
PHYSICAL REVIEW D VOLUME 50, NUMBER 12

Coping with strongly coupled string theory

15 DECEMBER 1994

Tom Banks
Department of Physics and Astronomy, Rutgers University, Piscataway, ¹wJersey 08855 08-$9

Michael Dine
Santa Cruz Institute for Particle Physics, Unioersity of Califonua, Santa Cruz, California 9506$

(Received 27 June 19S4)

String theory, if it describes nature, is probably strongly coupled. As a result, one might despair of
making any statements about the theory. In the &amework of a set of clearly spelled out assumptions,
we show that this is not necessarily the case. Certain discrete gauge symmetries, combined with
supersymmetry, tightly constrain the form of the efFective action. Among our assumptions are
that the true ground state can be obtained from some perturbative ground state by varying the
coupling, and that the actual numerical value of the low energy Beld-theoretic coupling g /4s is
small. It follows that the low energy theory is approximately supersymmetric; corrections to the
superpotential and gauge coupling function are small, while corrections to the Kahler potential are
large; the spectrum of light particles is the same at strong as at weak coupling. We survey the
phenomenological consequences of this viewpoint. We also note that the string axion can serve as a
+CD axion in this &amework (modulo cosmological problems).

PACS number(s): 11.25.Sq, 11.25.Mj, 11.30.Er, 11.30.Pb

I. INTRODUCTION: CAN ONE MAKE A
SENSIBLE SUPERSTRING PHENOMENOLOGY?

Weakly coupled string theory is a phenomenological
disaster. In some of its classical ground states it contains
a spectrum of particles tantalizingly reminiscent of the
world as we know it. But in addition these ground states
have a large spectrum of unwanted massless particles,
generically called moduli. Their presence indicates that
perturbative string theory is grossly inconsistent with ob-
servation. They contradict the weak equivalence princi-
ple, and are thus in conRict with the Eotvos-Dicke exper-
iment. They lead to time variation of the fundamental
constants that is in contradiction with observation, and
they predict unobserved perturbations of the motion of
the planets.

The oriental screen behind which string theorists hide
this embarrassment is called nonperturbative phyai ca. Af-
ter all, while string theory predicts the existence of the
quarks, leptons, and gauge bosons of the standard model,
perturbative string theory predicts that they are all mass-
less. Surely it is plausible that the same nonperturbative
mechanism that produces the observed mass spectrum
will rid us of the embarrassing moduli. This plausible
sounding excuse runs afoul of some special properties
of string theory first pointed out by Seiberg and one
of us [1]. String theory has, to our knowledge, no free
parameters apart from a fundamental length scale. If
it is weakly coupled, this is only because the vacuum

We include under this rubric the dilaton and its
superpartners.

expectation value (VEV} of the dilaton takes on a spe-
cial value. But this value is dynamically determined by
the efFective potential of the dilaton, which itself should
be computable in a systematic asymptotic expansion in
the coupling. We know its value, namely zero, in the
extreme weak coupling limit. It will approach zero ac-
cording to some well-defined asymptotic formula, which
is either positive and monotonically decreasing, or nega-
tive and monotonically increasing as the coupling goes to
zero. 2 In neither case can the potential have a minimum
for parametrically weak coupling. Almost by definition, a
nontrivial minimum of the dilaton potential implies that
terms of difFerent order of the asymptotic expansion must
make comparable contributions. Thus, there are at least
some efFects in string theory which do not admit a con-
trollable weak coupling expansion. In view of this we

should be surprised if anything were to be calculable in
such an expansion. If string theory is sufEciently strongly
coupled to stabilize the dilaton, why should we believe

any weak coupling calculation in the theory'
There are many possible responses to this situation.

Perhaps the most reasonable is to discard the theory al-

together. Still, given its many attractive features, partic-
ularly the fact that it is our only theory of quantum grav-

ity, it is hard to resist the temptation to look for other
ways out. Among these, we can hypothesize that some

Mathematically, the monotonic behavior could be modu-
lated by some sort of oscillation. We know of no physical
mechanism which could produce such an oscillation. In any
event, oscillatory modi6cation of a monotonic function could
at best produce an in6nite number of false vacua for the
dilaton.
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presently»»h»own modification of the theory will e&»»&-

nate the dilaton but preserve the more attractive. aspects
of strap theory. We can hope that group theoretical fac-
tors conspire to allow two terms of A'&erent order in the
weak coupling expo~~ion to. be of comparable orders of
magnitude even when the coupling is weak. This is the
philosophy behi»d the so-called racetrack models [2], in
which factors of the form e—8~'/Nu' and z

—8~'/(~+&)u'

for large N compete to give a minim»~ of the potential.
Finally, we can bite the bullet and admit that string the-
ory is strongly coupled.

Is there any utility to such an ad~ission or does it sim-

ply tell us that the dyne»»cs of string theory is at present
incomprehensible? Is the theory's hypothetical applica
bility to the real world destined to remain a hypothesis
until we learn how to solve the strongly coupled problem?
We would like to argue in the present paper that the an-
swers to these questions are negative. The situation is
not completely without precedent. The ~Worical devel-
opment of condensed matter physics depended entirely
upon the fact that, although the fundamental theory of
electrons interacting via Coulomb potentials cont»i»s no
small parameter, the low energy dyn~~ics of this system
is, in many regimes, do»»»ated by a set of weak&y cou-
pled excitations with the quant»~ m»»bers of the funda-
mental electrons. As a first step in coping with strongly
coupled string theory we make the a»aiogous hypotjtesis:
even though the fundamental short distance degrees of
freedom in string theory are strongly coupled, the low-

lying spectr»~ of the full solution of the theory has the
sa~e qu~~t»~ n»~bers and multiplicites as the massless
spectr»~ in one of the theory's myriad classical ground
states. To put it another way, string theory cert''»&y has
a large n»aber of metastable states concentrated in the
region of field space where the entire theory is wea'Hy

coupled. We ass»~e that as we move in to the strong
coupling region the low-lying spectr»~ of at least one of
these classical vacua becomes the true spectr»~ of the
strongly coupled theory. s We will see below that there
are some plausible pieces of evidence for t&is ass»option.

The question of which of the classical ground states de-
ter~i»es the true spectr»T» may ulti~~tely be a»swered
only by strong coupling physics. Here we pursue a more
modest goal. We ass»~e a particular ground state and
try to find constraints on low energy physics in this
ground state which will be valid independently of the de-
tails of strong coupling physics. We find that many, but
by no means all, of the predictions of perturbative string
theory can be viewed as consequences of cert'~~ discrete

A n»mber of authors have conjectured the existence of a
weat to strong coupling duality transformation in string the-
ory [3j. The infinitely strongly coupled theory based on one
classical ground state is equivalent to a wee%&y coupled the-
ory based on another. In the context of this conjecture we
should replace the phrase "strong coupling" in our discussion
by "int~rraediate coupling. " We are t~&»~g about a regime in
which, at short distances, there is no description of the theory
in terms of w~k&y coupled sexniclassical excitations.

gauge sy~~etries, and are reproduced even when the
coupling is strong. The discussion of these s~~etries
and their consequences is the contents of Sec. D.

In Sec. III we take up the question of how the low en-

ergy- excitations of string theory can be vre~k&y coupled
when string theory is strongly coupled. The situation is
not quite awe&ogous to condensed matter physics, because
the i»&ared behavior of Yang-Mi&&s theory is strongly
coupled. Thus, one must explain vrhy the gauge and
Y»hswa coupling par~~eters in the efFective Lagrangian
just below the string scale are weak. We identify two
possible expire»ations of this fact. The first involves the
notion that weak coupling mes»s something quantita-
tively &inherent in string theory than it does in field the-
ory. String perturbation series are more divergent than
field theoretic series [4]. Correspondingly, we expect non-
perturbative corrections to be large when functions of the
coupling like g &e s~s are of order one. Here 5 and p are
real constants (5 ) 0) which we do not know how to
compute for res&istic string theories. On the other hand,
nonperturbative efFects in the low energy efFective field
theories derived &om string theory are generically of or-

-Se Nder g ~e ~ ~ +, when N and k are positive constants
of order 10 or less. These efEects are tiny at the putative
value of the»»i&ed gauge coupling [5] gz/(4z) ~ 1/25,
but it is perfectly plausible that the stringy contribution
is of order one at this value of the coupling.

