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Fermion scattering off dilatonic black holes
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The scattering of xnassless fermions oE magnetically charged dilatonic black holes is reconsidered
and a violation of unitarity is found. Even for a single species of fermion it is possible for a particle
to disappear into the black hole with its information content. The same conclusion is arrived at for
chiral fermions as weD.
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I. INTRODUCTION

In recent years there has been much interest in the
physics of black holes. The issue which has engaged the
attention of most workers is that of possible information
loss. Matter fekbng into a black hole carries some infor-
mation with it. This becomes inaccessible to the rest of
the world, but may in principle be supposed to be stored
inside the black hole in some sense. A problem arises
when the black hole evaporates through the process of
thermal Hawking radiation. The information does seem
to be lost now [1].

Although there have been attempts at studying this
problem in its full complexity [2], most authors have con-
sidered simplified models of black holes as in [3, 4]; see
[5] for a review. We shall consider the extremal mag-
netically charged black hole solution of dilatonic gravity.
This is a four-dimensional model involving an extra field,
the dilaton, but for s-wave scattering of particles in the
field of this black hole, the angular coordinates are not
relevant and a two-dimensional efFective action can be
used [6]. If the energies involved are not too high, the
metric and the dilaton field can be treated as external
classical quantities and an amusing version of electrody-
namics emerges, where the kinetic energy of the gauge
field has a position-dependent coefficient [7].

The scattering of massless fermions has been consid-
ered in this context. The model admits a solution which
is very close to the conventional solution of the "chwinger
model, i.e., two-dimensional massless electrodyr'. Lnics.
In this solution, there is a massive &ee particle, but in
the present case its mass becomes position dependent [7,
8]. To be precise, the mass vanishes i. .ar the mouth of
the black hole but increases indefinitely as one goes into
the threat. (The dilatonic field increases linearly with
distance in the throat. ) This is interpreted to mean that
massless fermions proceeding into the black hole cannot
go very far and have to turn back with probability one.
Thus the danger of information loss is averted very sim-
ply-

In this article, we first reexamine the model by tak-

ing into account the possibility of alternative solutions.
The Schwinger model possesses other solutions in addi-
tion to the conventional one, although this is not uni-
versally known. These correspond to different quantum
theories built from the same classical theory. DifFerent
quantum theories can be constructed without violating
gauge invariance by changing the definition of the point
split fermionic currents [9]. By considering this freedom,
we shall demonstrate that the problem of information
loss can in fact appear even in the extremal magnetically
charged dilatonic black hole.

Although the scattering of a classical chill fermion
was considered in [7], the quantum field theoretic dis-
cussion was restricted to Dirac fermions to avoid a gauge
anomaly. However, the treatment of gauge anomalies due
to chiral fermions is straightforward if bosonization tech-
niques are used [10,11]. Using these now standard ideas,
we analyze the interaction of a chiral fermion with the
black hole and find once again that it can fall in, so that
the problem of information loss is present here too.

8]

II. DIRAC FERMIONS IN A DILATON
BACKGROUND

The model is described by the Lagrangian density [7,

8 = Q(i/+ eA)@ — e~& &F""F—1 -2

where the Lorentz indices take the values 0,1 correspond-
ing to a (1+1)-dimensional spacetime, e measures the
coupling of the vector current corresponding to the mass-
less fermion Q to the gauge field A, and there is a dila-
tonic background rp(2:) whose dynamics we do not go into.
It is clear that if p(x) vanishes, we get the well-known
Schwinger model [12—14]. The model with nonvanishing
y(x) has also been solved [7,8] with the help of the usual
scheme of bosonization. Here we discuss a solution in a
difFerent framework, which leads to vastly altered physi-
cal consequences.

In two dimensions we can always set

(2)
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~~~(x) = &~&(x) (4)

These massless fields have to be regularized [13] but we
shall not need the explicit form of the regularization.

