not possible to derive the W constraints
&om this Hamiltonian and prove that it really describes
a c & 1 string theory.

In the present work, we will propose a string field the-
ory of a c = 1 —6/m(m+ 1) string in the temporal gauge
such that the W constraints are deduced from the string
field SD equation. Actually we start &om the matrix
model SD equations, &om which the W constraints are
deduced. We propose the continuum version of these
equations. Since the string field SD equations are in
close relation with the matrix model ones, it is easy to
construct the string field Hamiltonian once we know the
continuum version'of matrix model SD equations. Thus
the Hamiltonian we construct is naturally related to the
W constraints.

The organization of this paper is as follows. In Sec. II,
we first consider c =

z case as an example. After briefiy
explaining the relation between the temporal gauge string
field theory and the matrix model SD equations, we ex-
amine the SD equations for the two matrix models which
were analyzed by Gava and Narain [10]. We propose the
continunm version of these equations and show that the
Ws constraints can be deduced from the continuum equa-
tions. We also check if our equations are consistent with
other known results of c =

2 string theory. In Sec. III,
we generalize the discussion of Sec. II to the case of a
c = 1 —6/m(m + 1) string. In Sec. IV, we construct the
string field Hamiltonian &om the SD equations obtained
in Secs. II and III.

II. CONTINUUM SD EQUATIONS FOR A
c = —STRING

I et us recall the definition of the time coordinate in [3].
Suppose a randomly triangulated surface with bound-
aries. The time coordinate of a point on the surface is
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defined to be the length of the shortest curves connecting
the point and the boundaries. In [3], this time coordinate
was introduced to study the &actal structure [ll] of ran-
dom surfaces. It was shown that a well-defined contin-
uum limit of such a time coordinate exists at least in the
case of a c =.0 string. If one takes such a time coordinate
t in the continu»m limit, the metric will look like

ds' = dt'+ h(x, t)[dh+ N'(z, t)dt]'.

In [4], two-dimensional (2D) quant»~ gravity was stud-
ied by further fixing the gauge as 8 h = 0. Such a gauge
was called the temporal gauge. In [5], the gauge Ni = 0
was pursued, which was called the proper time gauge.

In this coordinate system, we cut the surface into time
slices. Then the surface can be interpreted as describing a
history of strings which keep splitting and joining. In [2],
a string Beld Hamiltonian II describing the evolution of
the strings in such a coordinate system was constructed.
In this paper, we will call this Hamiltonian the string field
Hamiltonian in the temporal gauge. (It can also be called
the proper time gauge Ha»»etonian. ) H is expressed in
terms of the creation [a»»ihilation] operator 4't(l) [4(l)]
of the string. Since each string is labelled only by its
length, the string Beld is a function of the length /. An
ri-string amplitude corresponds to the world sheets with
n boundaries, each of which describes an external string
state. Therefore such an amplitude is expressed as

lim (O~e @t(l ) 4't(l„)~0). (2.1)

ory (CFT). The splitting and joining of the strings should
be described by the three-Reggeon-like vertex for c =

2
CFT, and the string Beld Hamiltonian will be very com-
plicated. This is the reason why aa alternative de6nitioa
of the time coordinate was taken in [9]. Here we would
like to stick to this time coordinate and construct the
Hamiltoniaa ia the temporal gauge.

One can obtain a hint on the forxn of such a Hamilto-
nian by examiniag the xnatrix model SD equations. As
was discussed in [2,8], the string field SD equations are
closely related to the matrix model SD equations. The
latter describe the change of the partition functions corre-
sponding to dynamically triangulated surfaces when one
takes a triangle away &om a boundary. It is obvious
&om the definition of the time coordinate that at the
discrete level the former equations describe the changes
which happen when one takes one layer of triangles &om
all the bouadaries. Therefore, in the continuum lixnit,
the former should be expressed as an integration of the
latter.

Heace if we know the continuum limit of the matrix
model SD equations, we can figure out what the string
field SD equations should be. Then we can infer the
form of the striag Beld Hamiltonian. Gava and Narain
[10] studied the SD equation for the two matrix model
and deduced the S'3 constraints. In this section, we will
consider the continu»~ limit of the equations of Gava
and Narain.

The string amplitudes can be obtained by solving the
string Beld SD equation:

lim BLi(0~e 4't(l ) @t(l„)~0)= 0.
D-+oo (2 2)

Here the states we mean do not necessarily satisfy the con-
dition (Ls —Ls)~v) = 0.

This equation means that the string amplitudes do not
change if one puts the time evolution operator on all the
external string states. In the point of view of 2D quan-
t»~ gravity, this equation corresponds to the Wheeler-
DeWitt equation.

Even if there are matter fields on a dynamically trian-
gulated surface, a time coordinate can be defined in the
same way. Here we conceatrate on a c =

2 string. Such
a string can be realised by putting the Ising model on
the random surface. Since the length of a curve on the
surface is defined irrespective of the matter, the time co-
ordinate can be defined and the surface is cut into time
slices. Again, the surface can be regarded as describing a
history of strings. Therefore we will be able to construct
a string Beld Hamiltonian describing the tixne evolution
of the strings. However, in this case, the strings have
Ising spins on them. Hence the string field depends not
only on the length of the string but also on the spin con-
figuration on it.