One might also attempt to understand the discrep-
ancy between the string and four-db»ension~& field theo-
retic couplings in terms of the vol»~e of the compacti-
fied dimensions. Conventio»at wisdom in weak coupling
string theory is that the scale of these dimensions must
be the sa~e as the string scale [6,7]. We expel» how this
constrai»t may be relaxed in a strongly coupled theory.
A large compactification vol»~e may also help to ex-
plain the &i&erence between the string scale and the "ob-
served" scale of coupling»»i&cation [5],without recourse
to large threshold corrections. This idea is very tightly
constrain»ed by the "observed" values of the»»i+ed cou-
pling and»»ification scale. We argue that, no matter
how strong the coupling in the higher-dimensional the-
ory a Kaluza-Klein a»satz with more than one dimension
as large as the "observed" »»%cation scale would lead to
an unacceptably small »»i+ed coupling. A Kaluza-Kelin
vacua~ with one large internal Air»ension is acceptable
on purely m»»erical grounds. However, the dilaton cou-
plings in such a theory are highly constrained by the com-
bination of approximate Sve-dimensional supersy~~etry
(SUSY) and discrete shift symmetries. This may make
it impossible to carry out our progr~~ for stabilization
of the dilaton in such a theory.

Having made the strong coupling string theory, weak
coupling field theory dichotomy plausible, we explore how
these ideas ilb~~inate the central problems of stabiliza-
tion of the dilaton and sypersym~etry bre»ling. We
argue that a particularly attractive resolution of these
problems may result &om the interaction of a nonpertur-
batively determined Kahler potential for the dilaton and
other moduli, and a single gauNjno condensate. In wea'Hy

coupled string theory, a single gaugino condensate leads
to a runaway vacu»~, but the nontrivial Kahler potential
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may stabih~e it at strong coupling. An essential feature
of this mech~asm is that discrete symmetries constrain
the form of the superpotential to be that determined by
the lour energy gaugino condensate. Stringy nonpertur-
bative corrections to this are very small. The Kah&er
potential's dependence on the real part of the dilaton-
axion super6eld is completely unconstrained by the sym-
metries (they involve shifts of the axion only), and feels
the full force of nonperturbative stringy physics. We try
to outline the low energy phenomenology which can be
predicted in such a model. When this sort of model for
SUSY breaking is combined with the discrete gauge sym-
metries that we have imposed to preserve predictability,
one sometimes4 finds that the domin'Lnt contribution to
the mass of the model-independent axion comes from
nonperturbative /CD dynamics. Consequently, it can
solve the strong CP problem; but the model may predict
a cosmology at variance with observations.

To s»~marize, we have tried to face squarely the prob-
lem of strongly coupled string theory, and found that it
is not as hopeless as one might imagine. The ass»op-
tions which are required (e.g., va»ishing of the cosmo-
logical constant at the minim»~ of the potential) are no
stronger than those required for any string phenomenol-

ogy. One gluino condensate serves to both break su-

persyT»metry and stabilize the dilaton, and resolves the
Dine-Seiberg problem. s Good predictions of perturba-
tive string theory, such as the form of the spectrum, are
preserved. Indeed the detailed computation of Y»kawa

couplings, possible in the perturbative approach and im-
possible in ours, always suffered from the problem that
one did not know which weary coupled minimum was
the true ground state. Alternatively, a Kaluza-Klein sce-
nario might provide an explanation of the weakness of
high energy field theoretic couplings (as well as a simple
reconsilation of string theory with the "observed" scale of
coupling»nification) in terms of the vob»ne of the com-
pactified internal dimensions of space. However, it may
be impossible to achieve a simple stabilization of the dila-
ton in such a theory.

II. CONSTRAINTS ON NONPERTURSATIVE
PHYSICS FROM DISCRETE SYMMETRIES
AND THEIR IMPLICATIONS FOR STRONG

COUPLING

The tool which we will use throughout this paper is
discrete gauge symmetry. Typical classical string vacua
ma»ifest a plethora of discrete symmetries. In the large
radius limit for the internal noxLhnear model, many of
these symmetries can be seen to be general coors~ate
transformations of the internal space. Other, peculiarly
stringy, sy~~etries such as duality can also be vievred
as gauge symmetries by Sn@~g points in moduli space

I.e., for some discrete gauge groups.
Apart kom the cosmological version of the problem discov-

ered in [8]. This will be dealt with in [9].

vrhere they become incorporated in low' energy continu-
ous gauge groups [101- It is tempting to speculate [~O
that all discrete symmetries of string theory are gauge
symmetries, and should therefore be preserved by any
perturbative or nonperturbative efFects in the theory To
date, all apparent anoma~&es [llj that have been discov-
ered in. these tre~~formations can be cancelled by a dis-
crete analogue of the Green-Schwarz mech~nism. Beyond
the tree approximation, the dilaton superfield tra»aforms
nontrivially under the symmetry in order to cancel an ap-
parent anomaly in fermion transformation laws.

Before applying these sy~~etries to strongly coupled
string theory we face two barriers which seem to prevent
their efficient application. The first is a tech»ical problem
involving field definitions. It is related to the notorious
"multiplet of anomalies" problem which has haunted su-
persy~~etric gauge theories for years. We will define the
problem and deal with it in the subsection immediately
below. The second barrier to the use of symmetries of a
classical vacuum in a strongly coupled theory is sponta-
neous symmetry breakdown. How can we tell that the
strongly coupled theory is not in a different phase from
the classical one? Examples of such phase trensitt'one
abound in field theory To .mention but one: the Zs
sy~~etry of the dual variables in the low temperature
two-dimensional Ising model is spontaneously broken in
the strong coupling region. This is potentially a serious
problem as we pass from weak to strong coupling in string
theory, but once again, the combination of supersymme-
try and discrete sy~~etries comes to our rescue and for-
bids such tra»editions. We will present our ar~~~ent in
Sec. IIB, and then proceed to apply discrete sy~~etries
to predict properties of strongly coupled string theory.

A. In which the conventions are observed

The bosonic component of the dilaton superfield is
conventionally defined to be 8 = 8z2/gz + ia where,
in classical string theory, g is the string coupling and
a the dimensionless axion field (dimensions are supplied
by the string tension a'). Shortly, we will present evi-
dence which suggests that physics is periodic in the ax-
ion, with period 2z'. This periodicity is an exaT»pie of
the kind of discrete gauge symmetry that we will be in-

voking. The other discrete symmetries we will discuss
shortly are gauge and general coordinate try~formations
in some internal space, and thus are definitely genuine
discrete gauge symmetries. For the symmetries of in-
terest to us, the model-independent axion must have 8,

nontrivial transformation lair in order to cancel anoma-
lies (a discrete version of the Green-Schwarz mechanism).
These tra»sformations involve axion shifts by fractional
multiples of 2m. 2m periodicity of the axion is not related
to continuous gauge sy~~etries in an an~&ogous manner.
However, if it is a valid symmetry of string theory then
it certainly shares the major property of discrete gauge
sy~~etries in that it vrill not be violated by vrorxnholes.