The Dirac equation in the presence of the gauge field
1s

OI„= 6~~[[9

with eoq ——+1 and a, g are scalar fields.
We shall restrict ourselves to the Lorentz gauge. Prom

(2) we see that the field g can be taken as a massless field
with Gq = 0. We introduce its dual through

[iP + eel +(x) = o

This equation is satisfied by

y( )
. i~ngg[o(x)+q(~)) . y(0) ( )

where g[ ~(x) is a &ee fermion field satisfying i/@[ [(x}==

0.
We can calculate the gauge-invariant current using

the point-splitting regularization. While constructing a
gauge-invariant bilinear of fermions which in the limit
of zero separation would give the usual fermion current,
we can generalize the conventional construction [12]. We
take

J s( )
I' [g(x + )

. t J 1'v (A (v) —28 [c'(Q)P& (v)]) . q( ) y'EV]
~-+0 P

where 4 is a field which we shall relate to y later on. The addition of the term containing C in the exponent represents
a generalization of Schwinger s regularizing phase factor [9]. It preserves gauge invariance, Lorentz invariance, and
even the linearity of the theory. The explicit coordinate dependence of 4 may come as a surprise, but it must be
remembered that the model under discussion does not possess translation invariance because of the factor containing
p(x) in the Lagrangian density (1). When p is made dynamical, the related field 4 also becomes dynamical, and
there is no con8ict with translation invariance. In fact this &eedom can be used to simplify the solution of the model
enormously, as we shall see. Now using (2) and (6) together with

~sr
&„~Do

e

we obtain the current which, up to an overall wave function renormalization, is equal to

J„"s(x)=:g[ol(x)p„Q[ l(x): i@%—lim(0
~

/[os(x+ e)p„(ps'. 0+ e 8)(0 + rl) + 2e B(C»0) 'Q ~(x)
~
0) (9)ego

=:/[os(x)p Q['l(x): — " " " "8 (o+q)+. 2 " "8"(C 0) (10)
~sr Q2

where we have used the identity

Now we take the symmetric limit, i.e. , average over the
point-splitting directions t and finally obtain

2
( )

2'(x)

can be converted to the pair of equations

J"s(x) = — o[„(P+ 0 + 4 [-ja' + g), (12) 1 e e2—+ —@ Cl + — a=0

where P is a &ee massless bosonic field satisfying

(*)~~&"'(x):

and

j+g = 0. (20)

J;s'(x) = e~-J,".,(x)

8„($+g+ a+ 4Uo).

(14)

This implies that the anomaly in this regularization is

0"J„",' = — (p+q+0+ C&0).

Note now that Maxwell's equation with sources, viz. ,

(i6)

and thus representing the conventional bosonic equiva-
lent of the free fermionic field @[ l [15]. We find

The first equation (19), which depends on the choice
of 4, determines the spectrum of particles in the the-
ory. The other equation (20), relating two massless &ee
fields, has to be satisfied in a weak sense by imposing a
subsidiary condition

(P+ g)[+~
~

phys) = 0 (»)
to select out a physical subspace of states. One can en-

sure that P+ ii creates only states with zero norm by tak-

ing g to be a negative metric field, i.e. , by taking its com-
mutators to have the wrong" sign. The subsidiary con-
dition then separates out a subspace with non-negative
metric as usual.



50 FERMION SCA'i i ERING OFF DILATONIC BLACK HOLES 7391

4 is as yet undetermined. We shall co~ider a few
possible choices. The conventional choice [7, 8] is zero.
(19) then becomes

2 2
0 +

7r
cr =0. (22)

Q
2

g2
7r

(19) simplifies to

Q
2

0 + 0 =0.
s (g2 + g

—2)

(23)

(24)

The mass of the particle now vanishes not only at the
mouth, but also asymptotically in the interior of the black
hole. In fact, the mass has a maximum somewhere in be-
tween. Therefore it is possible for a massless fermion
to exist both at the mouth and in the interior, and the
height of the barrier being finite, there is a finite am-
plitude for the fermion to go in and get lost. Thus the
danger of information loss is not averted in this case.

A somewhat mundane case is when 4 is such that

f1 e2
(

—,+ —C [=1, (25)(g2 vr )

This describes a particle of mass '~ . Now g is related
to y, which is taken to vary linearly with distance in
the throat of the black hole. The situation envisaged is
that g vanishes at the mouth of the black hole, but rises
indefinitely as one proceeds into the interior. The efFect
is that the mass of the particle vanishes at the mouth but
rises indefinitely inside the throat. Since massless scalars
are equivalent to massless fermions in two dimensions, it
follows that one can think of an initial condition where
a massless fermion starts at the mouth of the black hole
and proceeds inwards. The fact that the mass involved in
the equation of motion rises indefinitely means that the
fermion cannot go arbitrarily far and is re6ected back
with unit probability. Thus the scattering of the fermion
off' the black hole is nmtary and information is not lost.

