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Chirality transitions in gravitational 6elds
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The chirality transitions induced by gravitational Selds on Dirac particles are studied within the
framework of Seld theory in curved spaces. To have these transitions both a non-null mass for the
particle and an angular momentum for the source of the gravitational Beld are necessary. The results
of this analysis are applied to some simple examples, and an upper bound for the corresponding
amplitude is estimated.

PACS number(s): 04.62.+v, 11.30.Rd, 14.60.Lm

I. INTRODUCTION

A well-known phenomenon is the precession of gyro-
scopes in the vicinity of a gravitational field source. It
suggests the possibility of an analogous efFect for spinors
in such regions, and in particular of left-right neutrino
transitions. This paper studies the efFect of gravitational
6elds on the propagation of Dirac particles within the
field theory in a curved space-time framework, and fo-
cuses on the induced chirality transitions. This a,pproach
can be considered a semiclassical approximation to quan-
tum gravity, a more fundamental theory not yet devel-
oped in a consistent way. Nevertheless, for our problem
the efFect in most cases is very small, and the quant»m
gravity corrections are completely negligible. Some pa-
pers have investigated these transitions, but have forgot-
ten significant contributions and thus given misleading
and contradictory results [1].

Our starting point is the Dirac equation in a curved
space [2, 3]:

[ip"(z)(8„+I'„) —m] 4 = 0,

where p are the Dirac matrices in the Minkowski space,
I'„= se"e„—s,„[p,ps] is the spin connection, and e" are
the tetrads. The metric tensor g„v and the tetrads are
related by

gglV ~glV + I g4V

and accordingly the tetrads mill be

e
dd

= 8 dd+ la) dd&

where h (( 1 and ~„&(l. In the following we will adopt
~;0 ——0, by using the &eedom given by local Lorentz
transformations.

II. THE HAMILTONIAN

The Hamiltonian is

i8p —H = p e [m —ip ef, (8; yI';)] —il'p, (6)

which is Hermitian under the positive definite scalar
product for the solutions of the Dirac equation in curved
space-time:

(0'1, 82) = i J dE„C'1'Y 0'2V' —g,

where Z is a spacelike hypersurface. To recover the most
usual expression for the scalar product we can perform
a transformation to absorb the extra factor g—g of the
measure in the wave function. In the linear approxima-
tion it reads

a b
gggV gQCP CV ) (2)

~ ~

4) (s)

with g p the Minkowski metric. These equations do not
have a»nique solution, but as the diHerent solutions are
simply related by local Lorentz transformations, they are
physically equivalent. The matrices p" = p e" and the
covariant derivatives D„=8„+I'„satisfy

and thus the Hamiltonian becomes

H =p m(1 —z~h ) + a.p —~(h, a p)
—4(h'~, Hp') + s(h, p)+ —V x h s,

(p",p") = 2g"", [D„,D„]= —p, p~ R p„„,

where R p„„ is the Riemann tensor. With these defini-
tions we have D„p" = 0.

For most astrophysical systems the gravitational 6eld
is weak. Therefore, me will restrict our analysis to linear
perturbations of the fiat space-time metric:

where s' = se""[p',p"]
Before undertaking our discussion of the chirality tran-

sitions by the gravitational 6eld, we 6rst review the phys-
ical meaning of this Ha~i&tonian. The 6rst three terms
have a straightforward significance. If we consider that
h is a slowly varying function, they can be written as

gOO
(1 —"2 )[7 m+ a;p;]. This is the Sat space-time Dirac
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Hamiltonian affected by the factor (1 —"2 ). In general
h is positive definite and leads to a red shift of the
energy levels. This effect has a geometrical origin inde-
pendent of the spin of the particles, and has been verified
for photons from white dwarfs [4].

To facilitate the interpretation of the remaining terms
we will perform a further but not very restrictive simpli-
fication, namely, the post-Newtonian approximation [3],
where

h = —2P,
h*~ = —2b'~P,
hio gi

(10)

H = (1+/)(porn+a'p')+ -{h',p')+ e;,„V'h~-s".

From this the velocity operator is easily obtained:

with

y —-'G d ' "("'), h* — a
I

*-w I

'
I
*-u I

(11)

T"" is the energy-momentum tensor, and G is the grav-
itational constant. The source of the potential P is the
mass distribution, and the vector potential h is origi-
nated by the angular momentum of this mass distribu-
tion. As illustrative examples the value of P is 2 x 10
on the surface of the Sun, 6 x 10 on earth, and 6 x 10
is the contribution due to the galactic center on the so-
lar system. With respect to h', on the surface of the
Earth it is of the order of 10, and on a neutron star
of 10 . Using the post-Newtonian approximation, the
Hamiltonian becomes

r*'= [r*,H] = (1+2$)n'+ h*.

It has two contributions from the gravitational field. The
one due to P mainly alters the module of the velocity, but
the other implies a velocity drift, the same for particles
and antiparticles, due to the angular momentum of the
gravitational 6eld source.