When the axion is coupled to low energy supersym-
metric gauge theories in the conventional vray, a tension
develops betvreen the desire to have the real part of the
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S Beld be related to the coupling in some particular reg-
i~4rization scheme while the imaginary part still tr~~~-
forms properly under symmetry tra»sformations. This is
related to the multiplet of anomalies puzzle: the stress
tensor is in a supermultiplet with an axial vector current,
whose divergence can apparently be computed exactly at
one loop. One would then expect the trace of the stress
tensor, and thus the P function, to va»ish beyond one
loop. Of course it does not, in conventional renormaliza-
tion schemes.

This problem was essentially solved many years ago
by Shifman et al. [12]. These authors observed that the
paradox could be resolved by choice of a special scheme
for coupling constant renormalization and for the nor-
msiisation of the axial current. Supersymmetry and the
Adler-Bardeen theorem (in the guise of an exact instan-
ton computation) enabled them to compute the exact P
function in their scheme. We will add a small twist to
their procedure, which is useful for our purposes.

We will use a de&»tion of the coupling constant which
preserves its relation to the axion Beld which transforms
simply under various sy~~etries of the theory. These
symmetries all act by shifts of the axion by discrete
amounts. Sz z/gz is defined to be the superpartner of this
axion field, in the sense the S = Sz z/gz+ia is the A com-
ponent of a chiral superfleld. This superfleld is related to
that defined by the coupling constant, S„in a "conven-
tional" regularization scheme (one which preserves the
»»iversality of the two loop P function) by a nonanalytic
transformation of the form S = S, —(bq/bo)ln[S, ] + ~ ~

where bs and bq are the first two coefficients in the beta
function. Although nonanalytic at S = oo, this transfor-
mation is locally analytic, and preserves SUSY. We prefer
this de&»ition because it dramatically simplifies the for-
mulas for the nonperturbative contributions to the super-
potential and gauge &i»etic term. All complications are
shifted into the Kahler potential, which will be uncom-
putable anyway in our framework.

B. In vrhich phases defend against phase transitions

Vfe now come to what is probably the most impor-
tant point of our analysis. We would like to use various
discrete symmetries of perturbative string vacua to con-
strain the nonperturbative behavior of the theory. s We
intend to study the efFective Lagrangian of the theory
at a scale below the string scale, but above the scale of
any strong nonperturbative Beld theoretic behavior, and
we wish to claim that this Lagrangian is invariant under
the anomaly-&ee discrete symmetries of the perturbative
ground state even ashen nonpertarbative effects due to
massive string modes cm taken into account. We will
ass»~e that these symmetries are not broken explicitly;
needless to say, lac&i~g a nonperturbative deBnition of
the theory, we cannot say anything rigorous about this

d ZH=n. (2.1)

Now consider an Euclidean conformal Beld theory corre-
sponding to some localized Beld configuration (i.e., some
configuration involving massive string Belds). At large
distances, the world sheet Lagrangian approaches that
of a weakly coupled nonlinear model with an axion field
which behaves as

(2.2)

question. But we can show that the ass»mption that
anomaly-&ee symmetries remain unbroken nonperturba-
tively is built into all considerations of string theory. Let
us consider what happens to one of our anomaly-free
symmetries when we move about on the moduli space
of classical string ground states, following a path along
which the symmetry remains perturbatively unbroken.
In all cases of which we are aware, one can connect the
ground state continuously to Hat ten-dimensional space.
In this limit our symmetry becomes a ten-&intensional
Lorentz tra»sformation or gauge tra»sformation, and the
axion shift that must accompany the symmetry trs»sfor-
mation for purposes of anomaly cancellation is seen to
be a special case of the Green-Schwarz mecha»sm. We
believe that this implies that an explicit nonperturba-
tive violation of the discrete symmetries we are discussing
would have the same status as a violation of local Lorentz
invcLriance. Perhaps nonperturbative string theory does
not preserve local Lorentz invariance, but if so, one must
fear for the consistency of the theory.

Notice that this arg»ment does not apply to the contin-
uous axion shift symmetry of perturbative string theory.
This symmetry is explicity broken to a discrete subgroup
by low energy gauge theory instantons. At the level
of renormalizable interactions, it is sometimes possible
to combine the axion shift with continuous global sym-
metries of the low energy gauge action to construct an
anomaly-free U(1). However, general theorems in string
theory [14] assure us that these continuous global sym-
metries are accidental. They are broken to discrete sub-
groups by higher dimension terms in the action. Thus we
expect that nonperturbative efFects of high energy string
modes will also break the axion shift symmetry to a dis-
crete subgroup.

While it is not in any obvious way connected to local
Lorentz or gauge invariance, we believe that the discrete
subgroup of 2z shifts of the axion ia an exact symmetry of
string theory. The key arip~ment for nonperturbative va-
lidity of the discrete axion shift symmetry is based on the
notion that string instantons can be regarded as confor-
mal Beld theories. We will also need to recall the quanti-
zation of the three-index antisy~metric tensor discussed
by Rohm and Witten [15]. We imagine compactifying
ordinary four-dimensional space-time on some large sur-
face. Then the quantization condition is the statement
that the integral

Some preliminary steps in this direction were taken in [13]. Apart &os the 2~ shift of the axion.



7458 TOM BANKS AND MICHABI. DINE 50

The change in the Peccei-Q»i»» (PQ) charge is related
to the axion Beld by

EQpq = f d4xB~a.

On the other hand, the axion and h are related by

h=da. (2.4)

ia/N 2min/N (2.5)

Substituting in the quantization condition (2.1), we learn
that the change in the Peccei-Q»i»» charge is also n. This
is precisely the change we would have obtained from or-
dinary gauge theory instantons. This arg»ment suggests
that only operators of the form e'" can be generated by
nonperturbative string physics.

The main limitation of this arg»r»ent is that it is not
clear in what sense nonperturbative string physics is de-
scribed by two-dimensional field theories. Matrix models,
for exar»pie (or simply the analogy with /CD), suggest
that the relevant degrees of freedom to a nonperturbative
analysis might be &W'erent than those of string perturba-
tion theory. No connection between "instanton conformal
field theories" and the nonperturbative physics in these
models has been established, and the relevance of the
Rohm-Vfitten quantization condition can be questioned.
In what follows, we will assume that this quantization
is true nonperturbatively. In particular, we will ass»me
that terms like ez 's~N, which might otherwise be per-
mitted by symmetries, cannot appear in the efFective La-
grangian just below the string scale. We will comment
briefiy on the consequences of relaxing this ass»r»ption.

Some readers may object that gluino condensation gen-
erates superpotentials which behave as e' ~N, for some
integer ¹ However, it is not hard to see that this is con-
sistent with the discrete symmetry. Indeed, the gluino
condensate is proportional to

on the low energy e8'ective Lagrangian.
Spontaneous breakdown of perturbative discrete sym-

metries by strongly coupled short distance physics is
more Hi%cult to rule out in general, but within the strong
coupling kamework we have outlined, one can give a com-
pelling arg»ment against it. Let us begin by studying the
extreme weak coupling region of moduli space, where ~S(
is large. Remember that our fundamental ass»option is
that the true qu;mt»m mechanical ground state of string
theory can be reached by following a continuous path
from a point in this region towards strong coupling (in
the sense discussed in the next section). Without such an
ass»mption we cannot even begin to discuss the strong
coupling region»~&ess we know how to solve directly for
the spectrum there. Of course, one might worry that the
spectator» of the theory changes as we move from weak
to strong coupling. But as we will see below, this cannot
occur. We also ass»r»ed that at zero coupling (i.e., in the
classical string model) the theory is supersymmetric. We
will see that as a consequence of this ass»option, the the-
ory is approximately supersymmetric at strong coupling
as well (e.g. , at low energies, it looks like a supersym-
metric theory with explicit soft breaking). This means
that even in the strong coupling framework, SUSY can
be related to the solution of the hierarchy problem. This
is not something one might have expected a priori.