In the continu»m limit, an Ising spin configuration may
be represented. by a state of c =

2 conformal 6eld the-

A. Continuum limit of the Gava-Narain equation

Let us sketch how Gava and Narain obtained the R'3
constraints. The W~ constraints are expected to come
&om equations about the loop amplitudes in which the
Ising spins on all the boundary loops are, say, up. Sup-
pose the partition function of the dynamically triangu-
lated surfaces with boundaries on which all the Ising
spins are up. If one takes one triangle from a bound-
ary, the following three things can happen (Fig. 1): (1)
The boundary loop splits into two; (2) the boundary loop
absorbs another boundary; (3) the spin configuration on
the boundary loop chaages.

The matrix model SD equation is a s»~ of three kinds
of terms corresponding to the above processes. In the
6rst and the secoad process, only boundaries with all the
spins up can appear. The third process is due to the
xnatrix model action. A boundary loop on which one
spin is down and all the others are up caa appear in this
process. In order to derive the R'3 constraints, oae should
somehow cope with this ~Ixed spin coafiguration. Cava
aad Narain then considex'ed the loop amplitudes with one
loop haviag such a spin configuratioa aad all the other
loops having all the spins up. They obtaiaed two SD
equations corresponding to the processes of t~k~ag away
the triangle attached to the link on which the Ising spin
is down aad the one attached to the next link. Those
equations also consist of the terms corresponding to the
above three processes. With these two equatioas, one
can express the loop amplitude with one mixed spin loop
insertion by loop amplitudes with all the spina up. Thus
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FIG. 1. Processes involved in SD equations. If one deforms
the loop on the lefa; hand side at the cross, it either splits into
two (the first term on the right hand side), absorbs another
loop (the second term), or changes in its spin configuration
(the third term). The change in the spin configuration is
expressed by an operator 'R.

they can obtain closed equations for loop amplitudes with
all the spins up, and the Ws constraints were derived from
them.

We would like to rewrite the above procedure in terms
of the continu»m language. Let us define the continuum
loop operator tv(l; Iv)) as representing a loop with length
l and the spin configuration corresponding to Iv) which
is a state of c =

z CFT. We take the loop to have one
marked point on it. The loop amplitude will be denoted
by

(2 3)

The matrix model SD equation describes the change of
the amplitude Eq. (2.3), when one takes a triangle away
from a boundary. Now we will construct the continuum
version of it, which describes what happens when one de-
forms the amplitude Eq. (2.3) at a point on a boundary.
In principle, by closely looking at the discrete SD equa-
tions and ta4ng the continu»m limit, one should be able
to figure out what the continu»m SD equations will be.
However, in actuality, it is not an easy task, because of
the existence of the non»»iversal parts in the loop op-
erators and the operator mixing between various loop
operators. Therefore, here we will construct the contin-

u»~ SD equations by ass»~ing the following properties
of them and check the validity of our ass»mption later
by deriving the W constraints from them.

(1) We will ass»me that the continu»m SD equation
also consists of the three ter~s representing the three
processes in the above (Fig. 1): i.e., a loop splitting into
two, a loop absorbing another one, and changes in the
spin con6guration of the loop. Let us call the Srst two
the vertex terms and the last one the kinetic term.

(2) We will ass»me that when a loop splits into two, the
descendant loops should inherit the spin configuration of
the original loop. Such a three-string vertex will be ex-
pressed by a 6 functional of the spin configurations, i.e.,
the three-Reggeon-like vertex of c =

z CFT in the con-
tinu»m limit. The process where a loop absorbs another
loop will also be expressed by the three-Reggeon-like ver-
tex.

(3) In the matrix model SD equations, the kinetic
terms come from the matrix model action. In the two ma-
trix model, they include terms which change the length
of the loop as well as a term which fiips the spin. We
@rill ass~~me that in the continu»~ limit, only the spin
Sipping term survives.

With all these ass»mptions, we are able to write down
the continu»m SD equations. We will present the most
general continu~~m SD equation using such vertices in
Sec. IV. Here let us concentrate on a simpler situation,
which Gava and Narain considered. In the derivation of
the Ws constraints, they started from loops with all the
spins up. Such a spin configuration was represented as
a state of c =

2 CFT in [12,13]. Let us denote such
a state by I+). It is clear that if such a loop splits into
two, it results in two loops with all the spins up. A.iso if a
loop with all the spina up absorbs another one, we obtain
another loop with all the spins up. Therefore the process
of splitting and merging is particularly simple for such
kind of loops. The first SD equation Gava and Narain
considered corresponds to the deformation of the loop
amp"«de Eq. (2 3) wit" I») = I») = "= Iv ) = I+).
The equation in the continu»m limit should be

+u).4(~(i+4 I+))~(l~ I+))" ~(ls-~'I+))~(is+~ I+))" ~(i I+)))

+( (l &( )I+)) (l I+))". (l I+))) =o.

