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A topological version of four-dimensional (Euclidean) Einstein gravity which we propose regards
anti-self-dual two-forms and an anti-self-dual part of the kame connections as fundamental Selds.
The theory describes the moduli spaces of conformally self-dual Einstein manifolds for a cosmological
constant A g 0 case and an Einstein-Kahleriau manifold with the vanishing real Srst Chem class for
A = 0. In the A g 0 case, we evaluate the index of the elliptic complex associated with the moduli
space and calculate the partition function. We also clarify the moduli space and its dimension for
A = 0 which are related to Plebansky's heavenly equations.
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I. INTRODUCTION

Recently a number of noteworthy connections have
been revealed between a class of field theories called topo-
logical quantum field theories on one hand and the math-
ematical advances in the topology and geometry of low
dimensional manifolds on the other. The study of these
relations has been introduced by Schwarz [1] and Witten
[2]. Topological quantum field theories are constructed
by fields, symmetries, and equations.

One concept that lies in the topological quantum Beld
theory is the realization of the moduli spaces. The mod-
uli space is defined as the equivalent set of the solutions
of the fields for the equations associated with the sym-
metries of topological quantum theories. These theories
can be described by the moduli spaces and are character-
ized by their topological and geometrical invariants which
depend only on moduli parameters. There may be vari-
ous topological quantum field theories which describe the
same moduli space. The prim interest of these theories
is these invariants, which are computable by standard
techniques in quantum field theories.

Some gravitational versions of topological quantum
field theories are also given by Witten [3,4]. The
two-dimensional gravity models are of importance and
promise new insight into string theory [4]. He conjectured
that a certain series of critical points in the matrix model
approach (i.e., the dynamical simplicial decomposition
of Riemannian surfaces) is equivalent to two-dimensional
topological gravity. In fact, Kontsevich used the inter-
section theory [5] to support the conjecture. This result
is important to know the nonperturbative efFect of string
theory.

Since the work of Witten, there have been several at-
tempts to construct four-dimensional topological grav-
ity theories over difFerent kinds of gravitational moduli

spaces [6—11]. For example, the moduli space of the
conformally self-dual gravitational instantons was inves-
tigated in detail by Perry and Teo [6].

In previous papers [12,13] we proposed a four-
dimensional topological gravity model. This model con-
tains two types of topological field theories: Witten-
type topological Beld theory in the cosmological constant
A g 0 case and Schwarz-type topological field theory in
the A = 0 case. They are obtained by modifying a chiral
formulation of Einstein gravity developed by Capovilla et
al. [14]. In these theories three quaternionic Kahler forms
and the anti-self-dual part of the kame connections of the
principal bundle PsQ(4) are used as fundamental fields.
The advantages of using these fields are that the treat-
ment analogous to that of Yang-Mills field is possible and
that the moduli space can be easily defined in terms of
them efBciently.

In the A g 0 case, the moduli space is the set of the
equivalence class of the fields defining the Einstein con-
formally self-dual Riemannian manifolds. This moduli
space is up to orientation, identical with the one con-
sidered by Torre [7]. In his paper the dimension of the
moduli space is found to be zero when the cosmological
constant is positive, and the result is true also in our
case. In the A = 0 case, the moduli spaces are those
of Einstein-Kahlerian manifolds with vanishing real first
Chem class.

The purpose of our attempt is to investigate the four-
dimensional gravitational instantons and derive the topo-
logical invariants such as the partition function and ob-
servables. We explore the relation between the simpli-
cial decomposition of four-dimensional manifolds and the
four-dimensional topological gravity.

We can regard the A g 0 case as a simple exainple
of a gravitational analogue of the Donaldson theory and
expect that we can calculate some topological invariants
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such as the partition function in four dimensions.
On the contrary, the A = 0 case is a BF-type topolog-

ical gravity model. The partition function of the Abelian
BF theory is represented by the Ray-Singer torsion [16].
Thus it is interesting to confirm whether or not our par-
tition function in the A = 0 can be related to the Ray-
Singer torsion.

Another aspect of the A = 0 case is that it provides the
self-dual equations of Riemannian curvature two-form.
There have been discovered various kinds of noncompact
gravitational instantons [i.e., asymptotically locally Eu-
clidean (ALE) [17] or asymptotically locally fiat (ALF)
[18]] which satisfy these equations. In this paper we will
treat the compact manifolds only. In the near future we
will extend our investigation to the noncompact case.

The plan of the paper is as follows. In Sec. II, we
present a classical action, fields content, and equations
of motion, and define the moduli spaces in our the-
ory. We explain each case separately to avoid the confu-
sion. In Sec. III, we formulate the Becchi-Rouet-Stora-
Tyutin (BRST) transformations of our model. In Sec.
IV, we mention the dimension of the moduli space and
zero modes which appear in the partition function in the
A g 0 case. In Sec. V, the gauge fixing conditions are
introduced and the partition function is derived in the
A P 0 case. In Sec. VI, we explain the dixnension of the
moduli space in the A = 0 case. Section VII is devoted
to discussion.

II. TOPOLOGICAL TWO-FORM GRAVITY

We adopted the following action suggested by
Capovilla et al. [14] and Horowitz [19] for our topological
gravity model on a four-dimensional manifold M4 [12,13]:

STG = — [Z &Fs ——Z A Zx, ]
A

M4 24

(k=1,2, 3), (1)

where DZ" = dZ" + 2(u x Z)".
In this paper we take n ~ 0 limit in Eq. (1) to make

the contribution from Eq. (2a) or (2b) dominant in our
theory. We are interested in the moduli spaces which
are defined by Eq. (2a) or (2b) and the gauge fixing
conditions which we will explain later. This treatment is
similar to that of the large k limit of the Chem-Simons
theory [15].

For A g 0, one of equations of motion DZ" = 0 can
be derived by F" —(A/12)E" = 0 and Bianchi identity
DI" = 0. Eliminating Z &om the action by using Eq.
(2a) we obtain the effective action proportional to the
second Chem number jF" A F)„which is the classical
action of the topological Yang-Mills theory (TYMT) (the
Donaldson theory) for the SU(2) gauge group [20]. Thus
the theory reduces to a Witten-type topological gravity
model on-shell. On the other hand, for the A = 0 case,
the action describes a Schwarz-type (BF-type) topologi-
cal field theory [16,19].

