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Dirac quantization of gravity-Yang-Mills systems in 1+1 dimensions
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In two dimensions a large class of gravitational systems including, e.g. , R gravity can be quan-
tized exactly also when coupled dynamically to a Yang-Mills theory. Some previous considerations
on the quantization of pure gravity theories are improved and generalized.

PACS number(s): 04.60.Kz

In recent years the study of two-dimensional (2D) ex-
actly solvable field theories has attracted considerable in-
terest. One of the areas of investigations is 2D Yang-Mills
(YM) theory (on a cylinder in a Hamiltonian approach
[1,2] or on an arbitrary Riemann surface when evaluating
the partition function [3]); other models of interest are
gravitational ones such as the one for a 2D black hole

[4], the Jackiw-Teitelboim model [5], or the Katanaev-
Volovich (KV) model [6]. The first main purpose of this
work is to show that the exact quantum integrability ex-
tends to the combined treatment of the YM theory and
a large class of gravitational systems.

The gravitational part of the action considered in this
work will be

S~ = ~~~+sr De —V ~,x

V=+(s )+ —vr2,
2

in which the basic fields are the zweibein and spin-
connection one-forms e and u, respectively, as well
as the functions n and m . De = de + e s~ A es

is the torsion two-form, x = vr x = 2m+m, and
s:—e+ A e = edzz with e = det(e„) denotes the e
tensor or metric-induced vob~me form. v is some poten-
tial and 7 a constant. For the case that v is chosen as
—(1/4p)(m ) + A and r g 0 our action (1) yields, after
elimination of n and s (use *s = —1), 2D gravity with
torsion [6,8,9]:

Sc; =
~

pW & wdco — De A *De ——Ae ~, (2)
27 )

the most general Lagrangian in two dimensions yielding
second-order differential equations for e and ~. The
same v but with 7.=0 is analogously found to describe
torsionless R2 gravity [10]. For V oc m the action Sc:
describes de Sitter gravity (the Jackiw-Teitelboim model
[5,11]), whereas V oc (7r )

~ effectively describes 4D
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The classical local integrability of YM coupled to the KV

model, defined through S& below, has been observed already
in [7].

spherical symmetrical gravity. V= const, furthermore,
yields a gravity theory basically equivalent [12] to the
string-inspired 2D black hole gravity [4] for a redefined
metric; this equivalence, however, loses its attractiveness
when one couples the action to nonconformal matter us-

ing the redefined metric. Most of the specific models
have been quantized in a Dirac approach already (cf. ci-
tations above); moreover, this is also true for the gen-
eral action SG in the torsionless case &=0 [13]. It is the
second main purpose of this work that these quantiza-
tions, which came down to the quantization of a one-
dimensional point particle system, in many cases have to
be supplemented by appropriate discrete indices, origi-
nating &om nontrivial topological properties of the con-
straint surface.

The Yang-Mills part of our action has the standard
form (1/4K2) jtr(FA*E), where F = dA+AAA and the
trace is taken in the adjoint representation. Rewriting
this action in first-order form, it reads

SYM —— tr EF +]c E r (3)

G~ = Oxa + ea erg~i —eagei [V —K trE ] = 0,
G = a~ +c ~~ e,'-O,
G = 7'i(A)E = BiE + [Ai, E] = 0,

(4)
(5)
(6)

and can be regarded as arbitrary Lagrange multipliers
within the Hamiltonian

H = — dx eo G~+ ~DG~+ tr BOG

%'e observe that in two dimensions the addition of a dy-

the "electric fields" E begin (Lie-algebra-valued) func-
tions. The coupling to the gravity sector is seen to be
separated to the second term now. For simplicity we will
assume the gauge group G to be compact and simply con-
nected, which implies also that G is simple. But it would
be straightforward to generalize what follows, e.g. , to ar-
bitrary compact groups G (gaining a 8 angle for every

U(1) factor, cf., e.g. , [2]).
Let us turn to the phase-space structure of the theory.