To obtain a further insight into the physical meaning
of this Hamiltonian we can perform a Foldy-Wouthuysen
transformation [5], to make the low velocity limit explicit.
This transformation leads to

1+3$
HFw = (p + mh) 2 + mP

2m
1 3+—V x h. s — (s x VP+iVQ) p.
2 2m

The 6rst two terms contain the red shift of the kinetic
energy and of the mass, where the latter is interpreted as
the gravitational potential energy. This has been verified
by neutron interference in the gravitational 6eld of the
earth [6]. The remaining terms are analogous to the cor-
responding ones for a Dirac particle in an electromagnetic
6eld, provided the identi6cation

mh = —eA, mP = ep.

In this way we can recognize a Bohm-Aharanov gravita-
tional effect and a coupling of h to the orbital angular
momentum of the particle. The latter reduces to the
Sagnac effect [7] when we consider a rotating reference
kame. The third term is a coupling of h to the spin of
the particle, but with a gyrogravitational factor equal to
1. Finally, the fourth term corresponds to a spin-orbit
coupling.

On the other hand we can also consider the ultrarel-
ativistic limit, appropriate to describe neutrinos, gener-
ated by a Cini-Toushek transformation [8]:

1 1
HCT =a p+ (P, a p)+ —(h, p)+ —V x h s

2
'

2

p & ~P PP p i cx'p
+my -[h, , +h, ;] —2 ap +Vgxs —+-P

4 &~2 2)~ p2 p4 p2 2 p2
(16)

In this Hamiltonian it is clear that the chirality violation
is due to the term that contains the mass m and the de-
viations of the metric &om g"", and does not commute
with p5. So if m is null or the space-time is Bat this equa-
tion factorizes in two independent equations by means of
the projection operators 2(l 6 p5).

III. CHIR%LITT TRANSITIONS

~, h') = i([»&']) = »mh'~')

and so even in the case of m g 0 there are no chirality
transitions. The situation changes when there is a grav-
itational Geld. In such a case we can write the Hamilto-
nian as H = Hq + H2, with

Hg ——p m(1+ P) + a . p+ (P, a.pj

According to the discussion in the last section, in a
flat space [H, gpss] = 0, and therefore for two states with
energies E~ and E2 we have

(E.+E.)(E. I
~'~' IE.) = 0 (»)

But the equation of motion of p5 is

1
H2 ———(h, p)+ —V x h s,

2
' 2

such that

(H„~', ~') = o, [H. , ~'~'] = o,
and hence the equation of motion for (p5) becomes:

(20)
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—(p') = 2im(pPp'(1+ P)) . (21)

To explicitly see the effect of h on the evolution of (ps),
provided that the state considered has an energy E, we
can rewrite Eq. (21) as

—,(&') ™(Ã&'&'(1+ &)))dt E

(23)

The expression between square brackets is just the
chirality-violating term that appears in the Cini- Toushek
Hamiltonian. To compute the change of the chirality
amplitude we can decompose the state in components of
definite chirality:

.m= i—(gpss(2H2 —io,;P;)) .
C = a%+ + bC a'+ b' = 1.

(22)
From here

(24)

The right member depends on H2. Iterating this pro-
cedure once more we can highlight the role of h in the
evolution of (ps):

d 5 da db da—(p ) = 2a——2b =—4a—,
dt dt dt dt '

and using Eq. (23) we have

(25)
zeal

—a~('I~ p p (h;~ + hz)a P+,—r''~P~p' '0

) . (26)

The chirality transition depends both on the symmetric
part of h; z and on the gradient of P. The first contri-
bution comes from the angular momentum of the gravi-
tational field source, and the second one &om its mass.
In particular for an ultrarelativistic particle ~p~ E, and
thus in this case the amplitude is proportional to E. This
result is consistent with the one obtained considering the
interaction between fermionic and scalar fields in quan-
tum gravity at the tree level [9].

In general we can have a chirality transition even when
the angular momentum is null, except when additional
considerations imply that the gradient dependent terxn
contribution is negligible, as in the cases we discuss in
the following sections.

IV. PARTICLES IN A ROTATINC PRAME

The metric is a Bat space one, seen from a rotating
kame with velocity cu:

[u r —au —r) ] h=rxru.
2

(27)

The corresponding Hamiltonian is

8 = mp + p - p —v - L —cu ~ s + [mp 4 + (P, a ~ p)],
(28)

where the last term, which depends on the scalar po-
tential, is of second order in u. For this metric A,, z is
antisymmetric, and thus the transition amplitude is due
only to gk At first order in ~ this potential is null and so
is the transition amplitude. This result can be expressed
in an alternative and more intuitive way by considering
that at this order the coupling terms cu ~ s and w - L gen-
erate the same rotation on s and y, and so the helicity
remains invariant.