We suppose the following conditions for the action.
Postulate 1a for M4 with A g 0. M4 is a four-

dimensional oriented Riemannian manifold.
Postulate 1b for M4 with A = 0. M4 is a four-

dimensional oriented Riemannian manifold and has an
almost complex structure with its real first Chem class
cx(M4)xx = 0.

Postulate 2 for the field u". We consider the principal
bundle Ps~~4~ of oriented orthonormal &ames over M4
with the structure group SO(4). This bundles is associ-
ated by the tangent bundle with a metric g„„=e„e~b ~,
where a, b = (0, . . . , 3). e = e„dz" is a vierbein [a sec-
tion of End(TM4) = T*M4TM4 with the assumption of
det(e) g 0].We suppose that the field ur„" denotes an anti-
self-dual part of the frame connections (a connection of
PsU(2) which comes from PsQ(4) PsU(2) e PsU(2)).
is related to the anti-self-dual part of the so(4) valued
one-form connection ~ ~u via g"&.

A/0:
A=O.

~k yk 0 Dgk 0
12

F" =0, DZ" =0,
(2a)

(2b)

where a is a dimensionless parameter and A is a cosmo-
logical constant (as we will see later that it will appear
in Einstein equation R„„=Ag„„with p, v = (0, . . . , 3)).

We start with fundamental fields, a trio of su(2) val-
ued two-forms Z" and a su(2) valued one-form ~"
u„"dz". F" denotes the su(2) valued two-form with F" =
F„"„dz"h dz"—:der" + ((u x ur)" = dur s + e'~ "cu' h (u~ [e'~"
is the structure constant of SU(2)]. Varying the action
with respect to each of fields Z and u" we obtain the
equations of motion

V (e)e" = c)„e"+ I'" (e)e —ur „(e)e& —— (4)

where g"& is an anti-self-dual constant called 't Hooft's

x) symbols [21] x)&s ——es so + ze)„~s'~ s with i, j, k

(1,2, 3). Some useful properties of x)&s are given in Ap-
pendix A. A point to notice is that M4 is an oriented
Kahlerian manifold with cx(M4)xx = 0 from postulate
lb. Thus at least the reduction of the structure group
SO(4) ~U(2) is possible for the A = 0 case (see Ref. [21)
and Fig. 1).

Furthermore we assume the parallelizability of e with
the Levi-Civita connection I'„and the frame connection

defined by e„. This is a sufhcient condition for the
xnetricity of g„„(V g„„=c) g„„—I'„g „—I'„g „=0):

Non-Abelian or Abelian theories whose Lagrangian forms

are B A I" will be called BF-type models, where B will be an

(n —2)-form and I" = E~ is the curvature two-form of some

connection A.

From this equation, the relation between Riemannian
tensor and the curvature tensor I'" is given by

' '&~-"(g(e)) = 4F~-'(e)e'. es
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The 8~ symmetry is regarded as a "restricted" topological
symmetry which preserves the equations of motion (2a)
or (2b). With the appearance of the 8" symmetry, the
theory turns out to be on-shell reducible in the sense that
the transformation laws (6) are invariant under

FIG. 1. Hol(g) on M4 with torsionless connections: (1) al-
most complex {M4,J},GL(2, C) 2 Hol(g). (2) Kihlerian
{M4,g, J},U(2) &Hol(g), e.g. , CP with Kahler metrics. (3)
Riemannian {M4,g}, O(4) 2 Hol(g), e.g. , 8 with Rieman-
nian metrics. (4) Ricci-Sat Kahlerian {M4,g, J},SU(2) 2
Hola(g), e.g. , X3/Zz with Ricci-Sat Kihler metrics. (5) hy-
per-Kihlerian {M4,g, J,J,J },SP(1) ~ SU(2) 2 Hol(g),
e.g. , K3 with Calabi-Yau metrics, T with Sat metrics.

where R„„~=(+&R»~+( &R„„p . It is well known that
the Riemann curvature tensors over M4 are written in
block diagonal form of 6 x 6 matrix [24]:

R»pf.
(—)BjlvpT

8v = ——6 + p ca) )
A k cr lc

12
yak D k+ 2 gk

pp

TFZ'AZ =Z& AZ) —-'b Z" AZ =0. (8)

These constraints were imposed in the original two-form
Einstein gravity [14] and are necessary and sufficient con-
ditions that Z" comes from a vierbein e = e„dx":

as long as the equations of motion are satisfied. The
transformations with parameters e" and p" correspond
to redundant SU(2) and redundant diffeomorphism, re-
spectively.

Our strategy to construct a topological quantum field
theory is to consider the following five equations as gauge
fixing conditions for the 8" symmetry (except for the re-
dundant part of the symmetry).

Postulate g for the gauge fixing conditions for
the 8"symmetry:

(+)+i ~p~+ (+)
~u.

XL pgpp~ ~

Kpvpr
(—)~pvp~ + ~pvp~ )(—)

Z (e) = —g»e A e .

+ S'„„p is the self-dual part of the Weyl tensor and

&W»p is its anti-self-dual part. &+&S»P oc (b~„b„~ 6
e» )R a-nd E oc 6 4 ~~~ where O = R

4b„R is the trace-free part of the Ricci tensor and R is
the scalar curvature.

Postulate 8 for the Z" field. {Z»}are a trio of su(2)
valued two-forms. We suppose that the index h of Z"
and u» denotes the anti-self-dual part of so(4) index.
Namely, su(2) is a Lie algebra of SU(2)1, which comes
from Spin(4) = SU(2)r, x SU(2)~ [the double covering
group of SO(4)].

Our stance for this model is that the fundamental vari-
ables are not e but ~" and E".We seek the solutions
of them which satisfy the above postulates, equations
of motion, and the gauge-fixing conditions. These con-
ditions specify the manifolds concerning our model and
the property of metrics or almost complex structures on
them.