Since S = S~ + S~M is already in first-order form, we

can read off' the Poisson brackets and constraints directly.
The canonically conjugates are (ei, ui, Ai, ma, vr, E), re-
spectively, whereas the zero components of the basic one-
forms enforce the constraints (8 =—8/Bxi)
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naxnical gravity sector leaves the Yang-MiHs Gauss law
G 0 completely unchanged. This is in contrast with
four space-tixne dimensions where the covariant deriva-
tive V contains also a gravitational connection result-
ing from the fact that the electric fields are not func-
tions there but one-forms on a three-manifold (c.f. , e.g. ,

[14]). Since, furthermore, 8(trE2) = trGE/2 = 0, on
shell the YM theory modifies the gravitational theory
only via dynamically shifting the cosmological constant
of the gravity sector by the YM Hamiltonian H&M~

lc' g—trE'dz'.
The constraints (4—6) are first class: A straightforward

computation yields (G, G») = s»(dV—//dm, )G,b, where
z; = (z, m ) and the arguments on the circle S~ have
been suppressed [i.e., b b(z~ —yI), etc.]. Furthermore,
one finds (G, G }= s G»b as G generates the local
frame rotations, whereas the (G, G) brackets follow the
Lie algebra of the chosen gauge group.

To quantize the system we choose our wave functionals
to depend on ~,x, Aq and replace eq, uq, E by the ap-
propriate derivative operators. Our ordering prescription
for the quantum constraints is to put all derivative oper-
ators to the right. This reproduces (up to a factor ih for
the structure functions) the classical constraint algebra
and thus does not lead to an anomaly. Obviously this
is always the case with the above ordering prescription
when one deals with classical constraints that, as here,
are at most linear in those phase-space coordinates which
are represented by the derivative operators.

For the solution of the quantum Gauss law G4
0 we can refer the reader to the extensive literature.
The basic result is (cf., e.g. , [2]) that the functional
4[z», z, Aq(z~)] can be written as a function 4'[z», z, a]
of a constant element a of the corresponding Cartan sub-
algebra (CSA) which is gauge related to Aq(z~); due to
a residual gauge freedom, 4' is, moreover, invariant un-
der affine Weyl transformations so that the fundamental
domain of definition of 4 as a function of a is the Weyl
cell of the CSA. For the simplest case of SU(2), e.g. , 4'
is a periodic function of a E R, and similarly for the case
of SU(3) a function on a triangle, "periodically" contin-
ued to the plane via Weyl re8ections and translations.

This suggest also that there should be some connection to
[15) where the authors allowed for a dynamical cosmological
constant within the reformulated 2D black hole gravity so as
to reinterpret the resulting theory as a connection Sat gauge
theory for the centrally extended Poincare group. Indeed,
choosing as our potential V = I/4s, , as YM gauge group
the real line, and shifting E by —1/2s, , the limit rc ~ 0
reproduces that theory.

One of the referees suggested to cite here [16] where it is
shown [for the case of model (2)] that also a naively Hermitian
operator ordering of the quantum constraints is anomaly-free
(in any reasonable regularization). The resulting difference
in the solution of the quantum constraints may be, however,
absorbed when constructing the inner product [9] and we will
not comment here further on this more complicated operator
ordering.

The Hamilton operator of pure Ya,ng-Mills theory HYM
(o

projected onto this physical subspace is proportional to
the ordinary Laplacian on the CSA. The same projection
yields also a natural measure p(a) with respect to which

HYM is self-adjoint.

Because of the finite size of the Weyl cell HYM has a(o)

discrete spectrum eg, A: e N, and we can expand our
gravity-Yang-Mills functional 4 onto an orthogonal set
of eigenfunctions y» ~(a), I labeling possible degeneracies
of GR.'

e[m~, ~,z, a] =) @»)[z+,~,~ ]g»)(a) .
Ig, l

(s)

Applying next the remaining quant»m constraints
Gy, G to this expansion, we see that each of the g» ~

has to be annihilated by the corresponding operators in
which —tcztrEz(z~) has been replaced by e». Let us de-
note these modified operators by G~ ~~~ and analogously

v(»l .= v + s», V(»l .= V + s» = v(»l(z ) + ~zz/2. Next
one finds the combination

7r G~ (») + V(») G~ =
&

8(z' ) + V(»&(9z'~ (9)

to act in a purely multiplicative way on the wave func-
tionals. Multiplying (9) from the left by the integrating
factor exp(rz' ), this yields (no sums)

~Q(»)(/», I = 0, (10)

q(q)(m, x ) = im' exp(vm )+f v(q)(u)exp(vu)du

0, ++ =a =0,
—s gin]z'+]dz' = s gin]n' [dm, otherwise,

(12)

Equation (10) is a restriction to the support or the
domain of definition of Q» ~. Viewing g» ~ as a func-
tional of (parametrized and connected) loops in the three-
dimensional target space (z+, 7r, z ), this constraint
also has a simple geometrical interpretation: The domain
of definition of g», ~ is restricted to those loops which lie
entirely within one of the two-surfaces Mq generated by
setting Q(»l to some constant q.

