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Remark on black hole entropy in string theory
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We extend the string-theoretic calculation of black hole entropy, 6rst performed by Susskind and
Uglum, away from the in6nite mass limit. It is shown that the result agrees with that obtained
&om the classical action of string theory, using the Noether charge method developed by Wald. Also
shown in the process is the equivalence of two general techniques for Snding black hole entropies —the
Noether charge method and the method of conical singularities.

PACS number(s): 04.70.Dy, 04.60.Ds, 11.25.Mj

I. BLACK HOLE ENTROPY FROM STRING
THEORY

One of the things we hope to get &om a quantum the-
ory of gravity is a microscopic understanding of black
hole thermodynamics. In particular we would like to see
a microscopic structure associated with the horizon, the
number of whose states is counted by the usual black
hole entropy. Recently, it has been argued by Susskind

[1],and Susskind and Uglum [2], that string theory may
be able to provide this.

In particular, it was observed in [1] that the string
partition function contains contributions which describe
strings stuck onto the horizon at their two end points;
this stringy "hair" then seems like a natural candidate
for microscopic structure. Then in [2], the authors made
this idea more precise by calculating the genus zero con-
tribution to the partition function, in the infinite mass
limit, and reproducing the expected result of 4 per unit
area. Unfortunately these calculations are &aught with
peril, as they require elements of ofF-shell string theory;
we just have to use the best available ansantz and hope.
Perhaps the reasonable nature of the results adds to its
credibility.

In this paper, we extend the computation of [2] away
&om the limit of infinite mass. Since we are computing
the classical (genus zero) part of the partition function,
we expect that the answer should be the same as that ob-
tained from the classical string action, where the latter
can be found using the Noether charge technique devel-

oped by Wald [3].
The ansatz used in [2], which we will also use here, is

that of Tseytlin [4]. He argued that the string partition
function and the string action should be closely related;
indeed, he stated

where Z~ is the renormalized genus zero 0 model parti-
tion function, t is the renormalization parameter, and I

is the classical string action, alternately derivable Rom
conformal invariance, or from scattering amplitudes. (We
use I since S will denote entropy. ) Ztt still contains

the (renormalized) Mobius infinity, and taking 8/Ot is

the prescription Tseytlin found for removing it. Then
the right-hand side of (1.1) should be identified with the

genus zero contribution to the generating functional W

(the quantity usually defined in field theory by W
—lnZ), and we get W = I From. W one gets the

Helmholtz free energy by W = PF
Then I' determines the thermodynamics. In particu-

lar, the entropy is given by the standard formula

p2 (1.2)

2 B 1
S = (2m+ e) — I

Be 2m+ ~
(1.3)

So the computation boils down to computing the first

variation of the Euclidean action under the introduction
of a conical singularity; see [5,2] for more on this idea.
The computation will be carried out in the next section,
where its equivalence to the Noether charge method wiH

be demonstrated.

II. COMPUTING THE ENTROPY

First we review Wald's Noether charge method (for
further details see [3,6,7]). The starting point is a covari-

ant Lagrangian L, written as a d form, where d is the
n~~~ber of dimensions. Then one computes the variation
of L under a diffeomorphism generated by an arbitrary
vector field (. This can always be written schematically

where P is the inverse temperature, proportional to the

periodicity of the regular Euclidean continuation of the
black hole spacetime. The derivatives 8/BP in (1.2) di-

rect us to vary this periodicity, which creates a conical
singularity in the spacetime. We can then rewrite (1.2)
using e, the angular excess, instead of P, getting
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where @;are the fields, bg; are their variations, E' are the
equations of motion, and 8 is some d —1 form depending
on the bvP;. The condition of covariance of L is

the form of (2.1) above. We use the on-shell condition
E = 0, and integrate the d8 term onto the boundary B,
which consists of both sides of the cut plus the asymp-
totic surface (see Fig. 1). Then

bL = d(( L), (2.2)

where ( - L means ( contracted onto the first index of L.
Then for on-shell fields (E = 0), the last two equations
imply

d(8 —( L)=0, (2.3)

so that J—:8 —( L is a closed form; J is just the dual
of the expected conserved current. Ordinarily one would
not expect I to be exact as well, but here the fact that
it is closed for all ( allows one to prove exactness [8]. So
one has