We now turn to the gauge fixing conditions which we
set to restrict 5 degrees of freedom of Z». In this topo-
logical model, there exists a symmetry generated by a
parameter one-form 8" in addition to the SU(2)L, [with
a su(2) valued zero-form v»] and diffeomorphism (with a
vector field (") symmetries:

» D»+(g ll) + ~8»
12

(We should remark that e is independent of e in this
stage. ) {Z»(e)}have 13 degrees of freedom. The Rie-
mannian metric g„„=e„e„g g can be expressed in terms
of Z"(e):

g g» =
~~ e ZpiEX» (Zp7 X ZITI/)

1/2 1 aPpb k

g =- det(g. -) (1o)

Such a two-form Z"(e) is anti-self-dual with respect to
world indices p, v by the Hodge dual operation 'g(z(e))
which is defined via Eq. (10). [But it does not necessarily
mean that Z"(e) belongs to su(2) valued anti-self-dual
two-forms part only because these eigenspaces of the dual
operation vary as the deformations of Z" and g„„(Z).]

The set of Eqs. (2a) or (2b) and (8) arose before as an
ansatz within the &amework of two-form Einstein grav-
ity with the cosmological constant [14,23]. We consider
them to be gruvitational instanton equations. The de-
grees of the freedom of the fundamental fields are com-
pletely fixed by the above conditions (see Table I).

We also assume the parallelizability of e„with the
Levi-Civita connection and the frame connection defined
by e„as before. The equation V(e)~„V(e)„~z = 0,
which comes from Eq. (9) and this parallelizability yield
the following relation between the curvature tensor F"(e)
and Riemannian curvature tensor:

( )R» (e) = 4F„„"(e)z (e).

bz„„=2(z„„xv)" + (Egz")»+ D(„8"„).
(6)

Now we will explain what kinds of Riemmanian tensors
are derived from the solutions of {Z"}which satisfy Eqs.
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TABLE I. A dimension counting of fundamental variables.

A g 0 case
gk

Total

Degrees
3 x 6 = 18
3 x 4 = 12
30

yk
Je

Total

A =0 case Degrees
3x 6=18
1 &4=4
22

(ditfeo. x SU(2))
gauge fix. condi.
(rest. top. / red. )
gauge fix. condi.
Eq. of the motion
F" = (A/12)Z"

Total 30

(dido. x U(1))
gauge fix. condi.
(rest. top. / red. )
gauge fix. condi.
Eqs. of motion
V'" = 0)/(DF" = o)/
(D2Fle 0)
(Dy/e 0)/(D2gk 0)
Total

6 —4+1=3
3 x (4 —1) = 9
22

(8), (ll), and (2a) for A g 0 [or Eqs. (8), (11), and (2b)
for A = 0] and show the definitions of each moduli space.

(a) A g 0 case. Using the property of Riemannian
manifold such as torsion tensor T oc D(e)e = 0 and

Eq. (9) we obtain D(e)Z" (e) = 0. Comparing this with

D(e)Z" (e) = 0,

F*(e) h F'(e) = F*(e) h F'(e) = 0.

which leads to 2"(e) = E"(e). (Note that 2"(e) = 2"(e)
is not a sufficient condition for e = e [14].

By substituting F"(e) = F"(e) = (A/12)Z"(e) into
Eq. (11),

k(-) k( ) Fk (-) Fk (

Thus we obtain that

(12)

Namely, M4 becomes a conformally self-dual Einstein
manifold:

A g 0: R„„(e)= Ag„„(e) and l )W„~ (e) = 0. (15)

The moduh space in this case is de6ned by ~" only:

M(u) = {&u"~w E su(2) 8 A, "F' h F~ = 0)/{SU(2) x diffeo. ).

It corresponds to the moduli space of the conformally
self-dual Einstein metrics because these metrics are rep-
resented by ur" via Eqs. (2a) and (10). If we consider
only compact Einstein conformally self-dual Riemannian
manifolds with R ) 0 (A ) 0), then M4 is either isomet-
ric to S4, or to CP, with their standard metrics &om the
theorem given by Hitchin [24]. So the solution Z (e) de-

termines the standard metric on S or the Fubini-Study
metric on CP for A ) 0.

(b) A = 0 case. From Eqs. (5) and (2b) the Rieman-
nian tensor de6ned by e is self-dual:

)R„„p~(e) = 0

so (M4, g) is a Ricci-flat Kahlerian manifolds. The fol-

lowing theorem gives the characterization of Ricci-Hat
Kahlerian manifolds.

Theorem (Hitchin /'2&]). Let M4 be a compact con-
nected oriented Riemannian manifold. If M4 is Ricci-Hat
and l+)W~„~ = 0, then (M4, g) is one of the following
four cases: (1) (M4, g) is flat, i.e. , is covered by a flat
four-torus; (2) (M4, g) is a Kahler-Einstein KS-surface
(vri ——1); (3) (M4, g) is a Kahler-Einstein Enriques sur-

face (7ti ——Z2); (4) (M4, g) is the quotient of a Kahler-
Einstein Enriques surface by a free antiholomorphic iso-

metric involution (~i ——Z2 x Z2).
[We should better take the opposite orientation of M4

and replace g"t, by self-dual notation g"& for the A = 0

case so that ~+)R~„~ (e) = 0 and Einstein-Kahler forms

{Z)belong to self-dual (l,l) form. ]
The relation between the vanishing covariant deriva-

tive with a Levi-Civita connection and the holonomy

group Hol(g) asserts that Hol(g) C U(2) for Kahlerian
manifolds with the complex dimension two. These com-

pact Kahlerian manifolds with ci(M4)~ = 0 are exactly
the compact complex manifolds admitting a Kahler met-
ric with zero Ricci form (or equivalently the compact
complex manifolds with restricted holonomy group con-

tained in the special unitary group). We now investigate
the properties of the metrics or the complex structures
defined by Z" (e) on these manifolds. We divide these
manifolds into two groups.

