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Structure of the inner singularity of a spherical black hole
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We review the evidence for and against the possibility that the inner singularity of a black hole
contains a lightlike segment which is locally mild and characterized by mass inflation.
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There is currently a divergence of views concerning the
structure of the singularity inside a black hole.

It is generally agreed, and in accordance with the
strong cosmic censorship hypothesis [1], that generi-
cally, the final singularity is probably spacelike and of
mixmaster-type [2].

Some recent studies [3-9] of how the internal geom-
etry is affected by gravitational wave tails left in the
wake of a collapse suggest the presence, in addition, of
a milder, precursory singularity which is lightlike and
coincident with the Cauchy (inner) horizon (correspond-
ing to infinite advanced time v). It extends an infinite
affine distance into the past, and tapers to the strong
final singularity at its future end (Fig. 1). The oppos-
ing view, based on general stability arguments [10] and
numerical integration of spherical models [11, 12], is that
this lightlike segment of the singularity does not survive
generically, but is preempted by some kind of spacelike
singularity.

This paper offers a perspective, and, hopefully, some
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FIG. 1. View of the spherical black hole interior (one an-
gular variable suppressed), showing future light cones and a
stream of infalling radiation, partially scattered off the po-
tential barrier, with the remainder accumulating along the
Cauchy horizon.
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clarification of the issues, by recourse to analytical ap-
proximations and physical arguments.

Descent into a black hole is fundamentally a progres-
sion in time. (Recall that, inside a spherical hole, for
instance, the radial coordinate r is timelike.) To unravel
the hole’s internal structure is thus an evolutionary prob-
lem. Up to the stage when curvatures begin to approach
Planck levels, the evolution can be followed even without
a quantum theory of gravity. Causality prevents our igno-
rance concerning the inner, high-curvature regions from
infecting the description of the outer layers afforded by
well established (classical [3-7] or semiclassical [13, 14])
theory. (In this respect, a black hole is simpler than a
star.)

Moreover (and unlike the situation in cosmology), the
initial data for the evolution are known with precision,
thanks to the no-hair property. Near the horizon, the ge-
ometry is that of a Kerr-Newman black hole, perturbed
by a tail of gravitational waves whose flux decays as an
inverse power v~P of advanced time (p = 4l + 4 for a
multipole of order !) [15]. Exploration of the hole’s pre-
Planckian layers thus reduces to a standard (though in-
tricate) applied-mathematical problem.

A spherical charged hole perturbed by a tail of
spherisymmetric massless scalar waves provides a sim-
ple prototype for the evolution. Charged spherical holes
have a horizon structure very similar to rotating holes,
and there is some basis [6, 7, 9] for believing that spheri-
cal models reflect the essential qualitative features of the
generic case. (However, see Yurtsever [10] for a dissent-
ing view.) In what follows we restrict attention to these
models.

Any spherisymmetric geometry can be described by

the metric
ds? = gapdz®dz® + r2dQ? (a,b=0,1), (1)

where {z®} is any pair of coordinates that label the set
of two-spheres and r(z®) a function of these coordinates.
Its gradient defines the functions f(x?), m(z®):

(Vr)? = g% (8ur)(87) = f = 1 — 2m/r + €2 /r2.

The Einstein field equations are then summed up in the
two-dimensionally covariant equations [4]

Oam = 47r?T, 58y, T.ab = —47rTap + Kgab, (2)
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which imply that the mass function m satisfies the (1+1)-
dimensional wave equation [4]

Om = —1672r3T,, T + 8xrfP, . 3)

We have defined x = (m — e2/r)r=2, P, = T% is the
transverse pressure, and it is understood that the stress
energy (T,% P,) does not include Maxwellian contribu-
tions due to the hole’s charge e (assumed fixed). In (2)
and (3) it has been assumed that 7, = 0, which holds
in all cases of interest to us here.

Near the Cauchy horizon (CH), the high frequencies
to which the infalling waves get blueshifted justifies use
of an “optical” or corpuscular description, which models
the waves as a stream of lightlike particles. The earliest
models [3-5] of black hole interiors accordingly consid-
ered the effects of radially moving lightlike streams of
dust on a spherical charged hole.