There is soxne more or less marginal additional restric-
tion to the domain of definition of Q» ~ concerning the
(generically isolated) target space points z = 0, m

a, where a, labels the zeros of v(»l, i.e., v(»&(a, ) = 0.
Loops in support of @» ~ may not pass such points, which
we will call "critical" in the following; an exception to this
are the constant loops coinciding with a critical point.
Clearly this restriction, which is an obvious consequence
of the quant»m version of the constraints (4) and (5),
concerns only loops on a target space surface Mq with a
"critical value" q = Q(»&(0, a, ) of q.

In this restricted domain of definition the wave func-
tional exp(4) [z'+, m, z ]) with



7348 THOMAS STROBL 50

can be seen to be a particular (continuous) solution to the
quantum constraints (cf. also [9,10]). Thus the general
solution to the gravity constraints can be written as

@i i = exp(P)@~ i (13)

with a Qi, i which is invariant under the Lie derivative
part of the t ~~~, G constraints, i.e., under infinites-
imal classical gauge transformations. Now, on any of
the surfaces M~, introduced above, the flow of the con-
straints is transitive, except precisely for the critical
points, which are fixed points under this Bow. This is
most easily seen by noting that on any connected part
of this surface where x+ g 0 (x j 0) we can use

(G /x+, G+ jn+) [(G /m, G jvr )] as conjugate vari-
ables to the local coordinates (n+, n' ) [(m, m )] of M~;
furthermore (z, Gs) = —s sVb. However, the wave

functions @i, i do not depend only on q as one might sup-
pose at first sight. This is so because certainly only loops
from the same homotopy class and the same component
of W~ can be deformed into each other by means of the
constraints. Thus Q» i is a function of q, pro(M~), and

xi(M~) (as well as the fixed points, if q = q, ). Labeling
the elements of the latter two discrete groups by n~o and
n~z, and suppressing the fixed points for a moment, we

find

4i, i = 4a, i(q, ~o, ~i), (14)

which together with (8), (12), and (13) describe the gen-
eral solution of the quantum constraints (4)—(6).

To illustrate the above considerations, let us regard
some examples: V(i,

&

——vr (for some fixed k, dropping
this index further on within the paragraph) implies q =
2 [m 2+ (z )~]. Putting this to a constant q, we obtain the
typical Lorentz orbits in a three-dimensional "Minkowski
space, "4 i.e., two-sheet hyperboloids for q ) 0, which im-
plies no F (1,2) and ni ——0, one-sheet hyperboloids for

q ( 0, which implies no = 0 and ni E Z, as well as the
future and past light cone "separated" by the origin for
the critical value q = q, = 0. Because of the latter parts
the resulting orbit space is non-Hausdorff (such as the
Lorentz orbit space), and there arises some arbitrariness
in determining no i for this value of q: The origin and the
light cones have no disjoint neighborhoods so that, e.g.,
continuous functions on this space would identify them
(» noo = 0, noi = 0); on the other hand we know that
there are no loops passing through the origin since it is
critical (~ noo E (1,2), noi C Z, plus the origin as an
own orbit).

As a second example let us consider R2 gravity with
potential V = 3m 2/2 —

4 coupled to SU(2)-YM, yielding

ei, =k/4(fore =2, ifwechoosex =0 xi =1).
We obtain

2Q(i, ) = m2 + z. + (2&i, —3/2)m .

For k = 1 there are two critical values of q: o.,
+1/v 3 ~ q, = +1/v 27, whereas for k = 2, 3, . . . there
are no critical values of q. In the latter case the result-
ing two-surfaces are all connected and simply connected.
This is also true for e = ei ——

4 and q ig [
—1/y 27, 1/~27],

whereas in the case k = 1 and q E] —1/y 27, 1/v 27[ the
Qp = q surface is connected but has the fundamental
group of a pointed torus. At q = q, there arises a similar
situation as in the first example. Thus in this example
the wave functions have the form

(
@ = exp(&) @i(q ~i)~i(u) + ).&i (q)&i (u) (»)

k)2

where P is defined in (12), yi, is a periodic function of
one argument, and @i, is a function of one unbounded
variable except, for t: = 1, ni g 0, in which case it has
support [

—1/~27, 1/~27].
More generally the situation can be depicted as fol-

lows: For any fixed value q and ei, Eq. (11) induces a
curve in a x2 over x diagram. If this curve has no inter-
sections with the x axis, Mv has two simply connected
components. Otherwise (and for q g q, ) M~ is always
connected and the number of basic noncontractible loops
is by one larger than the number of intersections of the
n~(x ) curve with the m axis. A change of this number
can occur only at critical values of q, which correspond
to curves having at least one sliding intersection with the
vr axis. All these surfaces M~ are noncompact and the
spectrum of q ranges over all of IR.5