Case b 1(tvhen the canonic-al bundle K is trivial). M4

is a K3-surface or a four-torus T . On these two mani-

folds, the following reductions of PU~2~ are possible due to
the fact that the canonical bundles K over them are triv-
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ial. Actually, the restricted holonomy group Holp(g) re-
duces to the identity exactly when a metric is Bat for T4.
Although T4 is not simply connected, Hol(g) = Holp(g)
happens. Therefore the reduction PU~2~

—+ Pl is possible
and all kame connections can be gauged away when met-
ric is fiat [24]. A K3-surface is, by definition, a compact
simply connected complex surface with trivial canonical
bundle K and bi ——0. For a Calabi- Yau metric (a Kahler-
Einstein metric) Hol(g) = Holp(g) C SU(2)~ = SP(1).
Thus SU(2)1, connections (ur" (e)) can be gauged away.

In these cases D(e)Z" (e) = 0 reduces to dZ" (e) = 0
for all k. From dZ" (e) = 0 and D(e)Z"(e) = 0 we obtain
u" (e) = 0 and the Ricci-fiat Kahler metric:

A=0: R„„(e)=0, &+)W„„(e)=0, ur"(e) =0.

(Z"(e)j define a Calabi-Yau metric on a K3-surface or a
Bat metric on T4. The gravitational instanton equations

for a K3-surface with Calabi-Yau metrics and a four-
torus with Hat metrics reduce to

p TFg'p g~ p (i9)

Z" (e) = —rl"&e A e oc g &J~ dz A dz~, (20)

where (J") are a trio of the g-orthogonal complex struc-
tures which satisfy the quaternionic relations and g &

is
an Hermite symmetric metric. z and z denote complex
local coordinates on these manifolds.

The moduli space is the equivalent class of a trio of the
Einstein-Kahler forms (the hyper-Kahler forms) (Z (e)j:

These equations give the Ricci-Bat condition and restrict
(Z") to be a trio of closed Einstein-Kahler forms [8,14].
In Ref. [24] Plebanski used these equations to derive his
"heavenly equations. " A manifold which satisfies Eq.
(19) is called hyper-Kahlerian. On hyper-Kahlerian man-
ifolds, a trio of Kahler forms (Z"(e)) is represented by

M(Z) = (Z ~Z" C SU(2) A, Z' AZ~ = 0, dZ" = 0)/(diffeo. ). (2i)

Case b 2(ashen th-e canonical bundle K is not triv
ial). M4 is K3/Z2, K3/Z2 x Z2, or T /I' where I' is
some discrete group. In these cases the reductions of
PU~2~ m PsU~2~„are not possible because the canonical
bundles are not trivial. From Eqs. (2b), (8), and (11),
the Riemannian self-dual tensors are also derived:

A = 0: R„„(e)= 0, (+)W„„(e)= 0. (22)

The Hitchin's theorem states that (Z"(e)) form Einstein-
Kahler metrics on these manifolds. In these cases
Holp(g) C SU(2)~ but Holp(g) g Hol(g) is held. They
are called as the locally hyper-Kahlerian Kahlerian man-
ifolds and some information &orn co~ and Z" will be
needed to describe the moduli spaces.

III. BRST SYMMETRY

In this section we will explain the BRST symmetry
of the model in the A g 0 case. Our action is invari-
ant under the usual gravitational transformations, the
restricted topological transformations. These transfor-
mations are invariant under the redundant transforma-
tions of them. We shall denote the BRST versions of the
gravitational transf. 8+, the restricted topological transf.
bs, and the redundant transf. b+, respectively.

(For A = 0 this model belongs to the BF-type model
so more careful investigations into the symmetries is nec-
essary [26].) We introduce the following notation for the
BRST symmetry:

difFeo. x SU(2)

(&" v")
red. difFeo. x red. SU(2)

(~" ~")
rest. topological sym.

BRST
ghost

( k)
BRST
ghost
-k

(
u k)

BRST
ghost

antighost
b" = (b„dh", b")

antighost
Pk y d ~ Pk)

antighost
x"

N-L 6eld
Vr~ = (m dh", n")

N-L Beld

N-L 6eld

The on-shell BRST transformations of this model are given by
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(1) baMI» = D„c' + (L,~')» + —p»
—= b; UU» + b (u„*,

(2) bnE'„„= 2(E„„xc)'+ (Z,E*)(»„)+ D(»g*„j = b; E'„„+h E*„„,
(S) bnc' = —(c x c)*+K,c' —A7'+p ~* —= —(c x c)'+ C.c'+p',
(4) blab' = —2(b x c)'+ Z.b'+ Tr*,

(5) bsTT' = 2(TT x c)'+ E.TT'+ A(b x p)'+7 D b*,

(6) bnc» = c 8»c» —p»,
(7) bgyb» = (C,b)» + Tr»,

(6) b~~» = (&.~)»+(&Tb)»,
(9) bnp' = 2(7 x c)'+ Z,p'+ p 4' w bop' = 2(p x c)'+ Z,p*,

(10) bop* = 2(p x c)*+Z,p'+r',
(11) b&r' = —2(r x c)'+Z.r*+ A(p* x q)'+q D p',
(12) bop»
(13) b&p„= (Z.p)„+r„,
(14) bar» = (Z,r)» + (CTp)»,
(15) bshe'„= —2(p„x c)'+ (Z.I|')„+D„p'+ 2p E'„=h.- p'„+ b; ~„'

(16) ban" =2(Xx c)*'+&.X" +'-, (ax ~)" +~ D-X",
(17) bsTr" = y*' —2(TT x c)"+ (L.TT"),

+ —'„'~' (F„,——„E'„,),

where b u„' den-ote the redundant transformations and are given by the replacement of the parameters c —& p.
The characteristic feature of our BRST symmetries is the presence of the restricted topological symmetry of the
fundamental fields: b~u„' = (A/12)4I'„, bsZ'„„= D~„P'„j.