J =dQ (2.4)

for some d —2 form Q, which depends on (. The final
step is to specialize ( to be the horizon Killing field for
the black hole, normalized to give unit surface gravity;
then the entropy is identified as

S=2z Q,
H

(2.5)

where H is the horizon d —2 surface.
Now for the method of conical singularities. We start

with a somewhat formal computation, and later sketch
how to make it rigorous. For simplicity, we specialize
to the spherically symmetric case, and we choose coordi-
nates such that the Euclidean metric is

ds = dr + f(r) dP + g(r)dQ (2.6)

where f(r) ~ rz as r 0, and dQz represents the other
d —2 coordinates, all angular, which play no role in the
computation. The Euclidean time coordinate is P, which
has a 2' period for regularity at r = 0.

To add a conical singularity with angular excess e re-
quires the metric variation

bgdy = f-
7r

(2.7)

In order to cast the computation in a form similar to
the above, we look for a vector field ( which generates
this variation via the usual formula for difFeomorphisms,
bg s = V& Ql. This g cannot be smooth, since the metric
variation in question does not result &om a diffeomor-
phism. The vector field which does the trick is

(2.9)

where J and Q are as defined above. In the final step,
we first used J = dQ to integrate J onto the boundary
of B, which we take to be II~o . Then we observed that
P(8/8$) L has no projection into the asymptotic part
of B, so its only contribution comes &om the cut.

But whereas above Q was evaluated for ( = 8/8$, here
we have (s/2z )Q[P(8/8$)]. It seems P cannot be factored
out, since V4 terms may appear; but what saves us is
that VP is smooth across the cut, so that all V4 terms
vanish from Q~oz . So we can can factor out the (s/2z')P,
giving

f8) ~8I+bI = e Q +(2z+e) L
a

(2.10)

S=2z Q,
H

(2.11)

with Q evaluated on 8/8$.
Unfortunately, the above calculation is not rigorous,

since for one thing, relevant quantities such as V P are

[Here we also used the 8/8$ symmetry to write I =
2z f& o(8/8$) L.] Finally we compute S by plugging
into (1.3). Note that the second term is the classical
contribution of the fields in the spacetime away &om
the horizon; we expect this to make no contribution to
the entropy, and it does not, since it is proportional to
2m + e. The remainder gives the same result obtained
above: namely,

(2.8)

which is smooth everywhere except on a cut at P = 0.
Note that this is just (e/2z)P times the horizon Killing
vector used in the Noether charge computation (in par-
ticular, 8/8$ is normalized for»»it surface gravity).

From here the computation is a&most the same as be-
fore. We need to compute bI = f bL. We write bL in

FIG. 1. r, P cross section of the Euclidean black hole space-
time, showing the cut at P = 0 and the integration path B.
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not defined at r = 0, and for another, the action I will
typically diverge if a conical singularity is added (for ex-
ample f R2 will diverge). Here we outline a more rigorous
path to the same conclusion.

Starting &om the Euclidean black hole spacetime, we
cut out a small disk around r = 0. Then, in the remain-
ing annulus (which extends to r = oo), we choose again
the metric generated by ( [Eq. (2.8)]. This gives the an-
nulus a conical geometry with angular excess e. Then, we
choose some smooth metric variation on the disk which
matches smoothly onto that of the annulus. Then we
calculate the variation in the action due to these metric
variations, using (2.1). Finally, we integrate d8 onto the
boundaries, as in (2.9).

Now there are two extra boundary segments, the in-
ner boundary of the annulus, and the outer boundary
of the disk (see Fig. 2). But since the metric variation
is smooth across the disk-annulus boundary, these extra
contributions simply cancel each other. The remaining
path is just B &om Fig. 1, except that the cut only
extends to the disk boundary, so in particular r = 0 is

FIG. 2. The black hole spacetime with disk and annulus

marked (the dotted line is the boundary). Also shown are the
paths of the boundary integrations.

avoided. The final step is to take the limit as the disk
shrinks to zero radius, recovering the result (2.10) above.
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