Let us conclude with some remarks. First, already
the example of Lorentz transformations in a Minkowski
space shows that in general orbits cannot be (uniquely)
characterized by means of continuous invariants only: In
addition to the invariant length of a vector of this space,
one needs also some (discontinuous) sign functions and,
to distinguish the origin from the light cones, even a dis-
tribution. This is the reason for the quant»~ numbers no
and ni within the wave functions vga, i. Q(i, ) is the contin-
uous invariant on the underlying function space, no and
ni correspond to discontinuous (invariant) functions on
the latter, and the critical points are the counterpart to
the origin of the Minkowski space example above. From
this perspective it comes at no surprise that in addition
to (14) also

) c.h[~+]s[~ ]a[~.(~') -~.], c.ec

This has to do with the fact that the gravitational action
for the above potential can be reinterpreted as the one of a mI"

theory for gauge group SO(2, 1), PSL(2, R) [ll], or rather
its universal covering, as pointed out in [17,18].

This picture is changed vrhen regarding the gravitational
theories corresponding to a Euclidean signature. Some values
of q generate compact target space surfaces M~ then; on the
latter the Wick rotated phase factor (12) is globally defined
only for some values of q, vrhich leads to a discretisation of
the corresponding part of the spectrum [18—20].
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solves the quantum constraints, where, as defined already
above, the set (a ) labels the zeros of v&t, ).

Second, we still have to define an inner product for
the g» t [for fixed Is and l only, since the ga, t in (8) are
orthogonal by construction]. On parts of the phase space
which do not contain critical points the Dirac observable
conjugate to q = g Q&s)de~ can be put into the form

p = exp —wx x
7r+

e~+
exp —7 x~ dz (17)

Replacing eq+ by the corresponding functional derivative
operator, it acts as (5/i)(d/dq) on @s,l. Requiring that
this fundamental Dirac observable shall be represented
by a Hermitian operator, restricts the measure to be pro-
portional to dq within any interval of q not containing a
critical value q, . The implementation of the quantum
numbers ns and nq, however, seems not determined by
this procedure and a further investigation of this point
would be interesting.

Let me remark that it is probably incorrect to just
neglect the solutions (16). This becomes most appar-
ent in the extreme case V(~~ = 0, where any constant
loop on the z axis becomes critical; on the classical
level these solutions are pared with the compactifica-
tions of Minkowski space along the boost orbits, yield-
ing Misners' two-dimensional analogue of a Taub-NUT
(Newman-Unti-Tamburino) space [21]. So, neglecting the
solutions (16) in this case comes down to throwing away
about a third of the reduced phase space. [The remain-
ing "two-thirds, " represented by (14) on the quantum
level, correspond to a Minkowski space factored along the
translational isometrics of the Hat metric, thus, in part,

also incorporate classical solutions with closed timelike
curves. ] In the more generic case V(s) g 0 the neglecting
of (16) would still change the degeneracy of the spectrum
of the Dirac observable q. [In the Euclidean formulation
of the theory the omission of (16) in some case even leads
to a change of the values appearing in the spectr»~ of q

[»]]
In this paper we carefully constructed the general

solutions to the quantum constraints of many two-
dimensional gravity theories coupled to YM theories.
Open technical questions concern the construction of an
inner product and an inclusion of the solutions (16). Fur-
thermore, the treatment of conceptual questions of quan-
tum gravity seems rewarding at this point: First, since
the classical solutions include black-hole-type solutions
for some choices of V, and, second, since S reduces to
a reparametrization invariant formulation of a pure 2D
YM theory for V = 0 so that the models comprised in
the action (1) and (3) may well be used for testing and
developing concepts to solve the "problem of time" [22]
(cf. [9,18]). From the mathematical point of view the
evaluation of the partition function for S~ would be an
interesting open task (cf. also [23]).

Most noteworthy, however, is the recent observation
[18,19] that the gravity action (1) as well as any Yang-
Mills action (3) may be seen to be a special case of a tr

model characterized by a Poisson structure on the target
space. This not only allows for a simplification of some
of the considerations performed in the present paper, but
also for a generalization of them to a new class of models
defined on some arbitrary two-dimensional world-sheet
manifold.

As always I am grateful to P. Schaller for valuable dis-
cussions.
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