Returning then to the w'eak coupling region, we note
that in this region, integrating out the heavy string
modes cannot lead to spontaneous breakdown of discrete
symmetries observed in perturbation theory. The heavy
modes are weakly coupled. Their classical vacu»r» ex-
pectation values are zero, and finite action field config-
urations must approach these VEV's at spatial infinity.
Thus, even when nonperturbative effects are taken into
account, the discrete symmetries of perturbation theory
are preserved. As we move into the strong coupling re-
gion, this are~ment breaks down. In ordinary bosonic

refiecting the fact that the condensate spontaneously
breaks (in general approximate) a Z~ symmetry of the
theory. Thus a 2rr shift of a can be compensated by a
change of the choice of branch in the condensate. Indeed,
if one formulates gluino condensation along the lines of
Ref. [16] then the gluino condensate is obtained by solv-

ing an equation of the form

(AA) oc e* (2 6)

which clearly respects the symmetry. Thus, the discrete
axion shift symmetry appears to be an exact symmetry of
string theory which is spontaneously broken by gaugino
condensation.

In view of the spontaneous breakdown of discrete gauge
symmetries by the strongly coupled gauge theory in the
gaugino condensate scenario, one is moved to worry
about the possibility that the strongly coupled short dis-
tance degrees of freedom of string theory might also spon-
taneously break these symmetries. If this were to happen,
the symmetries would impose no constraints whatsoever

It is appropriate to corn~eat here oa the following puz-
zling questioa: All of the discrete symmetries that we employ
are, in a sease, spontaneously brokea at a high scale because
they are realized through the nonbnear transformation law
of the model independent axion. Vfe have just noted that
high energy breaking of discrete sy~~etries generany leaves
ao traces in the low energy action. Vfhere then do our con-
straints come from? The special situation that is realized
here is a consequeace of the fact that the axion appears in
the low energy theory, because it can be viewed as the pseudo
Goldstone boson of an approximate, accidental, continuous
sy~~etry. The approximate validity of this symmetry is a
consequence of the dual constraints of the discrete sy~~e-
tries aad. supersymmetry. Thus spontaneous breakdown of
the discrete symmetries through the axion can be seen explic-
ity ia the low energy Lagrangian. Some issues involved in the
spontaneous breaking of discrete sy~~etries of this kind are
discussed in Appendix A, where they are illustrated in Super-
sy~~etric +CD. The question we deal with below is whether
there can be further spontaneous breakdown of the discrete
sy~~etries due to VEV's of massive Selds.
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field theory we could encounter either a first- or second-
order phase tr~&dition at some finite value of the cou-

phng.
To exam'»e the possibility of spontaneous breakdown

via the VEV of a heavy field, we imagine includ~ng

the zero modes of the heavy fields in the effective
superpotential. At weak coupling, the dynamics of the
heavy fields does not brea' supersymmetry. Thus, the
equation determining the VEV's of heavy fields is

By'(Wp + 6W) + z Be'(Ko + 6K)(Wo + 6W) = 0.1

(2.7)

Here Wo and Ko are the tree-level superpotential and
Ka&&er potential respectively, while 6W and 6K are the
quant»m corrections to them. 6W receives only nonper-
turbative corrections, while bK has a perturbation ex-
pansion. The solution of the tree-level equations is 4' =
0, and it is stable, in the sense that none of the O' direc-
tions are fiat. Near P' = 0, 8~'Ws + (1/MJ, }Bs,; (Ko)Wo
has the form H;~@~, with a nonsingular matrix H.

The corrections to the tree-level equations coming
Rom Kahler potential terms (and indeed, the tree level

Kahler potential contribution itself) are all proportional
to 1/M&z, while H;~ oc M~. Thus»»&ess 8~'6W is large
we can solve these equations perturbatively. In that case,
since the equations are covariant under the discrete sym-
metries in question, the expectation values of each heavy
field will be set equal to a function of the light fields which
tra»sforms as the heavy field does under these syr»me-
trics. Consequently, the low energy theory will not ex-
hibit spontaneous sy~~etry breakdown. This ar~~~ent
could fail if 8~;hW had a large term which was constant
or linear as a function of the 4'.

There is a variant of the ar~»»ent used in [1$] to rule
out e ~~s contributions to the superpotential, which also
rules out such large terms. Remember our assumption

that we are working in a regime in which e ~ ~~ is very
small although stringy nonperturbative effects are large.
The O' are all charged under the discrete symmetry,
which always involves a discrete axion shift. Thus, non-

perturbative corrections to the constant and linear terms
in 8~'6W must have the form e ', where Ro q are
rational n»embers. For typical discrete symmetries, as-
s»ming that the 4' are perturbative string states, these
rationals are always large enough that the new terms can
be considered small perturbations of the original equa-
tions.

Notice that this ar~~~ent proves that the dynamics of

Indeed, in a strict Wilsonian approach, one should always
keep the low moment~~~ modes of all fields in the eHective
action. apically, the low moment»vn modes of Selds with
masses larger than the cutofF may be integrated out classically
even if the full theory has no smaIl parameters. This is why
one usually ignores them.

An uncharged VEV would not lead to spontaneous sym-
metry breakdown.

27m
QMG+ (2.8}

As an example, consider the point in moduli space that
we can mod out by one of the Zs's, corresponding to
rotating the coordinates Z of CP, by phases:

Z Mo. Z, (2.9)

where o. = 3 ~'~5. This is &eely acting; this mes~~ that
we do not have to worry about the appearance of mass-
less particles in twisted sectors (it leaves a model with 20
generations). This choice leaves over a set of R sym-
metries. For definiteness, consider the sy~~etry un-
der which Zq -+ o.Zq. Under this symmetry, the gluinos
transform by a phase o. ~ . Now we can include a Wil-
son line without breaking this sy~~etry. For example,
we can include a Wilson line in the "second" Es (the
one which is unbroken in the absence of the Wilson line),
described by

c = -(1, 1, 2, 0, 0, 0, 0, 0).
1
5

(2.10)

the heavy fields does not break SUSY in the regime where

string theory is strongly coupled and the field theoretic
coupling is weak. SUSY brea&i»g in this regime must
then come &om nonperturbative low energy field theory
dyn~~~cs and the SUSY bre~k~ng scale will be hierarchi-

cally smaller than the string scale. Note further that we

have proven that the massless spectr»~ does not change
as we move into the regime of strong string coupling (al-
ways ass»ming that the field theoretic coupling is small).
The quadratic term of the heavy field superpotential is
not significantl altered by the strong dynamics.

There are several loopholes in the above arg»ment
which should be mentioned despite the fact that they ap-
pear implausible to us. First of all, there are an i»&»ate

n»mber of heavy scalar fields 4' in string theory. Perhaps
this infinity can alter our naive estimates. Secondly, the
mass of some field can go to zero despite a large quadratic
term in its super-potential, if the Kahler metric becomes
singular. This would invalidate the ass»option of a holo-
morphic low energy Lagrangian on which our considera-
tions are based. Finally we note the possibility of exotic
soliton states with very small values of discrete charge,
which could alter our estimate of the order of magnitude
of the corrections to the equation which determines the
VEV's of heavy fields. This possibility certainly deserves
further study. It is probably the most likely way in which
our argument could fail.