Here the first term corresponds to the process 1 in the
above, and the second term is for the process 2. The
string coupling constant g comes in &oat of the second
term as in the case of a c = 0 string [2]. The last term de-
scribes the process 3, where the operator 'g(o) expresses
the local change of the spin con6guration. 0 & 0' & 2m
is the coordinate of the point where the local change oc-
curs. The coordinate cr on the loop is taken so that the
induced metric on the loop becomes independent of 0'.
0 = 0 is taken to be -the marked point of the loop. 0

here means that as a function of l, the quantity has its
support at l = 0. Therefore the left hand side of Eq. (2.4)
is equal to a s»m of derivatives of 6(l). These 6 functions
correspond to processes in which a string arith ~~ishing
length disappears. In the point of view of string Beld the-
ory, such processes are expressed by the tadpole terms.

Therefore tv(l; R(o') I+)) is supposed to correspond to
a loop with one spin Sipped to be down because of R(cr),
and the rest of the spins up (Fig. 2). In the contin»»m
limit, the operator which is on the domain wall of up and
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down spins is identified to be $2 q [13] (Fig. 2). Therefore
R(0') may be written as hm~ ~~+ g(o')ps, g(0'). With
this operator, we can express everything about the SD
equations in terms of the continu»m language.

The two other equations which Cava and Narain
used were obtained by taking a triangle away &om
ur(L;'R(0')I+)). The triangles to be considered were the
one attached to the link where R(cr) is inserted and the
one next to it. In the continu»~ limit, these equations
will correspond to the following two equations. In one
of the equations, we consider a loop m(l R(0) I+)) and
deform at a point near o and take the limit in which the
point tends to cr (Fig. 3). The SD equation becomes

I ~ ~ I ~ ~ ~ I Dog(n

FIG. 2. The action of the operator 'R.

l

&&'(~(E'; I+))to(& —E' R(o) I+&)ts(~x, I+)) ~(I; I+)))
0

+u):4(~(1+4;'R(~)I+))~(&i;I+)) "~(4-i I+))~(&8+x I+))" ~(& I+)))

+(~(& l'R(~)]'I+&)~(~~ I+)) "~(~- I+&)& = o. (2 5)

Here to(L; [R(o')]8I+&) denotes the limit
him~~~~ ~(& R(0')'R(0) I+)). In the other equation, we

consider a loop ts(l;ps, q(cr')$8 q(0)I+)), deform at a
point between the two ps, q insertions and then take
the limit o' -+ 0' (Fig. 4). The insertion of 'R yields

ur(l; ['R(n)]8I+)) again. However, this time, the loop can-
not split or absorb a loop to(l; I+)). When a loop splits,
two points on the loop should merge. The spin configu-
rations at the two points should coincide in order for this
to happen. Now we deform the loop at a point in the
down spin region, and the point it merges with should be
in the down spin region. Therefore, in the limit 0' -+ n,
no splitting can occur. The loop cannot absorb another
loop for the same reason. Hence we obtain

(~(~ [R(~)1'I+&)~(&~ I+))" ~(&- I+))) = o (26)

This equation means that the loop to(l; [R(0)] I+)) is in
a sense "null. " Similar arguments as above show that
correlation functions involving such a loop vanish unless
there exist any finite regions of down spins on the bound-
aries.

We propose Eqs. (2.4), (2.5), and (2.6) as the contin-
u»m limit of the Gava-Narai» equations. As a check of
the validity of our equations, let us first see if the disk
amplitude of c =

&
string theory satisfies these equa-

tions. Let us denote the disk amplitude with a loop
to(l; ['R(o)]"I+)) as the boundary by to„(l). The Laplace
transform too(q) = Jo die ~'too(l) is known as [14]

(tao(q)) + top(q) = 0,

~o(~)~i(~) + ~2(&) = o

2(~) - o.

(2.8)

Here 6„(q) denotes Jo die ~ tu(l;'8" (cr)I+&). = 0 here
means that the quantity is a polynomial of &. It is easy
to see that the disk amplitude (2.7) and

(~) (~ + /~2 t)8/3 (~ Q 2 t)8/3 + t4/3

(2.9)

is a solution of (2.8).
This tvq in Eq. (2.9) is a new kind of amplitude which

has never appeared in the literature. It indeed emerges in

where t is the cosmological constant. If our equations
really correspond to c =

2 string theory, this disk ampli-
tude should satisfy these equations at the lowest order in
the expansion in terms of g. In the Laplace transformed
form, the equations to be satisfied are

no(~) = (~+ Q~' —&)' '+ (C —Q~' —&)' ', (2.7)

~ ~ ~ ~ ~ ~II Dp~g

Because of the reparametrization invariance, correlation
functions involving ts(l; ['R(a)] I+))'s do not depend on a. FIG. 3. The SD equation (2.5).
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(I)2,i( a )

Up
~ I~ d ~ ~ dI DQ~g

FIG. 4. The SD equation (2.6).

the continu»m limit of the matrix model disk amplitude
W(P) = (Ntr(P —A.) ~). W(P) is a solution to the
matrix model SD equations given in [10,15,19]. In the
continu»r» limit, one should take P and the matrix model
coupling constant g to approach the critical value P,
and g, as P = P, + aq, g = g, + consta2t, where a is the
lattice cutoff. By expanding W(P) in powers of a, one
obtains

W(P) = ho+ bsqa+ b4r3o(q)a& + bs8~toq(q)a& + O(a ),
where b s are nonuniversal constants. Thus we can see
that not only too(L) but also huq(L) are included in the
continu»r» limit of the disk amplitude W(P). Here

I

Lrd)x(L) (to(L;L f d(r'R((r)]+)))o rather than u)) (L) ap-
pears because W(P) corresponds to a loop which is in-
variant under rotation.

