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Ehlers-Harrison-type transformations in dilaton-axion gravity
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The ten-parametric internal symmetry group is found in the D = 4 Einstein-Maxwell-dilaton-axioa
theory restricted to space-times admitting a Killing vector field. The group includes dilaton-axion
SL(2, R) duality and Harrison-type transformations which are similar to some target-space duality
boosts, but act on a difFerent set of variables. A new symmetry is used to derive a seven-parametric
fa~i&y of rotating dilaton-axion Taub-NUT dyons.
PACS number(s): 04.70.Dy, 04.60.Ds, 11.25.Mj

I. INTRODUCTION

Two notable symmetries of the bosonic part of com-
pactified low-energy heterotic string efFective theory were
widely discussed recently [1—3] and used to generate new
classical solutions [4, 5]. One of them is target space
duality O(d, d + p), which is valid (in particular) for a
D-dimensional Einstein-Maxwell-dilaton-axion (EMDA)
system with p Abelian vector fields whenever variables
are independent of d space-time coordinates [1,3]. The
(primitive) set of variables on which the group O(d, d+ p)
acts consists of the stringy frame space-time metric, the
Kalb-Ramond field B„„,the vector fields A„,a = 1, ..., p,
and the dilaton P, from which the corresponding matrix
representation is built up. The group mix the metric with
the vector Belds, the dilaton, and the axion. The second
symmetry is a dilutori-aziori (or electric-magnetic) dual-
ity SL(2, R), which arises in the case D = 4 for which the
Kalb-Ramond field can be transformed into the Peccei-
Quinn axion e. It says that a pair P, Ic parametrizes the
SL(2, R)/SO(2) coset. These two symmetry groups ap-
parently were regarded as nnI elated to each other at least
in the context of the EMDA theory [3].

Here we show that for D = 4, p = 1, d = 1, sym-
metries of both kinds can be combined within a larger
group. Our approach is similar to that used earlier
for the Einstein-Maxwell (EM) system [6—8]. It con-
sists in reduction &om 4 to 3 dimensions preserving
three-covariance and involving dualization of nondiag-
onal metric components and the magnetic part of the
Maxwell tensor. This leads to the gravity-coupled three-
dimensional o model (not to be confused with the initial
string cr model) with a six-dimensional real target space.
The latter turns out to possess a 10-parameter isome-
try group including the SL(2, R) duality as a subgroup.
The group also contains Harrison-type transformations,
similar to some target-space duality boosts, but now act-
ing on a difFerent set of variables related to the primitive

variables in a nonpointlike way.
Remarkably, our group is larger than the product

of both target-space duality [in this case O(1,2)] and
dilaton-axion duality. Its nontrivial part generalizes
Ehlers-Harrison transformations known in the EM theory
[9, 10]. The group also contains scale and gauge transfor-
mations. New symmetries open a very simple way to con-
struct dilaton-axion counterparts to any stationary solu-
tion of the vacuum Einstein equations. As an example
we derive a seven-parametric family of charged rotating
Taub-NUT (Newman-Unti- Tamburino) dyons endowed
with dilaton and axion fields. Some future prospects are
brie8y discussed.

II. cr-MODEL REPRESENTATION

We start with the D = 4, p = 1 EMDA action in the
Einstein kame

S= 1 -R+ 28„$8"P+-e ~8„1c8"~
1 4

16'
I

" 2

—e ~F„„F""—rF„„F" —gd x,

where F" =
2
E" " Fg, F = dA, and consider a

space-time possessing (at least) one Killing vector field
which we choose here to be timelike. Then it is standard
to present an interval in terms of a three-metric h,~, a
rotation one-form ur; (i,j = 1, 2, 3), and a scalar f de-

pending only on spacelike coordinates x':

ds = g„„dz"dz" = f(dt —u);dz') — h;, dz*dz'. —

The vector field may be fully described by two real func-
tions: an electric potential v,

F,.= a;v/v 2, -

and a magnetic one u,

e ~F*'+ rF'~ = fc*~"BI,u/v 2h

(3)
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(note, that u is but u is not a component of the four-
potential). Instead of ioi, a twist potential y is then intro-
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duced in accordance with the Einstein constraint equa-
tions [7]

r; = 8;x+ v8;u —u8;v, r* = f—e' "8~(us/V h

Here and below three-indices are raised and lowered using
the metric h,~ and its inverse h'~.