It is worthwhile to present an example of the sort of
symmetry which we have in mind. Consider the Calabi-
Yau space based on the quintic polynomial in CP dis-
cussed in the text of Green, Schwarz, and Witten [17].
In this model, there exist, at some points on the moduli
space, a set of Zs discrete R symmetries. As the exam-
ple is presented in the text, the axion does not trans-
form under the symmetries. However, if one includes
Wilson lines, these symmetries often appear anomalous;
the anomalies can be cancelled by assigning to the axion
a no»&i»ear transformation law of the form [ll]
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(We are using the notation which is standard in the orb-
ifold context. ) By itself, this choice is not modular in-
variant, but t&~s is easily repaired by including a wilson
line in the 6rst Es as vill. In the second Es, there are
two unbroken non-Abelian gauge groups. It is easy to
determine the effects of instantons by simply exam~ning
SU(2) subgroups of these. One finds that instantons of
the first group have four gluino zero modes, while instan-
tons of the second have 24. Thus assigning to the axion
a transformation law

4x
G M G+ —

q5 ' (2.11)

one cancels the anomalies. (This try~formation law also
cancels the anomalies in the other Es, for modular in-
variant choices of the Wilson lines. )

C. The consequences of discrete symmetries

Having justified the use of discrete symmetries even
when the underlying massive degrees of freedom of string
theory are strongly coupled, we can proceed to use them
freely. Consider the gauge kinetic function of some simple
factor of the gauge group. At the tree level this has the
form f = 8/~, where k is the level of the correspond-
ing Kac-Moody algebra. The continuous Peccei-Quinn
symmetry of perturbative string theory, and the holo-
morphy of f guarantees (with our definition of renor-
malization scheme) that the only corrections to this re-
lation come at one string loop. Nonperturbatively we
c~eot rely on tLis symmetry, but the discrete gauge
symmetries play an analogous role. In the model dis-
cussed in the previous section, for example, they guar-
antee that corrections to f beyond one loop take the
form hozf ~ e ss[1+ O(e s~)j. In writing these for-
mulas, we have used the holomorphy of f, the discrete
R symmetry, and the requirement that nothing blow up
at weak coupling. Our point now is that, with a con-
ventional value for the»»ified coupling in string theory,
the nonperturbative corrections are extremely small. By
contrast, we will argue below that stringy corrections to
the Kahler potential of the dilaton can be signi6cant at
these same values of the coupling. Furthermore, nonper-
turbative field theoretic efFects like gaugino condensation
have the form e /+ for some positive integer N. They
are also much larger than the possible stringy nonpertur-
bative corrections to the gauge coupling. Discrete sym-
metries can thus protect the perturbative string theory
prediction of coupling constant »»i&cation even if string
theory is strongly coupled at short distances.

Sinai&ar remarks can be made about the superpoten-
tial for quarks and leptons. Perturbative string theory
predicts that it is given exactly by its tree-level form.
Discrete sy~~etries restrict the nonperturbative correc-
tions to be powers of e "s where k is a positive integer
determ~ned by the symmetry group. Again, in order for
these eH'ects to be negligible, it is sufBcient for the eEec-
tive four-dimensional 6eld theory coupling to be small. If
this is possible when the string is strongly coupled we will

retain these perturbative predictions. The predictions for
Y»hawa couplings and masses are not so robust. These
depend on the Kahler potential of the chiral superfields,
which we will argue below may receive large corrections.
Certain ratios of Y»hawa couplings may be independent
of the Kahler potential, and will therefore be calculable in
our framework. Note that the sa~e sort of ambiguity in-
fects the perturbative predictions for Y~~~vra couplings.
Even in a wea@y coupled theory where it is calc~~&able,

the Kahler potential depends on the moduli. Thus, there
are no ground state independent predictions of couplings
in perturbative string theory, except for those combina-
tions of parameters which are independent of the Kahler
potential. These are precisely the combinations that are
calculable in our framework.

Another set of perturbative predictions which ca»»ot
be reproduced in our framework are results (such as they
are) about the structure of soft SUSY-brea»»g terms in
the visible sector. These depend on the structure of the
Kahler potential in an essential way. Furthermore, BUSY
breaking can also mitigate the results of the previous
paragraph about the structure of the superpotential. It
is by now well known that SUSY bre»ing can generate
quadratic terms of order ms~s and cubic terms of order

msg2/M, in the efi'ective superpotential at the gravitino
mass scale. These can come from Kahler potential ter~s
in the short distance effective Lagrangian, and are thus
incalculable in strongly coupled string theory. Although
the efFects on renormai~aable couplings are quite small,
they may well be larger than the estimates we made of
nonperturbative corrections in the previous paragraph.

FinaBy we note that discrete symmetries may natu-
rally protect the model-independent axion of string the-
ory from acquiring a large mass. This might make it
a candidate for solving the strong CP problem, though
such a resolution of the problem will certainly be fraught
with cosmological difhculties. We will discuss the axion
below, when we take up the problem of stabiTization of
the dilaton in strongly coupled string theory.

III. STASILXKATXQN QF THE DILATQN
AND SUPERSVMMETRV BREA,KING

We now come to the topic which forced us to consider
strong coupling string theory in the first place, stabiliza-
tion of the dilaton and supersyT»metry breaking. i There
are several questions to be answered here: What are
the mechanisms that stabilize the dilaton and break su-

persy~metryT Why is supersymmetry bre~k&~g small if
string theory is strongly coupled. ? Hoer is supersymmetry

It is not at all clear that these two issues are as closely
related in reality as they are in the literature. Both require
violation of perturbative nonrenorxnahsation theorems, but
that is the only concrete connection between thexa. Indeed,
there are cosmological arguments [18,9] which indicate that
the BUSY breaking scale might be quite diferent &om that
at vrhich the dilaton is stabilized.
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bre~'king tr~»smitted to the low energy world? Why is
the»»i6cation scale coupling of the effective field theory
of the massless modes small when the underlying string
degrees of freedom are strongly coupled?

We begin with the last of these questions. We have
found two alternative a»swers to it. The first, which, as
we will see, appears the most plausible, is based on the
observation that stringy nonperturbative efFects of or-
der g "e s» [4] may contribute to the Kahler potential
of the moduli fields (we have argued above and in Ref.
[13] that they cs»»ot contribute to the superpotential or
gauge kinetic ter~s). If gs/4z ~ z~z then g ~ 0.7. If
p = 0, then the above nonperturbative contribution will

be as large as a one loop field-theoretic contribution if
5 0.71n78 = 3.5. Thus, it is not implausible that these
efFects are sig»i&cant even when field theory is weakly
coupled.

The problem with this ar~~~ent is that we have very
little intuition about the natural value for the constants b

and p. There are two sources of infornnLtion about them:
exactly soluble, low dimensional string theories, and Wa
dia's model of a strinigr nonperturbative efFect as an in-
stanton in an SU(2) subgroup of a large N gauge theory.
For example, in one-matrix models the 5 coefficients are
all of the form (2l + l)/2l t ~, where 1 is a positive integer
and r~ is a (generally complex) n»~her of modulus less
than 1 [19].

Wadia's instanton gives us a feeling for why 5 need not
be a large nn~ber like 8zs. The action of an SU(2) in-
stanton in a large N gauge theory is (8zs/As)N, where

A is the rescaled coupling. The N(= /1/¹) in t&is for-
mula plays the role of the string coupling g. The expan-
sion parameter for the s»m of planar diagrams is As/4zs
If it is possible to obtai~ a critical string theory from
large N Yang-Mills theory, tLis must be done by t»»ing
the coupling A not to its weak coupling, asymptotically
free fixed point, but rather to a +mte value where a large
N phase tr~»dition takes place. We would expect this to
happen when the exp'»sion parameter is of order one.
T»s ar~~~ent is clearly a general one and applies to any
string theory which is obtained as the limit of a large N
matrix modeL

Thus, we might expect that the exponents 5 in stringy
nonperturbative corrections to the KaL&er potential do
not contain the ubiquitous geometrical powers of z that
appear in all field-theoretic instanton calculations. Per-
haps an investigation of the high orders of critical string
perturbation theory can shed further light on this con-
jecture. If it is correct, values of 5 of order one would be
plausible, and nonperturbative string corrections could
indeed be substantial for a four-dimensional coupling
g'/4z - —,', .