We conclude this subsection arith a comment on
the scaling dimensions. The scaling dimension of
the disk amplitude (to(L; ]+)))o can be estimated [14]
by the Km~~~ik-Polyakov-Zamolodchikov-David-Distler-
Kawai (KPZDDK) arg»r»ent [16] to be I r~s, where I,
denotes the dimension of the boundary length. From
the above result, the &ir»ension of (to(L R((r)]+)))o is
L ~ . The dHFerence L ~ of the dimensions is at-
tributed to the insertion of the operator 'R(0). No-
tice that Eqs. (2.8) make sense as a continu»m SD
equation only when 'R(0) has such a dimension. It
is quite consistent with the identi6cation 'R(0)
lim ~ (t)2 q(0')()e)s q(o), because the gravitational scaling
dimension of Ps q on the boundary is [16,17] estimated to
b, L-2~3

B. Derivation of the W3 constraints

If our continuum limit SD equation is correct,
Eqs. (2.4), (2.5), and (2.6) should yield the Ws con-
straints. In this subsection we will show that this is
indeed the case. In order to do so, let us define the gen-
erating functional of loop amplitudes as

OO OO OO

Z(do(l), dx(l), ds(l)) = (exp ~
dldp(l)m(l;)+)) + dldz(l)w(l R(e))+))+ dldq(l)w(l;[R(e)] )+)) ~

& o 0 0 )
(2.10)

Using this generating functional, the SD equations (2.4), (2.5), and (2.6) can be rewritten as

h J„+i(L) () b Jo(L')h J„(L—L') o L)J (L+ L')

6J /L) I J;(l)=o (i=1,2)
2

(2.11)

Here are have set the string coupling g = 1 for nota-
tional simplicity. The fact that the left hand sides of the
three equations above do not vanish»»less L P 0 makes
further analysis cumbersome. We can see &om the anal-
ysis of the disk amplitudes in the above that the tad-
pole terms should exist. However it is possible to shower

that we can cancel such tadpole term contributions by
shifting Jo(L) as Jo(L) -+ c) L ~ + c2L ~s + Jo(L), and we
obtain Eqs. (2.11) with = replaced by =. Indeed the W

Here A denotes one of the matrices in the taro matrix model.
Here we follow the notation of Ref. [19].

Do not confuse it arith the string coupling constant g.

constraints are usually vrritten in terms of such shifted
variables [6]. For notational simplicity, we will deal with
equations which are obtained aft;er such a shift is done.

It is convenient to use the notation

l

(f *g)(L) = dL'f(L —L')g(L'),
0

(f o g)(L) = dL'f(L')g(L+ L')
0

(2.12)

Then the Brst line of (2.11) can be rewritten in a simpler
form:
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+
I bJ *bJ I(l)+ I (lJo) a bJ I(l) Z[g,. &i~

—o~,— l
——0 (n=0, 1). (2.is)

By solving b/b J2(l) in terms of b/b Jp(l) and l Jp(l), and
substituting it into the second line of (2.11), we obtain f(q) = dl exp( —lq) f(l).

0
(2.i7)

(2.14)

Here J;(l) = 0(i = 1, 2) is implicitly understood. Also
we always understand & as an operation to the right:
A, a A, a ".a A„= A, a [A, a ( a A„) "].
To deduce the Ws constraints from (2.14), one should
subtract the nonuniversal part of Z. In usual cases,
the nonnniversal parts exist in the disk and the cylin-
der amplitudes. However, after the shift of Jo(l) dis-
cussed above, the disk amplitude vanishes. Hence only
the subtraction of the nonuniversal part of the cylinder
amplitude is needed:

~ —~non ~univ &

(2.15)

Z = exp
I

— dldl Jo(l)C o (l l )Jo(l ) I

~

OO

Then, substituting (2.15) into (2.14), we obtain the SD
equation for the universal part of the partition function
merely by shifting the derivative:

In such variables, the operations * and a defined in (2.12)
are expressed as

(f *~)(~) = f(~)~(~)
(2.18)

(f )( )
dc'

f-( )
g(&) —a(&')

2m'i

The nonuniversal part can be obtained by the orthog-
onal polynomial technique [18,14]. Substituting it into

(2.16), we obtain

, 2 —( )"—( )"'
= D(q) + — .K(—c')

$Jo(g) S 27ct

(2.19)

where K(q) = —Jo(q) = f dl exp( —lq)l Jo(l). The
universal part of the partition function depends only

on some fractional moments of the currents J„
f dqJo( —q)q

" i(r = n+ s, n+ 2) with n non-negative

integers. So the D(q) will be expanded in the form

D(~) =):~ " '
b

OO

= D(l) + dl'C„(l, l') Jo(l'),
0

(2.16) (2.20)

where D(l) denotes the derivative for the universal part.
Next we will specify the C„„(l,l') and D(l), and de-

duce the R'q constraints explicitly. It is more convenient
to work in the Laplace transformed variables:

1 2
~ —A+ qA+3' 3'

with n non-negative integers.
Substituting (2.19) and (2.20) into (2.14), we have ob-

tained the following result after a long calculation:

ID+ s I

K't
S)

S( 1-) ( &- K):+-
I
D+-Ks

I
I:

I
D+ —

I) E. i s) (
'+

I
& zuniv = 0&

27' 2 )
(2.21)

where

K =) &" 'rJ„,
4&0

f d I ( ) f (
li

2' 2

t' ')'~ ( ~)
+

I

—
I f(~),

E~) t, ~)

(2.22)

W„'Z„.;„=o (n = —2, —i, . . .),

L,„Z„.;„=o (n = —i, o, . . .),

(2.23)

and [ ] & i means taking all the terms with negative inte-

gral powers of q, and:: denotes the normal ordering such

that 8/BJ„'s are put on the right of J„'s.
Expanding Eq. (2.21) asymptotically in powers of q

we obtain the following constraints for the partition func-

tions,
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where L„and W„are de6ned through expanding in C the
operators appearing in (2.21):

where a and d s are non»»iversal constants. The coeffi-
cient of as'2 may be identified as tu(&1, &2) which is given

n= —2

OO

L„CnC

n= —1

Eel
'

D+—
3)

( zl'D+—

(2.24)

2+
27C2

o( )' + o( ) o( ) + o( )' —3"'
)Cy+ C2

On the other hand, we can construct the continu»m
SD equation for (ur(lt, l2))p as in the previous section. If
we deform the loop at a point in the up spin region, we
obtain

(2.23) coincides with the Ws constraints [6] for the par-
tition function.

dlmp(l)(m(lt —&, &2))o
0

C. Loop arith mixed spin configuration

So far in this section we have mainly dealt with only
loops with all the spins up. As a check of the validity of
our continu»m SD equations, we will show that they can
be applied to the loops with mixed spin configurations
which were considered in [19].

Let us consider a loop which is divided into two con-
nected regions of up and down spins. We denote such
a loop by m(lt, l2) where lt and l2 are the length of the
up and down regions, respectively (Fig. 5). We will dis-
cuss the disk amplitude (m(lt, lq))p with such a bound-
ary in this subsection. In [19], the discrete counterpart
W&2l(P, Q) of

~(cl C2) — di1 dl2e (~(ll ~2))o
0 0

was given by solving the matrix model SD equations. By
taking the continu»m limit of W&2&(P Q) one can obtain
m(qt, q2). It turns out that xu(qt, q2) ~ixes with Sp(qt)
and cup(c2). Therefore we should subtract a multiple of
W(P)+ W(Q) f om W&2&(P Q) in ta&ing the continu»m
limit. In the continuum limit, a -+ 0, P = P, + aCq,

Q = P, + aq2, one obtains the expansion

Wi l(P, Q) —a[W(P) + W(Q)]

ill
1

+ dlmo(l)(m(lt —L, l2))p+ (mt(lt, l2))o = o.
0

Here lz and ly l& ly are the distances &om the point of
deformation to the two domal» w"-'L&s (Fig. 5). mt(lt, l2)
denotes the loop with one 'R insertion at the point. If we
deform the loop mt(lt, lq), we obtain the following two
equations as in the previous section:

f
ly l,'

dhut(l)(tu(lt —I, l2))P+ dltuo(l)
0 0

x(mt(lt —I) l2))p+(w2(lt, l2))o -0)

lg

dl(m(lt, l))o(m(l1', l2 —l))o+ (m2(it~4))o
0

where m2(lt, l2) denotes the loop with two 'R insertions
at the point. Since the loop (m(lt, l2))p now has the
down spin region, the second equation does not imply
('w2(lt, &2))p = 0 contrary to the previous case. By elimi-
n«ing ~1(lt, l2) and m2(lt, l2) Rom the above equations,
one obtains a closed equation for (m(l1, 4))p. It is easy
to check that the disk amplitude Eq. (2.25) satisfies this
equation. Although we have not tried yet, it is in prin-
ciple possible to do the same thing for loops with more
complicated spin configurations.

= do+ds(gt+&2)a+dsa ul(&1&&2)+O(a )
III. CONTINUUM SD EQUATIONS
FOR c =1—B/m(m+ 1) STMNG

~ ~F00~ 0 ~ OIegg ~
~Ia~gI ~ ~Iy'

~y~I ~y

Og

0'e

0

Q

Q

W
W
W
Q

~4'0

~iO
~y00I ~„,o'

~I ~I~

Up
~ sleeIIeleI DpWg

FIG. 5. The ~i+ed spin coxdiguration.

It is straightforward to construct continu»~ SD equa-
tions for c =1—6/m(m+ 1) string in the same way as
in the previous section. In this section, we wiH elucidate
m = 4 case as an example. We will show that we can
derive the W constraints &om the SD equation.

A. SD equations

As a generalization of the two matrix model, c
1 —

& +1& string can be realized by the (m —1)-matrix
chain model. The matrices M; are labeled by an inte-
ger i(i = 1, .. . , m —1). The matter degrees of &eedom
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are represented by this "spin" variable i. Each spin can
be considered to correspond to a vertex of the Dynkin
diagram of A q so that the matrix chain potential
Q,. tr(M;M;+1) is written as Q, C;1tr(M;M~) by the
connectivity matrix C;~ of the Dy~k~n diagram.