A new set of variables consists of the three-metric h;~
and six "material" fields y = (~, P, f, v, u, x), A =
1, ..., 6. It is straightforward to check that the field equa-
tions following kom the action (1) are identical to the
equations of motion of a curved space three-dimensional
o model possessing a six-dimensional target space (y+},
together with the three-dimensional Einstein equations
for h;z with the energy-moment»m tensor built Rom y+.
The corresponding action is

v = vp) zc = tcp+vpAg) z = zp+A6,

tC = vip) v = Vp + tcpA7) z '=z, '+A~, (14)

where z = ~ + ie 24' is the complex axion-dilation 6eld.
It can be veri6ed that seven generators of the above

transformations form a closed algebra thus giving no indi-
cations on the existence of further symmetries. However
three more generators can be found by solving Killing
equations for the target space. They correspond to a
nontrivial Ehlers-Harrison-type part of the full symme-
try group.

A pair of Harrison-type transformations mix metric
functions with electromagnetic potentials, a dilaton, and
an axion. Generically, they produce charged solutions
&om uncharged ones. The first (electric) leaves invariant
the quantities

S~ = R — ~~;p ~y h'~ hd z) (6)
fe '= -foe '-X = X —uv = Xo —upvp,

where u = u —ev, whereas other variables transform as
where g~~ is the target-space metric to be read ofi' Rom
the line element

dl2 =2dgP+ e~de —+ (df + (dX+ vdu —udv) )
1 4 2 1
2 2f2

+ X™pAs ~ = «+ 2~pAS + ypAS

(y fe + v) = (~fpe + vp) mpAs. (16)

1——(e-2&dv2 i e24'(du —~dv)2) . (7)
The second (magnetic) also leaves two combinations

invariant:

Similar representation has been derived for the station-
ary EM system by Neugebauer and Kramer [6]. Note,
that the EMDA theory does not include an EM one as
a particular case. Indeed, setting P = rc = 0 gives two
constraints F2 = 0 = FF.

q = f ~ !z!e~—:fp !zo!e~',

p = f 'u+u = f, 'up+u, ,

where

(i7)

III. ISOMETRIES OF THE TARGET SPACE

The target space possesses a 10-parametric isometry
group. Seven of its elements can be easily found Rom
the direct inspection of the metric (7). They include the
following.

(i) The scale tmnsformation:

u+ =u+qf =
1 —A9up+

'

while other transformations read

~+
X=k+u++k u +kqf, v=k+ +k

tC

fq' u+z= . , d=k+k+ —k
dq —i' u u+

leaving ~ and P unchanged (here and in what follows
A„s = 1, ..., 10, are real group parameters).

(ii) The electromagnetic and gravitational gauge trans-
formati ons:

uf ( ~ofoe24" —x, )
!kg= ~! vp+

2up 2qfo

k= &ofoe + Xl
2qfo

ic = 'lip + A2 g —gp + vpA2

v = vp + A3) g = gp —RpA3)

X = Xp+A4

(9)

(10)

where yg
——yp —upvp.

A commutator of two Harrison-type generators gives
a generator of the Ehlers-type transformation. This last
transformation, which closes the full isometry group, has
three real,

Z=e Zp, u=upe, V=Vpe ',—2AS —Ag (i2)

(all other quantities being unchanged) leaving the metric
and the Maxwell tensor invariant.