If one ass»~es that the string coupling is strong, there
is a second natural way to explain the discrepancy in Beld
theory and string theory coupling strengths. In the early
days of the rene~ssance of string theory in the 1980s, it
was fashionable to use Kaluza-Klein ideas as a bridge
between string theory and ordin~~ Geld theory. Pertur-
bative string theory does not determine the moduli and
it eras thought that perhaps they might be deterxnined in
such a way that the internal ma»ifold was larger than the

2 Dg2

VD 4
(3.1)

where V~ 4 is the vol»me of the internal m~»fold mea-

sured in string units. When the coupling of the D
dimensional theory is large this relation is corrected by
qu;Lnt»~ physics. Unitarity will ensure that 8-matrix el-

ements in the D-dimensional theory are bounded, so it is

surely incorrect to imagine that we can make the voln~e
arbitrarily large for fixed g4 simply by letting g~ go to
oo. A more reasonable estimate of the maxim»~ g4 for a
given voln~e is to use the tree-level formula for values of
g~ such that one loop corrections in the D-dimensional
theory are of order one. This means g&s ~ (4z')

One of the attractions of this explanation of the
weakness of the coupling is that we might be able to
Bnk it to the "observed" n»i&cation of couplings at
10~s GeV. In this case we want an internal manifold with
scale~s R ~ 2z/10~s GeV . It is implausible that the
fuQ six-dimensional internal manifold of superstring the-

ory should be this large. However, we might consider
a manifold where only p dir»ensions are larger than the
string scale. If the Wilson lines which break Es x Es down
to the observed four-dimensional sy~~etry are wrapped
around the large dimensions, then the gauge coupling
»»i~cation will take place at the scale 2z/R. A little
arit&~etic shows that the only plausible choice is p = 1,
corresponding to a six-dimension~& "needle" with length
a few hundred to a few thousand times bigger than its
width in the other five compactified rhmensions. This
gives a»»ivie four-dimensional coupling of order 0.18,
for the circle, which should be compared to the "ob-
served" value 0.707. The predicted coupling is perhaps
a bit small, but our calculations are too crude to justify
rejecting this idea.

Polchinski has suggested an orbifold model which re-
alizes this idea, but also illustrates its limitations in the
strong coupling context we are considering here. One

We wiQ include geometrical factors relevant for a toroidal
manifold. For more general manifolds our estimates will
change by factors of order 1.

string scale. It was soon shown by Kaplunovsky [6] and
Dine and Seiberg [7] that this idea is inconsistent with
perturbative string theory. In superstring theory with
large internal manifold, the sqn~~ed effective coupling of
the four-dimensions& degrees of keedom is smaller than
the squared string coupling by a factor of the inverse vol-

»te of the internal manifold in string»~its. If the string
coupling is itself required to be small, then»~&ess this
vol»~e is quite close to one, the predicted»»defied gauge
coupling wB1 be much too small to be compatible with
experiment.

Allowing the string coupling to be large weakens this
argn~ent, though only to a limited extent. In tree-level
Kaluza-Klein string theory, the D- and four-dimensional
couplings are related by
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compacti6es the heterotic string on the product of three
two-A~ensional tori, with complex coordinates Sq,g,3
and then mods out by the symmetry

Sgp Z23 M XS23. (3.2)

The transformation has SU(3) holonomy and will give
rise to a model with N = 1 SUSY in four dimensions.
It will also have chiral fermions. Note however that we
can take the Zq direction to be a rectangle, and that we
can take one side of this rectangle arbitrarily large while
taking the other of order the string scale. Thus, if the
radius is stabilized at the correct value, this is a model
which might explain the "data."

Unfortunately, Polchinski notes, the Kaluza-Klein idea
may not be compatible with our other aim, which is to
stabilize the dilaton. Above the scale set by Zq, the the-
ory has five-dimensional N = 1 SUSY and the dilaton is
in a multiplet with a gauge boson. This determines its
Kahler potential in terms of the analytic gauge kinetic
function. Discrete R symmetries then restrict the form
of its nonperturbative corrections. It seems that an inter-
mediate Kaluza Klein scale is not compatible with stabi-
lizing the dilaton, even at strong coupling. The possible
loophole in this argument is provided by twisted states.
These violate N = 2 SUSY, and in the present context
they are strongly coupled. It is conceivable that non-
perturbative corrections due to twisted states might res-
cue this mechauism for explaining the weakness of four-
dimensional couplings.

Before ending this subsection let us note that there
are many indications that a string theoretic picture of
the world will require more light particles with standard
model quantum numbers than exist in the supersymmet-
ric standard model. These are required, for example,
in the models of [20], which attempt to explain the pa-
rameters in the fermion mass matrix, and in many of
the known natural explanations of the absence of fiavor-
changing neutral currents due to squark exchange. ~ If
such fields exist, they will a&most certainly change the
current picture of coupling constant uui6cation. As a
consequence, forced to choose between the Kaluza-Klein
scenario, which can explain the "observed" coupling uni-
fication but perhaps not the stabilization of the dilaton,
and a purely stringy scenario for strong couphng, whose
virtues are exactly opposite, we opt for the string. In the
next section we argue that such a scenario indeed has the
virtues that we have advertised for it. d 8SR' +H.c. (3.3)

compacti6cation scale. The arg»~ents of Sec. II indicate
that nonperturbative contributions to the superpotential
of this Lagrangian are at most of order e ~ for some pos-
itive integer k. As a consequence, stringy noeperturbehee
effects cannot be relevant to the problem of supersymme
try breaking in the real moRd, if we assume 8 ~ 200. Note
that this argument relies heavily on our assumption of 2z
periodicity for the axion; if this is not truly a gauged dis-
crete symmetry of the theory, the other symmetries we
consider here would allow stronger stringy effects.

By contrast, gaugino condensation in some factor of
the low energy gauge group can give rise to larger terms,
of the form e s~N for a positive integer N. We can
however expect large nonperturbative corrections to the
Kahler potential. Indeed, in strongly coupled string the-
ory we really do not know how to calculate this func-
tion in the regime of interest. The fiip side of this is
that we can make the Kahler potential responsible for a
multitude of sins. Retribution will only catch up with
us when physicists learn how to calculate reliably in the
strong coupling region.

In particular, it is easy to see that the Kahler potential
can, with the aid of a single gaugino condensate, stabilize
the dilaton at a SUSY brea4ng minimum with zero cos-
mological constant. To all orders in string perturbation
theory the Kahler potential is a function of S+ 8'. This
is a consequence of the perturbative Peccei-Quinn shift
sy~~etry of the model-independent axion field. Non-
perturbative efFects coming from integrating out heavy
string modes will contribute terms of the form e "s to
the Kah&er potential, where k is a multiple of the discrete
symmetry index p. Even if p = 1 this will be smaller than
the efFects coming fiom gaugino condensation which we
will discuss below. It is also much smaller than stringy
nonperturbative effects of the form e s&z+s'. Thus we
will discard such terms here, and take the Kahler poten-
tial above the gaugino condensation scale to be a function
only of S+ 8'.