As already pointed out, this action comes to a Witten-type action for A g 0 under u ~ 0 lixnit by removing Z"
using the equation of motion. The restricted topological symmetry can be interpreted as the supersymmetry for a
Witten-type model. The supersymmetric pair (bus, ItI„") is important because it forms a basis of the tangent space of
the moduli space while the other pair (bZ"„„,D~»gsj) is the auxiliary one and can be removed by using the equation
of motion. The symmetries in the A g 0 case are interpretable as

(SU(2) x diffeo. x super sym. )/(redundant SU(2) x redundant diffeo. ). (24)

TABLE II. Fields and their ghost assignment (—1 for form means a 4vector").

Field
bee' = L)„'„dz"A dx"
bZ' = bZ'„„dz" h dz"
difFeo. —+ BRST
c
b = b„dx"
7r = 7r dz"
SU(2)m BRST
c

7r'

red. di8'eo. ~ BRST

p = p„dz"
v. = 7.„dx"
red. SU(2)~ BRST

Content

Ghost
Antighost
N-L field

F
F
B

1
—1
0

—1
1
1

TM4 A'
T'M4 A'
T'M4 A

Ghost
Antighost
N-L field

1
—1
0

0"g A'
n''(3) A'
0'' gy A'

Ghost
Antighost
N-L field

B
B

—1
1
1

TM4 A'

T M4-A'
TM4 A

Ghost B
Antighost B
N-L field F

0"@A'0"(3 A'0"(3 A'

Fermion/boson Ghost number Form Representation

B 0 0''A'
B 0 2 0''(3 A'

SUSY-+ BRST
4' = 4'.d*" Ghost F

Antighost F
N-L Geld B

1
—1
0

0''@A'
0' xA
0' xA
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(&~ )~ = 2c +[rp)~

Z,Z'„„=2D(„c Z*„)+BcD(„Z'„).
(25)

Before we proceed, it will be useful to introduce general

The transformations of these fields also end in those of
the ordinary Witten-type theory even for off-'shell except
P„and Z„"„by redefining the redundant SU(2) ghost

as p* = —(A/12)p* + p"u„' T. he BRST symmetry of
P' agrees with Witten-type theory on shell. Thus this
model coincides with the Witten-type topological grav-
ity model given by Torre [7] up to the secondary Chem
number which is our classical action after eliminating Z
under o. ~ 0 limit.

From now on we will replace the Lie derivative

(Z~) with the modified one Z,~„= (8 ar")„—
D(c"~„") [Z ~~„"—: (Z~(u")„—D(p"~„")] so that

ha+„(h~$„) still remains in PsUizl x Adsu(2) A:

spin bundles 0 ', the space of fields with spin (m, n) of
SU(2)L, x SU(2)~ [27]. Let us denote by nis, ns i,
the two complex vector bundles on M4 associated with
the defining two-dimensional representations of the two
factors. These will only exist globally if M4 is a spin
manifold, i.e., the second Stiefel-Whitney class iv2(M4) =
0. Let us denote by O~' = S~O ' g S 0 ' the tensor
product of the mth symmetric power bundle of 0 ' and
the nth symmetric power bundle of ns i. For example,
the space of PsUlz& x Adsu(2) valued one-form bus is

0 ' A 0 0 ' while the space of ((" v") is
equivalent to Ai 0 'o 0 'i 0 ' (see Table II).

IV. ZERO MODES ZN THE A g 0 CASE

To know the number of zero modes in the quantum
action Sv we consider the moduli space M defined by
our instanton equations Eq. (16) for conformally self-
dual Einstein manifolds:

M(ur) = (uro~ur g su(2) 0 ', I"A I"~ = 0)/(SU(2) x diffeo. ). (26)

Given a solution (Zos, eros) of the instanton equations, the tangent space T(&l) of M is the space of infinitesimal
deformations hu" which satisfy linearized instanton equations modulo deformations generated by SU(2) [the subgroup
of 80(4)] transformation and diffeomorphism:

T(M((u)) = (h~" ~bur" 6 0 ' g 0",DiL)" = 0)/(SU(2) x diffeo. ), (27)

where

Dib(u" =— Fo h Db(u' = 0.

0 ~' 0 (0"@nz' )
~ c"(02og n")
~ c"(04O) 40,

where the symbol sequence is

Vp Vj Vg

0-+0' ' @0"~O" ts 0' ' -+0"~ 0.

In the above sequence D q and D2 are identically zero
operators. The operator Dp is defined by

Do($", v ) = Zg(u" +Dv". (30)

We can easily check the ellipticity of the deformation

This linearized instanton equation is derived by substi-
tuting equation Dbu" (A/12)hZ" =—0 into +FZ&AhZ~ =
0.

We define the following sequence of mappings on a
compact conformally self-dual Einstein manifold in terms
of the spin bundles:

complex. Defining the inner product in each space V;,
we can introduce the adjoint operators Dp and Dz for
Ds and Di, respectively, and the Laplacians 4;; b,s ——

DpDp 6& = DpDp + DyD&& A2 = D&Dy ~ We may then
define the cohomology group on each V;:

H*—:KerD;/ImD;

It is easy to show that H' is equivalent to the kernel
of b, , the harmonic subspace of V;. These cohomology
groups are finite dimensional. We call the dimension of
H'h*. Hi is exactly identical with the tangent space of
M(u) in Eq. (27), the dimension of which we need to
know. On the space Vp, H is equal to KerDp because
the image of D i is trivial. In the A P 0 case, Torre
found that KerDp is equivalent to the space of the Killing
vectors [7]. The kernel of D2 is the whole of the space
V2. Hence H is the subspace of V2 orthogonal to the
mapping Dq, or equivalently it is the kernel of Dx. The
index of the elliptic complex is defined as the alternating
Sl)YIl:

index=h —h +h.
By applying the Atiyah-Singer index theorem [28] to the
elliptic complex we obtain
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ch(O' ' @0' ' e 0"g 0"@0")td(TM, @C)
e(TM4)

ch(O' ' g 0' ' p 0' ')td(TM, g C)
M4 e(TM4)

5y —7& (33)

where ch, e, and td are the Chem character, Euler class,
and Todd class of the various vector bundles involved.
Therefore the alternating sum of h' in Eq. (32) is deter-
mined by the Euler number y and Hirzebruch signature

By changing r ~ [r~, this index can also be adopted
to manifolds with the opposite orientation.