(iii) The SL(2, R) dilaton-a@ion duality subgroup:

2Q 2f—1 2$p 2 g —1
Vpzp

1 —P = f !O! e & = f !@p! e 4"

~ = f '(x'+Pf') = fo '(x.'+Pf.'),- (20)
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and one complex,

i = v + (if —X)@' ':—vo + (ufo —Xo)C'o ',

invariants, where 4 = u —zv, and

f =x( '=~(P+(') ', 6=x.f. '-A.~,

4 = 4o + vAio, z = zo —v (4 —4o).

(21)

(22)

deed, in this case P = 1 and from (22) we get 8
fo(l + iAioE'o), while v, u, P, rc remain zero.

The scale transformation (8) being applied to vacuum
solutions reduces to that of the vacuum Einstein gravity,
while the transformations (9)—(14) trivialize. Therefore,
the only nontrivial eKect on vacuum solutions is produced
by the Harrison-type transformations. Generically they
give rise to charged configurations endowed with dilaton
and axion Gelds.

There is a certain similarity between Harrison-type
and some of the string target-space duality transforma-
tions. Both generate charged solutions to the EMDA
theory starting from vacuum solutions of the Einstein
equations. However, our group acts on a diHerent set
of variables related to the string o.-model variables by
nonpointlike transformations. In the present formulation
dilaton-axion SL(2, R) duality enters into the same sym-
metry group. This group is the symmetry of the 0-model
action (6) and hence that of the equations of motion of
the initial theory. Note that in the static case there seems
to exist an analogue of the Harrison transformation for
the Einstein-Maxwell-dilaton system (without an axion)
too [11].

IV. APPLICATION TO VACUUM SOLUTIONS

Any solution to the vacuum Einstein equations is a so-
lution of the present theory with v = u = e = P = 0.
Therefore using the above transformations an axion-
dilaton counterpart can be found to any stationary vac-
uum solution. In this case the above formulas simplify
considerably. The first Harrison transformation will read

x
fo xo 1 —Asfo'

v=Asf~ u=Asx& &=A xo.2
(23)

(24)
z=i(1 —A,'Z, ).

A similar combined transformation via (17)—(19) reads

If the seed solution is asymptotically Bat, and one wishes
to preserve this property, it has to be accompanied by
the scale transformation (8) with the parameter ez"' =
1 —Az. The result can be concisely expressed in terms of
the Ernst potential 8 = f + iX:

V. DILATON-AXION KERR NUT DYON

Starting with the vacuum Kerr-NUT solution
2'2

Ao —G sin 8
(

Zp

—Eol +d8 + dy
bo —a2sin 8 )

'

where

(26)

Do ——»(» —2M) + a —No,
Zo ——ro + 6, b = acos8+ No,

2
(dp =

a2sin 8 —Ap

x NoBo cos8+ asin 8(Moro + No), (27)

with the corresponding Ernst potential to = 1 —2(Mo +
iNo)(» + ib) (a is Kerr rotation parameter, No is
NUT parameter), it is a simple matter to construct its
axion-dilaton counterpart. We will do it in two steps.
First, we perform a constant shift (11) of the twist po-
tential Ep ~ 8'p+ iA4 in order to have one &ee parameter
more (this will ensure electric and magnetic charges in
the resulting axion-dilaton solution to be independent),
and then make either electric or magnetic Harrison-type
transformation accompli»ed by a suitable scale transfor-
mation (24) and (25) (both lead to the same final form
of the axion-dilaton solution). Fiuthermore, the electro-
magnetic gauge freedom (9) and (10) is used to remove
constant asymptotic values of electric and magnetic po-
tentials, and axion-dilaton rescaling (12) is performed to
make the dilaton. asymptotically zero too. As a result,
the following electric and magnetic potentials will be ob-
tained at this step:

~ l = ——(M o+Nb),
2A

Z
(26)

(M»+No) li,
l2A r' A4r

Ql —Aoz . (1 —A2o)fo i

(25)

In both cases the metric rotation function is simply
rescaled rd; = (1 —A2) iso;, where A is either As or Ao.