I et us now consider the conventional hidden sector sce-
nario for SUSY brea&ing in string theory. This is based
on a gauge group ("R color" ) which commutes with the
standard model group and becomes strong at a scale
M~ 10 GeV. Il. color is taken to be a pure super-
symxnetric gauge theory, with simple gauge group. To
ail orders in the string loop expansion the gauge kinetic
term is given by

A. In which supersymmetry breaking
is traced to its source

Consider the effective four-dimensional Lagrangian for
the light Selds of string theory at a scale just below the

There may be short-distance, nonperturbative correc-
tions to this, but they are constrained by symmetries
to be very smaO. The strongly coupled gauge theory
itself makes a nonperturbative contribution to the super-
potential of the dilaton below the scale M~. With our
conventions it is exactly

O' =M eD,P = (3.4)
One particularly interesting idea to obtain natural Savor

conservation is that of Ibanez and Lust [21]. However, this
scenario is only viable if the string coupling is genuinely vreak.
Vfe will comment on this below.

where C~, the quadratic Casimir of the adjoint represen-
tation, is the coefficient in the anomaly equation for the
gaugino current. The eHective potential of the dilaton
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superfield is then

x(s) f [—2~/N+ 4K'(y)]
4z K"(y)

(3.5)

B.The string axion as the axion of @CD

The final feature of this potential that we want to
point out is its independence of the axion field. The
renormalizable ter~a in the Lagrangian have an acciden-
tal anomalous U(1) R symmetry. When combined with
the shift sy~~etry of the axion, we obtw'~ an anomaly-
&ee continuous R symmetry. This symmetry is broken
already in perturbation theory be higher-dimension op-
erators. However, in the presence of discrete symme-
tries, the leading operators that violate the symmetry
may be of quite high ¹~mension. To understand the size
of PQ symzzzetry-violating efFects, consider first opera-
tors involving only hidden sector gauginos. In the ease

where K(y) [y—:2(S + S') = 4z/g2] is the Kahler po-
tential. In this equation we have assumed that M~ ——

+2Mg.
Equation (3.5) has a n»mber of interesting features.

First of all, if the physical point y ~ 25 is in a region
where stringy nonperturbative effects are of order one,
then we have no particular problem in imagining that
the potential has a stable zninim»m with zero cosmolog-
ical constant. This should be contrasted with racetrack
models where one needs at least three independent gaug-
ino condensates and large n»merical coefficients in order
to achieve the same results. Bmthermore, in the present
case a zero cosmological constant minim»m must break
SUSY, since R symmetry is definitely broken. Again,
in models with complicated superpotentials, this is not
necessarily the case.

The system may have supersymmetric vacua with. neg-
ative cosmological constant. These are not a major
worry. Simple scaling ar@~ments show that the t»»»cl-
ing amplitude from the zero energy minim»m to one of
these states is of order exp( —es "/ }per»»it spacetime
vob~~e measured in string»~its. One can further argue
[9] that the universe will not get trapped in one of these
states at early times. We want to emphasize that there is
nothi»g in the formula (3.5) that requires the existence
of negative energy supersymmetric vacua. Indeed, for a
positive potential one can show that the differential equa-
tion which determi»es K in terms of the potential always
has a solution for finite y.

The scale of SUSY breaking implied by the above
potential is F (M&s/Mz }e4""/+". Using the "ob-
served" value y = 25, M~ = +2Ms, this gives F
2

—s/ze —zoo~/~Ms If SUSY breaking is communicated
to the observable sector by gravity, the masses of super-
partners of the ordinary particles will be of order E/MJ .
If N = 9, these masses come out around 2 TeV. Thus,
the mechanism described above can be a plausible de-
scription of SUSY bre~k~ng in the real world.

of a Z5 R symmetry, for ample, the leading sym~etry-
brea4ng operator is (AA)s which has dimension 15. We
might then expect the hidden-sector contribution to the
axion mass to be of order Az /M, which is smaller than
10 s f. m for A ( 10zs GeV. Other contributions which
might arise due to symmetry-violating couplings, e.g., to
light fields, can be shown to be even further suppressed.

rv. sUMMXRV Xxo Cevoz, USXovs

String theory, if it describes nature, is almost certainly
strongly coupled. There is little hope for understanding
strongly coupled string theory in the near future, so it
would seem that there is no chance of establishing the
truth (or falsehood) of string theory by making predic-
tions for low energy theory. We have seen here, though,
that this is not the case. By making certain ass»mp-
tions one can make a hmited but quite well-defined set
of predictions. The ass»mptions that the cosmological
constant va»ashes at the minim»m, that at the mi»imn~
the dilaton VEV is large, and that the true minim»m is
connected to a perturbative ground state by varying the
dilaton are ail very strong, but they are also likely to be
true if string theory describes nature. Moreover, this is
probably the best one can do.

It is useful at this stage to s»mmarize the phenomenol-
ogy of the strong coupling theory, and compare it with
discussions of weak coupling string theory. There are
several which are generic, some of which we have already
mentioned.

(1) The existence of a hierarchy between the
supersymmetry-bre&~ng scale and the string scale A
priori, we might have imagined that if string theory is
strongly coupled, supersymmetry breaking should occur
at the string scale. However, we have seen that the as-
s»option of small gauge couplings, as observed in na-
ture, implies that the superpotential is very small. Indeed
we have argued that stringy nonperturbative efFects can-
not give phenomenologicaiiy interesting supersymmetry
breaking; this must arise &om effects visible in the low
energy theory. These statements relied on our arg»ment
that the 2z periodicity of the axion is exact; if this is not
the case, it is possible for stringy nonperturbative efFects
to play a role comparable to gluino condensation.

(2) The light spectr»~: As we have already noted, in
this framework, it follows that the low energy spectr»m
is the same as that at weak coupling.

(3) Gauge couphng»»i&cation: The gauge couplings
are»~ified. We have already discussed how the function
f, in a suitable scheme, is not renormabzed beyond one
loop. However, this does not mean that we can compute
exactly the coupling»ni6cation in strong coupling. As
discussed in Ref. [22], even in the Wilsonian efFective ac-
tion, it is necessary to careMly choose the cutofFs if one
is to maintain holomorphy of f. The appropriate cut-
ofFs must be determ~~ed order by order in perturbation
theory. In strong coupling, one might expect these cut-
offs to shift by amounts of order one (this is simi&ar to
the expected shifts of thresholds). Thus the prediction
of coupling constant »~i&cation is valid only to order one
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shifts of the»»lfication scale. Of course, one might hope
for shifts of factors of 100 or so, but this does not seem
terribly likely.

(4) Grand»»iSed prediction for gaugino masses: There
is at least one generic prediction for the structure of soft
breaking terms. This again arises from the symmetry
constraints on the function f which describes Che gauge
couplings. The leading term in this coupling is the tree-
level dilaton term; at one loop, moduli couplings may
appear. At the»»i@cation scale, provided the dilaton F
term is comparable to or larger than the moduli F terms,
the domin mt contribution will be from the»»lversal dila-
ton term, so that gaugino masses will be equal at this
scale; at lower scales, as is well known, they then go as
ratios of the appropriate gauge couplings.

(5) Nonrenormalisation of the matter superpotential:
The superpotential of the matter fields is only corrected
by exponentially small efFects f'rom its tree-level value in
this picture. In any given compactiflcation, this means
that there are some n»aber of predictions, for example,
of Y»kawa couplings. As we have stressed, this is sinai&ar

to the situation in perturbative string theory, if one does
not know the expectation values of the moduli.

It is perhaps useful to meation a few type of predic-
tions that have been discussed in the literature that are
aot expected to hold, in any generic sense, in this strong
coupling picture. These are statements requiring the cor-
rections to the Kahler potential be small, which, by as-
sumption, is not the case here. Perhaps the most in-
teresting discussion of soft breaking ia string theory is
that due to Ibanes and Lust [21], who have pointed out
that there is a circ»mstance in string theory in which one
might expect squark degeneracy at the high scale, and
corresponding suppression of Savor-changing processes.
If the dilaton auxiliary field is the principle source of su-

persymmetry brea&ing, they note Chat, because of the
universal character of tree-level dilaton couplings, the
leading contributions to squark and sleptoa masses are
identical. This is a quite appealing result; it is the only
rationale that has ever bien offered for»~reversal squark
and slepton masses at the Planck mass. It is also inter-
esting in that one-loop efFects probably give corrections
at best just barely consistent with the limits from the
K-K system. This scheme, however, will not operate in
any generic fashion in strongly coupled strings. While it
is possible in this scheme to obtain "dilaton domination"
in strongly coupled string theory (e.g. , as a consequence
of the action of symmetries on the moduli fields), there is
no reason to expect that the full Ka&&er potential main-
tains the universality of the tree-level result. Already
in perturbation theory, there are corrections which do
not respect this»»~versality. Thus the problem of Savor
changing neutral currents will have to be solved in some
other way, perhaps using a Savor symmetry along the
lines of Refs. [28] and [20], or through renorm~&l~wtion

group effects as in Ref. [24].
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APPENDIX A: DISCRETE SVMMETMES AND
THEIR BREA.KINC IN SUPERSY'MMETRIC

@CD

(A2)

(.N —Ny
Q m exp

~

t o
~
Q.