On the other hand, if 4' is chosen to satisfy the condi-
tion

III. THE CASE OF CHIRAL FERMIONS

If we replace the Dirac fermion considered above by a
right moving chiral fermion, the Lagrangian density can
be written as

1 ( &~
2

(27)

We shall use the method of bosonization, to take the
anomaly into account. The fermion is integrated out,
so that an efFective action is obtained. The definition
of the efFective action involves a regularization and the
result depends on which one is chosen. In any case, the
efFective action is nonlocal, but can be made local by
introducing an auxiliary bosonic field. If a Dirac fermion
were integrated out, a full boson field would emerge, but
as a chiral fermion is involved, a chiral boson emerges.
The action that is obtained is given by the Lagrangian
density [11]

8 = —PP' —(P') —2eg'(Ap + Ay) ——e (Ap + Ag)
2

~2g gp ~
—2g(a) ~21 1

(28)

for the chiral boson and

vrp
——0, (30)

where P is the auxiliary boson field. The free part of the
Lagrangian for this field has the standard form for right
moving chiral bosons [16]. The quantity e stands for 2~
and a is a parameter [10] that distinguishes the members
of a family of regularizations. Time and space derivatives
are indicated by overdots and primes, respectively. The
theory described by this Lagrangian density is equivalent
at the quant»~ level to some regularized version of the
fermionic theory (27) we started with. The advantage of
using this formulation is that the anomaly is incorporated
into it, so that even tree level results of the bosonic theory
would show effects of the anomaly.

Accordingly, we proceed to carry out a Hamiltonian
analysis of the theory (28). The canonical momenta are

and (19) simplifies to erg ——e Epg (31)

g2
0 + — 0=0.

7r

This means that the usual massive &ee scalar field of the
Schwinger model is recovered. The modified Schwinger
model thus accommodates the unmodifie solution with
this altered definition of currents. In this case, the mass
of the scalar Geld does not vanish anywhere, so there is
no fermion in the spectr»m and one speaks of the fermion
as being confined. Hence, if the scattering of fermions is
to be considered, this choice of 4 is not relevant.

A more dramatic case is when 4 is allowed to go to
infinity. In this case the &ee scalar field becomes exactly
massless. So the fermion is massless at all positions. This
fermion travels &eely into the black hole and all informa-
tion is lost.

for the gauge fields. The first two of these are constraint
equations. The canonical Hamiltonian density is

'g = —e s~ + sqAp+ (P') + 2eg'(Ap+ Ay)
2

+—e (Ap + Aq) ——ae A A".1

2
(32)

n ~
—2eg' + e [(a —1)Ap —Aq] = 0. (33)

If a g 1, these three constraints form a second class

Although it contains an explicit space dependence
through y, it is not an explicit function of time. Hence
the Hamiltonian is in fact preserved in time. The require-
ment that the constraints (29) and (30) are also preserved
in time is found to lead to only one additional constraint
provided a P 1. This is the Gauss law
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However, the elimination of x4, through the constraint
(29) leaves behind the noncanonical Dirac brackets

(4(~) &(~))~ = -e(*'-~')
characteristic of chiral bosons. Here, ~ stands for the sign
function and the other Dirac brackets are canonical.

Using these brackets and the reduced Hamiltonian, one
obtains the equations of motion

G + 1 I 1 I ae4'+ A,a —1 (a —1)e a —1

a —le2 a —le
(37)

2-2
G e 2ae —1Ai — P (a —1) 7r, .a —1 G —1

A little algebra now shows that

(38)

Ge Ge "
G e

~O+ e~ ni ——0, (4o)

e'~ A, + —P'— = 0.
a e

(41)

This means that the theory contains a right xnoving
chiral boson P — ,vri and a ma—ssive boson xi (together
with its conjugate momentum) with position-dependent
xxlass

y
e~ . Here it is assumed that a & 1. Indeed

for the foregoing constraint analysis to be valid, a g l.
Purtherxnore, the Hamiltonian density can be written as

G e 2 I 1 I G 1
&-a =, Ai+ =4'' —,-,~i +,-, (&i)'

2(G —1 Ge G e 2G e

+—e ~~i+ gV ——vri
2 Ge

(42)

which shows that the Hamiltonian is positive definite if

set consistent with the dynaxnics and can be used to
eliminate the variables pro, A0, 7t4, . The remaining Belds
4, Ai, mi are governed by the reduced Hamiltonian ob-
tained from (32) by applying the constraints (29), (30),
(33):

1 2~ 2 1,2 a+1
~+,(.) + (4)2 2a —1e2 G —1

2 I I 2ea —1PA, —(a —1)- A, ~,
(a —l)e a —1

G e
(34)

and only if G & 1. In this case, the theory is unitary
in spite of the anomaly [10]. The case a = 1 can be
analyzed separately, but does not lead to anything essen-
tially different. The massive boson disappears (it may be
considered to become infinitely massive), but the chiral
boson remains.