For pure inflow (first treated by Hiscock [3]) Tqp is
lightlike and the source term of the wave equation (3)
vanishes: m remains bounded. It becomes a function
m(v) of advanced time only. To reproduce the fallout
from a radiative tail, it should take the asymptotic form

m(v) = mg — av~®~1) (v = o), (4)
where mg,a are constants. Observers falling toward
the CH at radius ro = mo — (m2 — €)% and in-
finite v see an exponentially blueshifted energy flux
~ (a/r?)v=Pe2~ov [where ko = (m2 — €?)3 /r2 is the in-
ner “surface gravity”]. But this has little effect on the
geometry: The Weyl curvature scalar

¥, = (1/2)C%, = (m - &/r)r ™ (%)

remains bounded at the CH.

This state of affairs changes radically when one turns
on a simultaneous outflux [4,5)]. In (3), T,sT*® now func-
tions as an exponentially divergent source near the CH.
The mass function and Weyl curvature (5) diverge like

m(v,r) ~ v Pe"o? (v o oo,7 <1y) (6)

near the CH. This bizarre phenomenon has been dubbed
“mass inflation” [4, 16]. [It is not detectable externally:
Outside the event horizon (EH) (r > ri), m stays
bounded and resembles (4) at late times.]

An additional effect of the outflux is to focus the gen-
erators, and force eventual contraction to zero radius of
each lightlike three-cylinder v =const, the CH in partic-
ular. Until this happens to the CH, the mass inflation
singularity remains pancakelike and locally mild [5, 17]
in the sense that, although tidal forces (i.e., curvatures)
become inflnite, they do not grow fast enough to tear
free-falling test objects apart before they reach the CH.

However, the analyses on which these conclusions are
based contain an assumption which is open to potentially
serious criticism. Wave tails near the CH are modeled by
(decoupled, separately conserved) lightlike streams, and
in the original analyses [4, 5] it was assumed that the
outflow is turned on abruptly inside the EH (u = —oo;
see Fig. 2) at a finite retarded time u. In reality, the
outflux extends back to the EH and before. It is not a
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FIG. 2. Penrose conformal map of a charged spherical
hole. Points H; and H; in Fig. 1 are here telescoped into
the “corner” H, a singular point of this mapping.

priori guaranteed that its falloff at early times is rapid
enough to allow the contraction of the CH to begin from
an asymptotically constant radius ro. If not, the effect
would be the destruction of the Cauchy horizon.

Let us examine this further. The evolution of the CH
(or of any imploding spherical light wave V' =const) is
governed by Raychaudhuri’s equation [derivable from (2)]

d?r[/d)\? = —4nrTy). 7
Here A is an affine parameter, and
T = Tapl®l®, I*=dz®/d\ = —g°*8,V  (8)

is the transverse flux that focuses the lightlike generators.
Unless T, falls off fast enough that

AZTA,\ —0 as A— —00, (9)

no solution of (7) exists for which r()) is bounded in the
remote past.

We next estimate the wave flux actually incident on
the CH. This is dominated by backscatter (approaching
total reflection at late v) of the infalling wave tail T, ~
v™P off the inner potential barrier [18]. This is really
a double-humped barrier well (the potential is 2xf/r),
which occupies a spherical shell between the CH and EH
concentrated near r ~ e2/mg and falling off steeply near
both horizons. [Because this shell lies well above the
shell of large blueshift around the CH, the geometry here
at late v is very close to the static Reissner-Nordstrom
(RN) geometry with mass mg, and we may assume that
the scattering takes place on this background.] At fixed r
within the barrier, the infalling wave has “time” variation
~ t7P, where t = }(v — u) is the standard RN “time”
coordinate. Scattering generates an outflux Ty, ~| u |7P
for u & —oo (see Fig. 2), i.e.,

Tyy ~U?[ln-U]"? (r < €%/mg, U = —o0),

(10)
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where we have defined Kruskal-like null coordinates reg-
ular on the CH by

U = —e "%, V = —e "0

V =0 on the CH and U = —oo along the EH.