Remarkably, the axion-dilation Ehlers-type transfor-
mation reduces exactly to the original Ehlers transfor-
mation [9] when applied to purely vacuum solutions. In-

I~Ql~e 2'- ™(~Q)2
Ap ——

[Im (Mz Q)] Im (Mz Q)
' (29)

where M = Mo(1 —A2) i, N = No(1 —A2) i are
rescaled mass and NUT parameters and Z = Zp+rpr
2N b, r =2A2M, N =%2¹

At the second step we consider (26)—(28) as new seed
solution and perform axion-dilaton duality transforma-
tions (12) and (14) with the parameters
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(31)

where now

4 = (r —r )(r —2M) i az —(N —N )z,

Z = r(r —r ) + (acos8+ N) —N, (32)

(N6 cos 8 + a sin 8[M(r —r )
2 ~ 2

a~sin 8 —4
iN(N —N )]).

The corresponding electric and magnetic potentials and
the axion-dilaton Beld are

~2e4'-
v = Re [Q(r —r i ib)],

which are now expressed through physical quantities: a
complex mass M = M + iN, an electromagnetic charge

Q = Q —iP, an axion-dilaton charge 17 = D + iA, and
an asymptotic value of the axion-dilaton z . Sing&arly,
for A4 one has

(
A4r Re (Mz Q)
2Mp Im (JHz Q)

The transformed metric can be written in the same
form as (26):

4 —a sin 8(
Z

(drz z b sin 8
dv'

b, —azsin 8 )

is determi»ed by the electromagnetic charge and the com-

plex mass:

2M

Note that this relation. is independent of the rotation pa-
rameter a.

The new fame&y contains as particular cases many pre-
viously known solutions to dilaton-axion gravity. For
N = P = 0 the metric (31) and (32) corresponds to
Sen's solution [4] up to some coordinate transformation
(in this case the axion charge A = 0). For a = 0
(31)—(34) coincides (up to a tra»sformation of the radial
coordinate) with the six-parametric solution reported
recently by Kallosh et aL [12], its three-parametric
subfamily was also found by Joh»son and Myers [13].
For N = 0, a = 0 we recover the Sve-parametric
solution presented by Kallosh and Ortin [14], and, if
in addition one of the charges q, P is zero, the solu-
tion reduces to the Gibbons-Maeda-Garfmkle-Horowitz-
Strominger black hole [15]. Finally, when P = q = 0 we
come back to the Kerr-NUT metric (26).

As in vacu»m and electrovacu»m cases, for N g 0 our
solution cannot be properly interpreted as a black hole
because of time periodicity which is to be imposed in the
presence of the wire singularity [16]. We will still con-
serve the notation r~ for the values of radial coordinate
marking positions of the surfaces where b, = 0:

(33) r~ ——M ir /2+ /~M(z(1 —r /2M)z —az. (39)

Re [Qz (r —r i ib)],

ez&4'-~-l = —r iib—1 . QQ'
Z

(36)

The solution obtained may be interpreted as the
charged rotating Taub-NUT dyon in dilaton-axion grav-
ity. It contains seven independent real parameters: a
mass M, a rotation parameter a, a NUT-parameter N,
electric Q and magnetic P charges (de6ned as in [12]
to have the standard asymptotic normalization of the
Coulomb energy), and asymptotic values of the axion
rc and the dilaton P (combined in z ). The complex
axion-dilaton charge introduced through an asymptotic
expansion

z p i 17z' M'r .
)

Here a new radial coordinate is introduced r = rp + r
parameters r and N in terms of the physical charges
read

MiQi2 NiQ[
2)M)z' (35)

and h is the same as in (27) (note that Np = N —N ).
The following expression for the real dilaton function is
also useful:

O~ = —([M~ (1 —r /2M)
2

+M/~M~ (1 —r /2M) —a ) '. (41)

For N = 0 this quantity has a meamng of the angular
velocity of the horizon. The area of the two-surface r =
+ 0

F~ 1S

A = 4za/Q~. (42)

The square root in (40) becomes zero for the family
of extremal solutions. This corresponds to the following
relation between par~meters:

(43)