In this case, a string is labeled by its length and the
spin configuration. In the continuum limit, the ma-
trix configuration can be expressed by a state in c =
1—6/m(m+1) CFT. The W constraints can be obtained
by considering SD equations involving strings on which
all the spins are 1. In [13], various boundary configura-
tions in the A restricted solid on solid (RSOS) models
[20] are identified with a state in c = 1 —6/m(m + 1)
CFT. The RSOS realization of c = 1 —6/m(m+ 1) CFT
is a bit different from the matter realization in the ma-
trix chain model, in which the A q Dynkin diagram is
related to c = 1 —6/m(m + 1). However, as in the Ising
case, the fixed boundary conditions in the matrix chain
may be identified with a boundary condition in which the
spins on the boundary and those of the neighbors of the
boundary are fixed in the RSOS model. Such a boundary
condition is labeled by an integer r(r = 1, . . . , m —1) [13]
and we will identify it with the spin configuration where
all the spins are r in the matrix chain. We will denote

the loop on which all the spins are 1 by zu(l; I1)).
The SD equations are constructed as in the Ising case.

We will illustrate m = 4 case as an example. Let us con-
sider the SD equation corresponding to the deformation
of a loop amplitude:

(3.1)

The continu»m SD equations are constructed assuming
the following.

(1) The SD equations consist of three kinds of terms
illustrated in Fig. 1.

(2) The splitting and merging process is written by
using the three-Reggeon-like vertex which represents a h

functional of the spin configurations.
(3) For the kinetic terms, only the terms in which

spins are Hipped survive in the continuum limit of
the matrix model SD equation. In the matrix chain
model, such terms come &om the matrix chain poten-
tial p, tr(M, M;+1). Therefore a spin i, 1 ( i ( m —1 is
Hipped to i —1 and i+ 1, and 1 and m —1 are fiipped to
2 and m —2, respectively.

The equation corresponding to the deformation of
Eq. (3.1) at a point on a boundary becomes

f
l

dl'(1a(& «11))~(& —&
' ll))~(&1, I1)) .~(&„;I1)))

0

+g).~~(~(&+&~ 11))~(&1 11))" ~(&~-1 11))~(&~+1 I1})"~(~ I1})) (3 2)

+(~(&;'R(~)11})~(I,; 11))".m(&„; ll))} 0.

'R(0') here represents an insertion of a tiny region on which the spins take the value 2. This insertion comes Rom
the matrix chain potential p, tr(M~M, ~1). In the continun~, the operator which is at the domain wall between
the regions of spin 1 and 2 is again identified to be f21 [13]. Therefore 'R(0) insertion here can be replaced by
hm ~ 42,1(0')42,1(0).

We can go on to obtain equations involving m(l; ['R(0)]2ll)). If one deforms m(l R(0)ll)) at a point near a and
take the limit in which the point tends to 0, one obtains

dl'(m(l'; ll))m(l —I' R(0) Il))m(l1, I1)) m(L„; I1}))
0

+&).&I (~(&+4 'R(~)I1))~(&111))"~(&1-»11})~(4+111))"~(~-11)))

+(~(&; ['R(~)]'I»)~(&„11))"~(I„;I»)) = 0.

(3.3)

So far the Eqs. (3.2) and (3.3) have the same form as the Ising case Eqs. (2.4) and (2.5). A difference comes in
when one tries to obtain Eq. (2.6). If one deforms m(l; 4«2 1(0')P2 1(o)ll)) at a point between the two 4«2 1 insertions
and then takes the limit o' ~ o, one obtains not only the loop m(l; 'R (o) I 1)) but also a loop with an insertion of a
tiny region on which the spina are 3 (Fig. 6). The boundary operator which is at the domain wall between 1 and 3
regions is identified with «t«s 1 [13). Therefore we obtain an equation

(~(& [R(~)]'11))~(&1 11)) "~(~- 11))) + (~(& [42,1(~)l'11))~(~1 11))" ~(~- 11}))= o (3.4)

This equation refiects the fusion rule p2 1/2, 1 p1 1 + ps 1. 'R should be identified with the p1 1 part of the product
4'2, 1«t 2, 1 ~

Thus tu(l; ['R(0')] l1)) is not null in this case. Rather we can prove m(l; ['R(0)] I1)), which is defined as a limit

lim m(/ R(02)'R(02)'R(n1) Il)), 02 & 02 & o1,
0'g Mo'y

is null by the following sequence of SD equations:
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hm [(~(l»(os)&(&2)&(~~)II))~(l~ 11))" ~(l 11)))
CFg ~CFOG

+(~(l &s,~(&s)&s.~(&2)&(&~)II))~(l~ 11))" ~(l I1)))] = o

[(u)(l 4's, &(+s)&(~2)4..~(~~)II))~(l~ 11))" ~(l- 11)))
CFg ~CFOG

+(u)(l (t)s,&((rs)(t)s,&((r2)&((r~) li))u)(li 11))" to(l 11)))]= 0,
hm [(~(l 4.,~(~.)&(~2)4',~(~~)II))~(i~ 11))-"~(l» 11)))l = o.