The new feature which is present in this analysis of the
scattering of a chiral fermion is the right moving chiral
boson. . This is exactly massless irrespective of its posi-
tion and can be used to construct a chiral fermion over all
space. This chiral fermion goes into the black hole with-
out any hindrance. Thus, in the case of chiral fermions we
find that the problem of information. loss becomes very
real when standard regularization procedures followed in
the study of the chiral Schwinger model are adopted.

The xnassive boson with position-dependent mass that
also occurs in this case is analogous to what is found
in the analysis of the scattering of a Dirac fermion by
the black hole. The mass of the boson vanishes at the
mouth of the black hole, but rises indefinitely inside it, so
that any particle which goes in must get totally re6ected.
Since the massless boson at the mouth can be used to
construct a massless fermion, this massless fermion, if
traveling to the right, i.e., into the black hole, also gets
totally refIected. Thus there are some chiral fermions
that do not fall into the black hole. However, as shown
above, this argument depends crucially on the definition
of composite operators used in the theory and a fermion
traveling into the black hole can be easily obtained with a
suitably altered regularization. We do not go into details
because the main interest of this case arises from the
chiral fermion that may be constructed &om the chiral
boson mentioned above.

IV. CONCLUSION

To summarize, we have looked at the extremal magnet-
ically charged black hole in a dilatonic background. First
we considered Dirac fermions using a generalized con-
struction of fermion bilinears. We point split the current
which is formally defined as the product of two fermionic
operators. Schwinger has prescribed the insertion of an
exponential of a line integral of the gauge field to xnake

the product gauge invariant. However, his choice was
only one of many possible choices; see, e.g. , [9]. We have
inserted an extra factor which involves the field strength
of the gauge field and a nondynamical function of space-
time coordinates and therefore does not interfere with
the gauge-invariance of the product. This is not the most
general gauge invariant regularization possible in this ap-
proach, but is enough to illustrate the range of possibili-
ties. By varying the regularization. , the equations of mo-
tion of the Schwinger model can be converted to free field
equations with the mass exactly as in the usual case, or
going to zero at both ends of the spatial axis or even van-

ishing everywhere. In the Brst case, there is no fermion
in the spectr»m at all and the question of scattering does
not arise. In the other two cases, the massless fermion
is not totally re8ected, so that the problem of inforxna-
tion loss appears unless further gravitational efFects can
change the scenario.
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The alteration introduced by us is in the definition of
fermion bilinears as composite operators and this is well
known to have a lot of Bexibility. Formally, in the limit
6 m 0, the phase factor does reduce to»»~ty, so that the
definition of the bilinears adopted in this paper cannot
be thought of as changing the underlying classical the-
ory. Only the quant»m theory, which is not Mly de6ned
until the de6nition of composite operators is speci6ed, is
altered. This alteration takes the form of a renormaliza-
tion of the efFective coupling constant in the theory. The
dilatonic 6eld, which entered the model through this cou-
pling constant, can thus be said to get efFectively trans-
formed in the quantum theory. However, this change is
not a real one as far as the dilatonic field is concerned.
This can be seen by considering the kinetic energy term
of the dilaton field, which does not get altered but, in
the approximation made by us following [7, 8], is simply
neglected.

In the second part of the paper, we considered chiral
fermions instead of Dirac fermions. This gives rise to
an anomalous gauge theory which can be bosonized for

a well-known family of regularizations. The only difFer-

ence from the published literature [10] is that now be-
cause of the dilaton field there is a position-dependent
factor in the Lagrangian. The calculations go through
essentially unchanged and the physical spectr»~ is seen
to contain a chiral boson or equivalently a chiral fermion
and a massive boson which now has a position-dependent
mass. The unconfined chiral fermion can travel &eely into
the black hole. Thus, even with a standard regulariza-
tion, a chiral fermion has a nonvanishing chance of falling
into the black hole, thereby causing a loss of information
and a violation of unitarity.

It should also be mentioned that if seeerul species of
fermions are included, the problem of information loss
appears automatically [7]. This is in keeping with our
finding that magnetically charged black holes do not nec-
essarily behave like elementary particles in scattering in-
cident fermions. Thus there are several models where
information loss occurs and unitary 8 matrices cannot
be constructed.
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