These symmetries determine the form of the superpoten-
tial uniquely; it can be written in terms of a chiral field,
4 = det(QyQy, ):

AA(3N N~)y(N N~)

@1/(N—N y )
(A3)

where A is the sca1e par~~eter of the theory. That such
a superpotential is, in fact, produced has long since been
verifled.

In this paper we have used spontaneously broken dis-
crete symmetries to tightly constrain the form of the low

energy efFective action. We have argued that this is per-
missible because the symmetry breaking is due to a light
field, the axion. There are, in fact, a set of well-studied
field theories which exhibit this sort of behavior: super-
symmetric /CD with gauge group SU(N) and Ny Savors,
where Ny ( N. By N Savors, here, one means a set of

2' fields, Qy and y, transforming in the N and N
representations, respectively. i4

Consider, first, the case where the "quarks" are mass-
less. These theories have, at the classical level, a contin-
uum of ground states, quite analogous to those of string
theory. In these, up to gauge and Savor transformations,
the general Sat direction has the form

(vi 0

Q=Q= (Al)

N, )
In these directions, the gauge symmetry is broken to
SU(N Nf ) . The correspoading gauge fields gain mass
of order gv. To understand the vacuum structure of the
theory, one needs to construct an efFective action describ-
ing the low energy theory in these Sat directions. This
action is highly constrained by the symmetries. These in-
clude an SU(Ny)1, x SU(Ny)~ symmetry, a vector U(l),
and a nonanomalous g symmetry under which

f.N —NyA~e' A, Q~exp~i a ~Q,
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Now suppose we add a small mass term to this theory
[for convenience taken to be SU(Ny) symmetric]:

Wp ——mqq. (A4)

In this case, the continuous R symmetry described above
is explicitly broken, but there is still a nonanomalous
discrete ay~retry (i.e., a symmetry unbroken by instan-
tons) under which

P ~ ezmi/NP q ~ e2mi/Nq q ~ e2mi/Nq (A5)

4= pe', (A6)

where p ia a massless field with (p) = vzN . Under the
continuous U(1)~, c -+ r +a(N N/). In the t—heory be-
low the scale v, it is easy to check that triangle diagrams
generate a coupling

However, »~b&e for the case of the continuous symmetry,
this discrete symmetry is not respected by the nonper-
turbative superpotential W ~, except when Ny = N —l.
It is also interesting to note that, except, again for this
special member of Savors, W» has branch cuts.

To understand these phenomena, let us return to the
massless theory and look more closely at the dynamics in
the Sat directions. When Ng (N 1, ther—e is an unbro-
ken gauge symmetry in the Sat directions SU(N —Ny).
The light particle content consists of the gauge bosons
and gauginos of this gauge group, as well as the Gold-
stone particles associated with broken global symmetries
and their superpartners. The SU(N —Ny) gauge theory
becomes strong at some scale AN N~, and is believed
to produce a (supersymmetric) set of bound states with
masses of order AN N~. In addition, it is believed that
gluino condensation occurs.

Below the scale AN N~, one has only the Goldstone su-
permultiplets; W ~ represents a superpotential appropri-
ate to their interactions. To understand how this arises,
it is convenient to look at an SU(Ny)-symmetric Sat di-
rection, vi ——~ ~ ~ ——vN~, and parameterize the fields in
this direction such that

The first term represents the fact that the pure SU(N
Ny) gauge theory has a ZN N~ symmetry, broken by
the condensate; n is an integer that rn~s from 1 to N-
Ny. The second term describes the dependence of the
condensate on the axion (which can be obtained from
standard anomaly ar@~ments, as in /CD), and the last
term follows &om dimensional analysis. Finally,

A3 1/(N —Ny)
N —Nf (A1O)

+ A3 cia/(N& N) e2min/(N —NP ) (AP) . —
(A11)

This gives precisely the dependence on e and a expected
&om R' p.

We are now in a position to answer the various ques-
tions we raised earlier. First, we can understand the
appearance of branches of the superpotential; these are
associated with the &inherent choices of the phase of the
condensate labeled by the integer n Th. e condensate
breaks the approximate ZN N~ symmetry of the inter-
mediate energy theory. We can also a~~wer what hap-
pens in the presence of quark mass terms to the discrete
ZN ay~retry of the full theory. a transforms nonlinearly
under this symmetry, but it is also broken by the conden-
sate. Indeed, under this symmetry, (AA) is not invariant;
it transforms as ez '/N. At scales below AN N~, the A' s
are to be thought of as massive fields. Integrating them
out, we obtain the nonperturbative auperpotential of the
low energy theory, W ~, which no longer need respect the
symmetry. Indeed, from a 4microscopic perspective, " the
coefficient A in W» transforms like (AA), and the full su-

perpotential try~forms, as it should, by e4"'/N. This is
as we would expect: in the low energy theory, phases ap-
pear corresponding to the discrete choices of phases in
massive fields; these phases can be compensated by per-
forming the discrete transformation on the light fields.
Note that, in the theory with zero quark mass, there is
no such effect; the dependence of the condensate on the
Goldstone boson is fixed by the symmetry, and the sym-
metry is realized in the Lagrangian at the low scale. It is
interesting to understand the connection of the ZN N~
symmetry and the Z~ symmetry. Under this symmetry,

where the gauge fields are those of the SU(N N/). This—
coupling ensures that the theory at scales larger than
AN Nz respects the (nonlinearly realized) R symmetry.
Its supersymmetric expression is

d Oln@W. (AS)

P P) 2mira/(N Ng) ia/(N Ny )A3- —
N —Ng' (AQ)

It is perhaps worth noting that this coupling, which is
obt»~ed by integrating out massive particles, is holo-
morphic. The glu~~o condensate then gives rise to an
Eterm for 4. This is the origin of the nonperturbative
superpotential. In order to understand how t&is E terms
depends on the Selds, note that

In other words, written in terms of the transformed axion
field, this is a Z~ ~~ transformation.

So we see that it is the gluino condensation in the
intermediate scale theory which accounts for the lack of
invariance of the low energy theory under the discrete
symmetry. In other words, in the theory below the scale
e, not just a but also A transforms under the symmetry.
This symmetry is still present in the theory at scales
above A~ ~~. Below this scale, the dynamics of A further
breaks the symmetry, and the theory at lower energies
shows no relic of the symmetry (except for the existence
of the branches).

To further verify this picture, consider finally the case
that Ny ——N —1. In this instance, in the Bat direc-
tions there is no unbroken gauge group; only a, among
the light fields, try~forms under the discrete symmetry.
So the low energy efFective action must respect the sym-
metry. Indeed, the nonperturbative superpotential W ~
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does respect it.
These models appear quite analogous to string theory.

At energies belovr the string scale, one has a discrete sym-

metry; at least perturbatively, one of the very massive

6elds break it. Any breaking should be due to the light
6elds a and perhaps gluinos or other 6elds. This break-
ing should be understandable in the low energy (below
the string scale) theory.
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