CFg ~CFOG

(3.5)

ere cr3 & cr2 ~ Oq in all the equations. For example, the first equation corresponds to the deformation of the amplitude
(u)(l; (t)z g(o3)(t)2 $(os)R(oq) ll))to(lq,. Il)) ~ u)(l„; I 1))) at a point between the two (t)2 q insertions [Fig. 7(a)]. In the
limit os ~ oq, splitting and absorbing of loops does not contribute to the equation and we obtain the first equation
in the above. The derivations of the other two equations are also illustrated in Fig. 7. Thus we can prove

lim [(u)(l; R(o3)R(oz) R(op) Il))u)(lg, Il)) u)(l~) Il)))] 0.
CFS +CFOG

For general m, we can again identify R with the Pz, z part of the product $2 q(It)2, q. We can prove, by similar
manipulations,

[(~(l &(& -~)" &(&~)II))~(l~'ll))" ~(l» 11)))]-o (& -~ & "&&~)~ (3.6)

Therefore u)(l; ['R(o)] ~ll)) becomes null for c = 1 —6/m(m+ 1) string theory. As a generalization of Eq. (3.3), we
have

«'(~(i' II))~(l —l' [&(~)l'II))~(l~ 11))" ~(l- 11)))
0

+~):ls(~(i+Is [&(~)] II))~(l~'l1))" ~(ls-~'11))~(4+~ 11))" ~(l 'l1)))

+(~(l; [&(o)]~+'11))~(i,; I1))" ~(l„;I»)) = 0,

for j = 0, . . . , m —2. With Eqs. (3.6) and (3.7), the W
constraints mill be derived in the next subsection.

We will conclude this subsection with a comment
on the scaling dimensions again. For general m, the
scaling dimension of the disk amplitude (u)(l; ll)))() is
L &2 +~))' . The gravitational scaling dimension of (t)„,q

on the boundary is L &~+ ~~" &~2™and again has the
right dimension for the continu»m SD equations to make
sense.

=0

~ ~ ~ o ~ ~ ~ o ~ ~ o 2

B. Derivation of the W constraints

Let us rewrite Eqs. (3.6) and (3.7) into equations for
the generating functional of the loop amplitudes:

m —1
Z~ ~(d;(()) = (exp $ did;(l)w(l;[R(e)]')1)) )..'=0

~ oooooooooo

=0

=0

~oooooeooo ~ 2 (c) ~o oo ~ ooo ~

FIG. 6. The SD equation (3.4). FIG. 7 The SD eq. ustion (3.5).
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I J.( )—p('&p) 0 (n = 0, 1, . . . , m —2),{m)

b Z(m) I 0
I Jf(s)=o(~&o)

m —1 l,C)
(3 8)

Eqs. (3.6) and (3.7) become as follows:

t'b bi - b+I - * - I+Km - (c)
bJ„+1 &bJp bJ„p bJ„

I
= D(c) + K(-c')G'( '(c c')

bJp(c) 2%i

I

-( ), „1m—1 —Q(1( )-
(CpC ) =-

m

(3.10)

This is a simple generahzation of the known cases m =
2 3.

The D(c) will be generalized to

We have assumed that the tadpole term is canceled by
an appropriate shift of Jp(l). Solving b/h J;(i ) 0)'s re-
cursively and substituting b/h J 1 into the second line
of (3.8), we obtain

D(c)=) c " '

1 2 m —1
T A + ) A + $ ~ ~ ~ $ A +

m m m
(3.11)

*+K a
I

(c)Z( ' = 0.
t'b - ) b

&bJp ) bJp
(3 9)

Here J;(c) = 0 (i ) 0) is implicitly understood. The
subtraction of the nonuniversal part will be

with n non-negative integers.
Our expectation is that, substituting (3.10) and (3.11)

into (3.9), one will obtain the W constraints for the uni-
versal part of the partition function. We have performed
the calculations explicitly for the cases up to m = 4. For
m = 4, we have obtained, after a long calculation,

W, (c) —-', [KW,]„(c)+ -', [K[KL]&p]„(c)+ -', (D(c) + —,'K, (c))4Ws(c) —sl ] ( ))

+-
I

2: [(D(c) + -'K, (c))']:—[KD] o(c) —-'[KK ] o(c) + —,',
&,, I

&(c) Z.'.;. = (3 12)

where [ ]„means taking all the terms with nonintegral powers of c, and

[AB]&p(c)

1
-L(c)
2

3—Ws(c)
4

dc1 A( —c1)B(c1)
2' X

I
D+ KI-

I
D+-K

I4 )

5

(3.13)
2

(bc (, 4 ) )
W4(c) =:

I
D+ —K

I4 ) (,
(18 15 i /'- 1-i

(~s) 1/4 + ( ~s) 1/2 + ( ~s)3/4

K.(c) =
2

.K(—c1)
'

105
(64)2c4 '

Here the definition of K follows that in (2.22) with the
summation over r following (3.11). Expanding Eq. (3.12)
asymptotically in C, one obtains the R'4 constraints for
the partition functions,

where L's and W's are defined through expanding in C

the operators appearing in (3.13):

L(c) = ).L-c " '

L, z'.="=o
univ

w'z( .=' = on univ

w'z(-. =" = ouniv

(n = —1, 0, . . .),
(n= —2, —1, . . .),
(n= —3, —2, . . .),

(3.14)

Ws(c) = )
n= —2

W() ) W4 —ra —4

n= —3

(3.15)
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These coincide with the W4 constraints [6,21]. We conjec-
ture that W~ constraints can be derived from Eqs. (3.8)
also for m & 5.