We must now compare (10) with (9). The missing link
is the relation between U and ) given by dU/d\ = —gV",
according to (8). If gUV diverges faster than [ln —U]3?
for V.- 0, U - —oo (in that order), then (9) is violated
and there is no mildly singular lightlike segment CH.

However, the wave equation for lightlike crossflow [4],

Oln(r~1g"V) = —(3€2 — r2)r 4,

has (for r # 0) no diverging source term [contrast (3)] to
produce a divergence of gVV. This is evidence that gUV
remains bounded and that the CH survives.

To lend weight to this conclusion, access to the com-
plete solution for the metric and the scalar field near the
CH would certainly be desirable. Approximate analyti-
cal expressions for these quantities are actually not very
difficult to construct.

In terms of lightlike coordinates U,V the minimally
coupled wave equation is

rouv +ruev +rveu =0

for a spherisymmetric massless field ¢(U, V).
The Einstein equations (2) now appear as

my = —4nrie 2 phry,
ryy — 20yry = —4nre,
(rP)yy = —e® (1 — ez/rz) , (11)

opy = (eza/rs)(m — ez/r) — 47 oy pv,

and two further equations obtained by interchanging U
and V in (11). The subscripts indicate partial differenti-
ation and we have written gyy = —e?°.

We now exhibit an approximate analytical solution of
these equations, which should become increasingly reli-
able as one approaches the past end of the CH.

Define the functions a(U), (V') by setting their deriva-
tives a,b equal, respectively, to ¢uUlss @v|s, the values
on the underside of the inner potential barrier. Define
further the functions A(U),B(V) by A = 4nr2a?, B =
47r3b?, with the boundary conditions A(—co) = B(0) =
0. Then
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p=0a(U)+b(V) +r52 {AU)b(V) + a(U)B(V)},
r? =r3(U,V) — 2A(U) — 2B(V),
oc=0,(U,V)+ry*A(U)B(V),

m=mg + (k§/r0)A(U)B(V)

is an approximation to the solution below the barrier.
The subscript s refers to the static RN solution (mass
g, inner-horizon radius ro) which forms the final exte-
rior state. The general conditions for the validity of the
approximation,

A« A, B?<« B,
are satisfied in the situation of interest to us:

A~ [ln(—U)]—(p—l), B Nl —In (_V) I"(p_l)

(U — —o0, V— —0).

These expressions confirm that the metric components
€29, r? (though not their derivatives) are regular and
approach the RN values toward the past end of the CH.

A more accurate global picture of the solution requires
numerical integration. Sophisticated codes for handling
the spherical scalar-Einstein equations are now available
[15, 19], and are being adapted to the charged case by
several groups [11, 12, 20].

The pioneering numerical study is due to Gnedin and
Gnedin [11, 12]. They consider a scalar wave pulse of
finite v duration imploding into a charged hole. This
initial condition was set (a) on the event horizon in their
first study [11] and (b) outside the horizon in the second
one [12]. Only in case (b) is an infalling radiative tail
produced (by double scattering off the ezternal potential
barrier). Their results illustrate the dramatic effects of
the tail. A lightlike segment CH is clearly evident in case
(a), and much abbreviated or possibly absent in case (b).
Gnedin and Gnedin [12] state that it is absent. But it
seems to us that the present numerical accuracy (see their
Fig. 5) does not warrant any firm statement. However,
with the efforts now being concentrated on this problem
[20], a definite answer should not be long in coming.

In summary, we do not yet see any compelling reason
to dismiss the naive scenario suggested by the simplest
spherical models and illustrated in Fig. 1. This pictures
a strong and “hairy” final singularity connected to the
asymptotically stationary and hairless outer layers of the
hole by a mildly singular lightlike “bridge” CH charac-
terized by mass inflation.
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FIG. 1. View of the spherical black hole interior (one an-
gular variable suppressed), showing future light cones and a
stream of infalling radiation, partially scattered off the po-
tential barrier, with the remainder accumulating along the
Cauchy horizon.