If A & 0, h and h are found to be zero as shown
by Torre [7]. The result such as h = 0 for the A & 0
case agrees with the one of Perry and Teo. They showed
that the dimension of the moduli space of conformally
self-dual metrics is zero on S4 or CP2 by using the de-
formation complex for the metrics [6]. Therefore from
Eqs. (32) and (33), the dimension ho is equal to the
index:

where up and Zp are the background solutions of con-
formally self-dual Einstein manifolds. bu" and bZ are
quantum Huctuations (=infinitesimal deformations) .

The BRST quantiz at ion of the Wit ten- typ e topologi-
cal gravity model in the A g 0 case is straightforward.
Twelve gauge fixing conditions for the supersymmetry
and seven ones for SU(2) x diffeo. are imposed. The
gauge fixing conditions for the supersymmetry consist of
6ve gauge fixing conditions for the supersymmetry except
for the redundancy and seven 6xing conditions to remove
the freedom of the redundant symmetries. We are fixing
the gauge to be Dp bu" = 0 for the diffeomorphism and
SU(2) and Dog" = 0 for the redundant diffeomorphism
and redundant SU(2):

h' = 5q —7~, h' = h' = 0. (34) Dp 84) (2;h~",
diffeo.

D'6~")
SU(2)

The value of h, the dimension of the Killing vector space,
agrees with that obtained by a different method in Ref.
[23]. For S4 with the standard metric, the dimension of
the isometry is given by dim. SO(5) = 10, which coincides
with ho = 5y —7m[ —o x—2 ——10.For CP with the Fubini-
Study metric, the dimension of the isometry is given by
dim. SU(3) = 8 which agrees with h = 5y —7r~ —i y —3 ——

8. If A & 0, ho becomes zero [7], although h and h2 are
not completely determined:

h' = 0, h' —h' = 5q —7~. (35)

V. THE PARTITION FUNCTION
IN THE A g 0 CASE

For con formally self-dual Einstein mani folds with A

0, there are two known examples which are hyperbolic
surface/I' and boundary domain/I' where I' is some dis-
crete subgroup. The dimensions of their moduli spaces
of conformally self-dual Einstein metrics are zero due to
the Mostov s rigidity [29]. Thus in these cases the di-
mensions of the moduli spaces of the anti-self-dual kame
connections are also zero.

(l b(u",
red. diffeo.

D"@")
red. SU(2)

(37)

(&f~)" I" ' n, Db~'
super/(red. difFeo. x red. SU(2))

where the asterisk denotes the Hodge star dual operation
and 0* = —+0+ is the adjoint operator of O. The oper-
ator Do . C (0 ' A ) ~ C (0 ' A ) is the adjoint
operator of Dp . ck ~ b~",

Doc"((u)—:E,u)" + D c"dz

2c"D)„(u"Idx + D c"dx, (40)

Sq ——STG + 8~ [y;, (Dib(u)*' + bg * Dob~

where D = d + (w x ). The elements of the image of
Di '. C (0 ' A ) -+ C (0 ' A ) are four-forms
with symmetric trace-&ee SU(2) indices, i.e., sections of
n4' (3 w4 = n4 p 8 wp.

The gauge-fixed quantum action is given by

For the purpose of the calculation of the partition func-
tion we first decompose uk and Z 6elds as follows:

+P D*yk] (41)

k k + g k gk gk + yak (36)
When expanded out by using the properties of b~ in Eq.
(23), Eq. (41) reads

Sq = STG + 7lzj D]b4) + Kk + DpL) + bk + DpDpc M + 6k + Dp

+ p'j D& + 7k + Dp + k ~ DpDpp cd + k + DpDpc + other higher order terms.
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We are now ready to evaluate the partition function:

Z = 'VX —Sq, (43)

where AX represents the path integral over the fields
such as bZ, bu, ghosts, antighosts, N-L fields, etc.
The Gaussian integrals over the cominuting P —p set
of fields in Eq. (42) yields the determinant (detune)
which cancels with the det40 contribution coming &cm
the anticommuting set of fields b —c™set. The term of
Ps * D&Dec" (P) is three-point interaction of ghosts so
does not contribute to the partition function.

Consider now two terms rs * Dog" + y;~ (Dig)'~ (we
absorb by*De/" term into ri, *D&P" term). In calculating
their determinants we use a differential operator T =
D0 Dl and its adjoint operator T':

3,1 (p gl, l T g0,0
(p g2, 0

(p g4, 0 (44)

One could show detT = det (T'T) = (detb, i) ~ by
using matrix notations for T and T". The erg —bu"—
rr;~ system of commuting fields gives (detEi) i~2 which
cancels with the determinant 7s —P" —y;~ system of
anticommuting fields.

Since the moduli space has a vanishing dimension h
0 for the A ) 0 case, it consists of an isolated point
such as CP with the Fubini-Study metric or S with
the standard metric. We can write the partition function
as

Z = Z;,t t „(detb, i) (detb, o) (detb, i) (detb, e)
= ~instanton + 1 = +1 (45)

VI. THE DIMENSION OF THE MODULI SPACE
IN THE A = 0 CASE

We focus our attention on two cases: a four-torus with
Hat metrics aad a K3-surface with Calabi-Yau metrics.

up to the secondary Chem class by projecting out h zero
modes.

We comment the BRST symmetry of the A = 0
case briefiy. Substituting A = 0 in Eq. (23) the re-
stricted topological symmetry of the fundamental 6elds
are bstd„" = 0, bsZ„"„= D~„P"j The differ. ence is ap-
parent &om the Witten-type topological model given by
Kunitomo [8], which has the following transformation for
the fundamental fields bshe„" = P"„, b'Z„"„= 4's~ „j.The
fermionic ghost zero modes for P„" of our model are con-
tained in the basis of the tangeat space of the moduli
space and further investigation is necessary to know the
precise value of the dimension.