V. THE ULTRARELATIVISTIC PARTICLES

a= — dt(@+
~

p'p [V(n. h). p4E2
+(n. V)h p] ~e ) . (29)

In this section we will analyze ultrarelativistic parti-
cles, which can be the case of neutrinos supposing their
xnass is non-null. They are very important &om the as-
trophysical point of view; for example, their change of
chirality could give way to sterile particles, which could
be significant in processes such as the cooling of a super-
nova or the baryogenesis in the early Universe.

For neutrinos we know with a very high precision that
they are left-handed particles with E (( 1 and thus a &(
1. The amplitude we are considering is a mean value
between states of definite helicity, and the interaction
with the gravitational field changes the initial momentum
and spin of the neutrino. If we take into account that
we are considering a weak field approximation, we can
use a semiclassical argy~ment to state an upper bound
for the term that contains VP in the chirality transition
amplitude, as we discuss in the follow'ing.

To be more specific we will refer to spherically sym-
xnetric mass distributions, with total mass M and radius
rp In these c. ases the scalar potential outside the distri-
bution is P = ——„and VP has the direction of r. Our
expressions arise from a weak field approximation for the
gravitational interaction and thus, to be consistent with
it, we must restrict their application to the range r && M.
Hence we will consider only particles with a large impact
parameter p (p » I). To estimate an upper bound for
the gradient-dependent term it is suHicient to consider
the change of p. In this case we have a small scattering
angle 8 (P) —« ( @), and the transversal variation
of p is at most of the same order. But this implies that
(+V/. (p x s)

~

—) ( &), which is not significant com-
pared with the contribution depending on h. Therefore
Eq. (26) reduces to
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In such a way the consistency with the weak field approx-
imation constrains us to a region where the dependence
of the amplitude of transition on P is negligible. Thus,
the necessary conditions to have a chirality transition at
this order for large impact parameter neutrinos reduce to
m g 0 and h; J +hJ,; g 0. The latter implies in particular
that the gravitational field of a nonrotating mass, which

has h = 0, cannot induce a transition between states of
definite chirality for small scattering angles.

A very difFerent situation arises when we consider neu-
trinos propagating in the field of a rotating mass. In this
case we have h = 2J x ~, where 3 is the mass angular
momentum. Now h;~ has a symmetric part and, from
Eq. (29), the non-null chirality violation is given by

r = — t)h P+ [(r. rr)(J x r p)+ (J x r rr)(r. p)] P ).3mG
2 E2 r

(30)

To illustrate this result we can use two difI'erent situa-
tions, both considering a neutrino path tangential to the
mass distribution on an equatorial point. If p ~~

J and
if we integrate on the trajectory &om the radius of the
mass distribution r = ro to r = oo, we have, for the ratio
between negative and positive chirality,

the spin, cu (s+ L).
To visualize why our results give a non-null transition

amplitude we can develop h in the neighborhood of a
point xo.

bh; = h; —h; i„, + —[V x hi„, x (x —xo)];
1

mJ 2MG t'mc l
Er2 5 cs (, E (31) (33)

This effect is odd; the contribution from r = —oo to
r = ro exactly cancels the one f'rom r = ro to r = +oo.
On the other hand, if pJ J we obtain

1

2

but now the efFect is even and both contributions add.

VI. FINAL REMARKS

The results obtained in the preceding section can be
summarized as follows. Starting from the Dirac equation
in a curved space-time, we determined that the chiral-
ity transition depends both on the mass of the particle
and on the structure of the gravitational field, or more
specifically on the symmetric part of h, J. for ultrarela-
tivistic particles if we consider only the region where the
weak field approximation is valid. This efFect is in gen-
eral non-null and characterized by an amplitude of order

E, in contrast with the result given by the geometrical
optics approximation. This last approach considers point
particles moving according to geodesics, with their mo-
menti~m and spin transported in a parallel way and thus
with an invariant scalar product. In other words, in this
kamework we can say that the gravitation induces a local
rotation of the inertial reference frames with respect to
an asymptotic Hat space, so that the action on a particle
produces a simultaneous rotation of the momentum and

Here we can see that the variation of h is given by two
terms. The first one corresponds to a pure rotation
around xo. It does not produce any change of chirality
and is the only one considered in the geometrical optics
approximation. Instead of this our results keep track of
the additional term proportional to (hJ; + h;,J ), respon-
sible for the chirality transitions.

Finally, and only with the purpose of estimating an
upper bound, we can consider as a source of the grav-
itational field a black hole with maxim»m angular mo-

mentum (Kerr-Newman extreme metric) [4], although in
this case the linear approximation is not necessarily ap-
propriate. This system is characterized by ~ ——1, andCJ

1 0

we obtain

(34)

Hence the eKect is actually very small and significant
transition probabilities can be observed only if there are
enhancing mechanisms, as can be nonlinear effects due
to very strong gravitational fields.
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