For N = 0 the upper value r~ corresponds to the event
horizon of a black hole. The timelike KilB»g vector Bq

becomes null at the surface r = r, (8),

r+ = M+r /2k g(Al( (1 —r /2M) —a cos 8,

(40)

which marks the boundary of a black hole ergosphere in
the case N = 0. f»~ide the two-surface r = r, (8) the
KiRi»g vector Bq —M with some 0 = const may still
be timelike, the boundary value of 0 at r = r & where it
becomes null being

V (1)z=z —2ie '~- —i0~ —,
~gr'&

(37) which de6nes a four-dimensional hypersurface in the 6ve-
dimensional space of q, P, M, N, a. For extremal solu-
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tions we have

ext 2~ ™gext ( ext ) 2

S=w p+ p —4J @=2M — —P,

2 (NA'" cos8+ asin 8[M (r —rgb) + a[f4[]j
+2 sln2 g Qext

(44)

z(4, 4, )
1 i(QN —PM)Q'

r(r —2M)

(46)

Comparing (45) and (46) one can see that generically the
string metric ds,t„„=e 4'd8 has a nonsingular throat
structure. However, if

QN = PM, (47)

the dilaton factor (46) has zero as r ~ 2M and the string
metric will have the same structure as in the case of
the static dilaton electrically charged black hole [15] (to
which our solution reduces if N = P = 0). Hence, reg-
ular Taub-NUT string throats form a three-parametric
family corresponding to the hypersurface ~17~ = ~M[ in
the parameter space of M, N, P, Q, from which a two-
dimensional subspace (47) has to be excluded. As it was
shown recently by Johnson [17], some of the family of
extremal Taub-NUT solutions have exact gauged Wess-
Zumino-Witten (WZW) model counterparts.

In the rotating dyon black hole case N = 0, a g 0 our
solution generalizes (and present in more concise form)
Sen's solution [4] to include both electric and magnetic
charges and, consequently, nonzero axion charge. The
entropy can be shown to remain equal to a quarter of the
event horizon area (42):

Z'" = 2M ~r —r'" 't+ 6'" —a sin 8H j
+ 2a (]M] + N cos 8) .

The metric for the nonrotating extremal dilaton-axion
Taub-NUT family reads

ds = (1 —2M/r) (dt + 2N cos 8drp) —(1 —2M/r) dr

r(r ——2M) (d8 + sin 8d&p ) . (45)

In this case r~' ——2M, this coincides with the curvature
singularity. [Note that it is not so if a E 0, since then
g ~(r~t) E 0.] For the dilaton we get, from (36),

where J = aM is the angular momentum of a hole. The
corresponding temperature is

T= gp' —41'
4vrM p + p2 —4J2

(49)

In the extremality limit p, = 2~ J~, the entropy remains
&nite S,„t ——27r~ J] (and vanishing as a -+ 0), while the
temperature is zero in agreement with previous results
[18].

VI. CONCLUSION
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Using a three-dimensional a-model formulation of the
stationary D = 4, p = 1 EMDA theory we have found a
ten-parametric noncompact internal symmetry group in-
cluding dilaton-axion duality and Ehlers-Harrison-type
symmetries. In a sense, this group provides a unifica-
tion of target-space duality and dilaton-axion duality in
D = 4. It also opens a new simple way to construct
stationary solutions to the D = 4 EMDA system by
transforming stationary vacuum solutions as well as al-
ready known solutions to the EMDA theory itself. The
above formalism may be generalized to the case of the
spacelike Killing vector field too. Furthermore, it can be
shown that the target space (7) is a symmetric Rieman-
nian space, on which the isometry group acts transitively.
This reveals a close similarity between the present group
and the Kinnersly SU(2, 1) group in the EM theory. It
can be anticipated that in the case of Boo commuting
Killing vector fields the system will possess an infinite-
dimensional internal symmetry group analogous to the
Geroch-Kinnersley-Chitre group for electrovacuum. In
other words, further restricted to two dimensions, the
EMDA system is likely to become fully integrable. This
will be discussed in a forthcoming paper.
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