However on a K3-surface aad T4, the special situation
occurs; cu" can be gauged away for on-shell and the topo-
logical symmetry reduces to h Z = dP". The nuinber
of the &ee parameters of this syxnmetry is not 12 but 9
due to the redundancy of {d P = 0/d P = 0}.There is
no need to fix SU(2) and redundant SU(2) in this case.
We only 6x 5 degrees of the restricted topological sym-
metry aad 4 degrees of diffeomorphism and 4 degrees of
the redundant difFeomorphism [26].

bZ = bgo J+gohJ ho J+goI, (46)

where I = (d/dt) J(t)[i—e is the variation of complex
structure J(t) of J and h = (d/dt)g(t)[i —o is the vari-
ation of Kahler-Einstein metric g(t) of g. We quote the
results of the dimensions about e(g), C(g), and K(g) in
order.

A. Deformation of Einstein-Kahler metrics

If some in6nitesiraal Einstein deformations of Einstein-
Kahler metric g are contravariaat two-tensor h, then they
are decomposed into its Hermitian part hg and anti-
Hermitian part Ii s{h}= {hs} {h p, },

{hs}= {h;h(Ju, Jv) = h(u, v)},

{h p, }= {h;h(Ju, Jv) = —h(u, v)},
(47)

where u, v 6 TM4. It is easy to see that both {hi,}and
{h s} are infinitesimal Einstein deforinations. {hs o J}
are shown to be the real (1,1) harmonic difFerential two-
forms and orthogonal to the Kahler forms (which means
the fixing of the scale factor). Therefore they form a
space whose dimension is dim. K&~

' l(M, J) —1.

B. Deformation of complex structures

According to the Kodaira-Spencer deformation theo-
rem [31], the tangent space of the moduli space of com-
plex structures is isomorphic to 2II&~(M, e) in our case,
where 0 is the sheaf of the germs of holomorphic vec-
tor fields. The deformation of complex structures is
separated into two parts. One is antisymmetric com-
plex deformation and the other is the symmetric one.
The dimension of the antisymmetric one {I,}is given

by 2diin H&' (M, J) because antisymmetric complex(2,0)

For a K3-surface with Calabi-Yau metrics and a four-
torus with Hat metrics, the moduli space is represented
only by the deforIaations of a trio of Einstein-Kahler
forms (hyper-Kahler forms) due to our prerequisite con-
ditions for the P bundle on M4 and the gauge 6xing
conditions.

Let K(g) be the moduli space of Einstein-Kahler forms
on M4, e(g) be the moduli space of Einstein metrics, and
C(g) be the moduli space of complex structures, respec-
tively. They are the equivalent classes under the all dif-
feomorphism. At 6rst we quote the result about the di-
mension of K(g) briefiy when M4 is a Kahlerian manifold
with vanishing real 6rst Chem class, which is given by
Ref. [23]. Then we clarify the difFerence between M(Z),
i.e., the moduli space of hyper-Kahler forms de6ned by
Eq. (21) and the moduli space K(g).

When the real first Chem class is zero, the deformation
of the Kahler class with a 6xed complex structure induces
a deformation of an Einstein metric &om the Calabi- Yau
theorem. The deformation of Einstein-Kahler forms {Z}
consists of those of Einstein metrics {g}and of complex
struct. ~res {J}and needs a careful examination of its
degenerated part:
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deformations are in one-to-one correspondence to (2, 0)
or (0, 2) harmonic differential forms of (g o I,). Thus
the dimension of the remainder (I,) is given by 2dim

H~x(M, 0) —2dim H~ ' (M, J).
C. Deformation of Einstein-Kahler forms

The degenerated part of the deformations of the
Einstein-Kahler forms consists of the anti-Hermitian Ein-

stein deformations (h h o J), and the symmetric com-
plex deformations (g o I,). The former counterbal-
ances the latter; g o I, + h b 0 J = 0 and their cor-
respondence is shown to be bijective. The dimension
of (I,) is the same as that of (h x,) and is given by

2dim H&~(M, O) —2dim H&~
' (M, J). Consequently in-

finitesimal deformations of the Einstein-Kahler form is
represented by

+(hho JhhoJ

dim„H~x x}(M,a) —1

dime(g)

+go I,) + go I,
2dlmcH(2, 0}(M g)

dimC(g) = 2dimc Hx (M, 0)

Finally, the dimensions of moduli spaces can be sum-
marized for Einstein metrics, for complex structures and
for Einstein-Kahler forms over the Kahlerian manifolds
with cx(M)R ——0:

The results for a Es-surface and T4 are given by

'
dimK(g) = 59,

K3; ) dixnC(g) = 40,
dixne(g) = 57,

dime(g) = dime ' (M, J) —1 + 2dim Hc~ (M, 0)

—2dim H~~
' }(M, J),

dimC(g) = 2dim H~(M, 8),

(49)

(5o)

by substituting 5&,x = 20 and b = 1 and

dimK(g) = ll,
T ) dimC(g) = 8,

dime(g) = 9,
dimK(g) = dimHxx' (M, J)—1+ 2dim H&(M, O). (51)

One can show that the canonical line bundle K is triv-
ial over a K3-surface or over T4, and that there is a
nowhere vanishing holomorphic two-form A. The isornor-
phism of sheaves due to A and the Dolbeaut theorem:
Hx (M, ex) = Hx (M nx) = H~ ' }(M C) leads to the
equations

dimC(g) = 2dim H~ ' }}(M,C), (53)

dimK(g) = 3dim H ' }(M,C) —1. (54)

dime(g) = 3dim H~ ' }(M,C) —1 —2dim H~2'0} (M, C),

(52)

by substituting b ' = 4 and b ' = 1 except for a scale
factor.

The difFerence between M(Z) and K(g) is as follows:
the moduli space of the Einstein-Kahler forms K(g) is
defined in terms of (g, Jx) or equivalently Z only. On
the other hand, the definition of JH(Z) specifies a set of
(g, J,J,J ) or equivalently (Zx, Z2, Zs), which takes
into account the degrees of &eedom how one can choose

g and a trio of the g-orthogonal complex structures up
to a scale factor.

Before we present the difFerence between dixnM(Z)
and dimK(g), let us show that the degrees of freedom
of a trio of g-orthogonal complex structures which satisfy
the quaternionic relations for a fixed g is 3 (see Appendix
B).