IV. STRING FIELD HAMILTONIAN

The discussions in the previous sections imply that the
contjnuu~ SD equations we proposed really describe c =
1 —6/m(m + 1) string theory I.n this section we wjjj
infer the form of the string field Hamiltonian from these
equations.

In order to do so, we need the SD equation corre-
sponding to the deformation of loops more general than

v)(l; ~+)), to(/;'R(o')(+)), v)(li, lq), etc., which were dis-
cussed in the previous sections. For those loops, the
vertex terms look particularly simple. In order to write
down the continuum SD equations for more general loops,
we should introduce three-Reggeon-like vertex for c =
1 —6/m(m + 1) CFT. Here let us express a state of a
string (with a marked point) as (v&i by its length l and
the spin configuration ~v). We define a product * so that

Ivi&i, * Iv2&i. ,

represents a loop made by merging the two loops ~vi&i,
and ~vs&i, at the marked points, with the spin configura-
tion inherited from them (Fig. 8). Then the continuum
SD equation for generic loops will be expressed as

(v)(& i Iv &)v)(& —E
~ Iv &)v)(&» Ivi&) ' ' ' v)(j~~ Iv~))&

I&'& I&"
& I&I'i&I&" &l-Ir =I&&f

2%'

) ls do'(v)(l+ ls' lv)i ~ (e" Ivy)i. ))v)(&; ~»)) . v)(&s i, ~vs &)v)(is+i, ~vs+i&) ~ ~ iv(f„; ~v„)))
a

+(to(&; 'R(a') ~v))u)(li,'(vy)) ~ ~ ~ tu(l; v ))) Q. (4.1)
Here P is the operator of rotation of a loop. R(o) is identjfied wjth hm yz i(o')yz (&).

The SD equation describes a defoliation of a loop at a pomt on it. If we integ ate it over the position of the pomt,
we obtain the deformation induced by the string field Hag')iltonjan in the temporal gauge. Let y(E ]v)) (yt(~; ~v&))
denote the a~~jhjlatjon (creation) operator of a string with length l and the spin configuration ~v) satjsfyjng

2%

[%(l; iv)), %'t(l'; iv'&)] = l do(v'ie' ~iv)6(l —l'). (4.2)

Namely the commutator of 4(l; ~v)) and @t(l'; ~v'&) is nonzero only when l = I' and ~v& coincides with ~v'& up to
rotation. The string field Hamiltonian can be obtained from Eq. (4.1) as

H = ) dli dls4't(li, ~vi))@t(ls, [vs&)@(li + ls, ~vi&i, * ~vs)4)
) &

0 0

+g ) f &i f g4'+t(4+4; l&i)4 1»)4)'g(4; l&i))@(4;l&s))
t~'&

+):f a™(~;&(g)I"))@(41~))+)fg4(~ I ))g(~;.I )).
I~& I~&

(4.3)

Here p(l; ~v)) expresses the tadpole term and it has its
support at l = 0.

The string amplitudes can be expressed by using this
Hamiltonian as follows:

(vg{l„.(v, &)u){E„.(v, &)
"- vg(l„;(v„

The string Beld SD equation can be obtained as

~D(Q( e@'(&1 (vl&) ".@'(4;)v»&)[Q& = o.
FIG. 8. The product e .
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It is obvious from the construction of H that this SD
equation can be written as an integration of the SD equa-
tion in Eq. (4.1).

We can estimate the dimension of the geodesic distance
D from the above Hamiltonian. The scaling dimension of
various quantities can be estimated most easily by con-
sidering terms involving strings on which all the spins are
aligned. For example, for a c = 1 —6/m(m + 1) string,
the scaling dimension of g is given as [g] = l ( + )~

which coincides with the matrix model result [18]. The
dimension of D becomes [D] = l,i~ . This fact may be
checked by numerical simulations.

Thus we have constructed the string field Hamiltonian
using the three-Reggeon-like vertices. We should, how-
ever, remark that Eq. (4.3) is a formal expression. As
was clear from the discussions in the previous sections,
the states such as ]1) play important roles in the analysis
of the SD equations. However, such states have diver-
gent norms in the usual definition of the norms of states
in CFT. Therefore we should adopt a difFerent norm (e.g. ,

one defined by Cardy [13])in Eqs. (4.2) and (4.3) to make
the Hamiltonian applicable to such states. Accordingly
the definition of the three-Reggeon-like vertices ought to
be changed. We will pursue these problems elsewhere.

V. CONCLUSIONS

In this paper we proposed the continuum SD equa-
tions for a c = 1 —6/m(m+ 1) string. It was checked

that the SD equations are consistent with all the known
results of noncritical string theory. Especially the TV
constraints were derived from the SD equations. The R'
constraints essentially come from the fact that the loop
operator w(I; ['R(0')] i[1)) is null. In the continuum
picture, it was proved by using the results of boundary
CFT.

We constructed the temporal gauge string Geld Hamil-
tonian from the SD equations. The Hamiltonian looks
similar to the Hamiltonian of the light-cone gauge string
field theory [1], involving only three string interactions.
Since the form of the Hamiltonian is almost the same
for any c, it might be possible to construct the temporal
gauge Hamiltonian in the same way for the c ) 1 case,
especially for the critical string. This will be left to the
future investigations.
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