For a fixed g,

(g —orthogonal quaternionic almost complex structures J ) = S = ImH~ ~+ ~+ ~

where ImH represents the imaginary part of the field of the quaternion H;

lmH —= (J' = »Jx +»J2+»J'l(J')' = (J')' = (Js)2 = 1,Jx J2 = J2Jx =-Js, -
(2:x, x2, »)ER, J J = JJ = J', J J'= -J'J = J ). - (56)
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The degrees of &eedom how one can choose J for a fixed

g is given by dims = 2. The region of J which is or-
thogonal to Ji for a fixed pair (g, Ji) is equivalent to Si
over S2. Js is automatically arranged after (g, Ji, J2)
are fixed.

From these facts, the difFerence between dimK(g) and
dime(g) is given by 2, which corresponds to dimS (the
degrees of freedom of how to choose Ji for a given g)
and coincides with 2diin H(2 o)(M, C) = 2 (the degrees
of freedom of how to choose Ji+h Ji for a fixed g+hg) up
to a scale factor. The difference between dimK(g) and
dime(Z) is given by dimSi = 1 up to a scale factor.

After all the dixnension of our moduli space becomes

dime(Z) = 60 for K3,

it may provide nontrivial information such as a difFer-
ential invariant to distinguish difFerential structures on
these manifolds. Such a functional 0 is required to be
BRST invariant to preserve the topological nature of the
theory and may be obtained &oxn the BRST descendant
equations as in two-dimensional topological gravity [4].

The extension of the algebraic curves (one-dimensional
compact complex manifolds) with Einstein metrics to
four dimensions may be the algebraic surfaces (two-
dimensional compact complex manifolds) with Einstein
metrics. T4 and a K3-surface belong to the algebraic
surfaces. To construct the topological gravity models by
taking another gauge fixing conditions, which describe
these algebraic surfaces is worth pursuing.

dime(Z) = 12 for T, ACKNOWLEDGMENTS

up to a scale factor. In fact, we have confirmed the di-
mension of the moduli space M(Z) by applying Atiyah-
Singer Index theorem to the deformation complex (we
will report this in the next paper [26]).

The moduli space M(Z) has a bundle structure with
the fiber (Ji, J2, Js) over the base manifold which is the
moduli space of the Einstein metrics up to a scale factor:

We are grateful to Q-Han Park and S. Morita for use-
ful discussions. We also acknowledge N. Sakai for useful
discussions and a careful reading of the manuscript. One
of us (M.A.) thanks A. Futaki most for pointing out the
difference between K(g) and M(Z) and the necessity of
an almost complex structure with a vanishing real first
Chem class for the A = 0 case.

K(g)

e(g)

dim&i(E) = dimK(g) + 1 = dime(g) + 3

dimK(g) = dime(g) + 2. APPENDIX A: PROPERTIES OF THE 17

SYMBOLS

We list some useful identities of the g"& [21]:

VII. CONCLUSION for a, b = 1, 2, 3,

(A1)
In this paper we have presented a topological version

of two-form Einstein gravity in four dimensions. For a
compact manifold in the A g 0 case, we have defined the
elliptic complex associated with the moduli space of our
theory. By applying the Atiyah-Singer index theorem
in the A g 0 case we have evaluated the index of the
elliptic complex and the partition function. In the A = 0
case we have clarified the dimension of the moduli space
which is related to the Plebansky's equations for T4 and
a K3-surface.

It would be intriguing to study the A = 0 case,
since the relation of four-dimensional (Riemann) self-dual
gravity and two-dixnensional conformal field theory has
been investigated. In fact, Park showed that the former
arises &oxn a large ¹limit of the two-dixnensional sigma
model with SU(N) Weiss-Zumino terms only [32]. Our
topological model will be useful to understand the rela-
tion and to develop the self-dual gravity.

As another approach, it would also be interesting to
extend the BF-type model in the A = 0 case to the
super BF-type model [8]. Since the dimension of the
moduli space is nonzero, there arise as xnany fermionic
zero modes as the dimension, which make the partition
function trivial. To avoid this we need some functional
G which absorbs the zero modes. If one calculates the
vacuum expectation value of the "observable" 0, then

g 0
——go ——b" for a = 0, 1, 2, 3,

(3) 9 s9",e
——2(h 'hs —2e s,g) = 2P s',

(4) V."sn."= 24h:+ exing.".,

(A2)

(5) Z„"„(e)Z" ( ) = 2P„„
(6) Z"„"( )Z'„(e) = -h'„h„+ i,)„Z"„(e).

APPENDIX B: SOME DEFINITIONS,
THEOREMS) AND PROPOSITION

In this appendix we put some definitions, theorems,
and proposition which we have used.

where t p~ and e ~d denote the antisymmetric constant
tensors.

From Eqs. (3) and (4) the identities of Z"(e) are de-
rived:
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Theorem (Kobayashi and Nomizu [22]). Let P(M, G)
be a principal 6ber bundle with a connection 1, where M
is connected and paracompact. Let uo be an arbitrary
point P. Denote by P(up) the set of points in P which
can be joined to up by a horizontal curve. Then (1) P(up)
is a reduced bundle with structure group Hol(g) and (2)
the connection I' is reducible to a connection in P(up).

Theorem (Calabi and Yau [30]). Let M be a compact
Kahlerian manifold, Z is its Kahler form, and any closed
(real) two-form of type (1,1) belonging to 2vrcq(M)~ is
the Ricci form of one and only one Kahler class Z.

As an immediate consequence we get the following
fact: the compact Kahlerian manifolds with zero real first
Chem class are exactly the compact complex manifolds
admitting a Kahler metric with zero Ricci form (equiv-
alently with restricted holonomy group contained in the
special unitary group).

Definition 1 (Besse [24]). A 4n-dimensional Rie-
mannian manifold is called (a) hyper-Kahlerian if its

holonomy group is contained in SP(n) and (b) locally
hyper-Kahlerian if its restricted holonomy is contained
in SP(n).

Definition 2 (Besse [24]). A 4n-dimensional Rieman-
nian manifold is called (a) quaternion-Kahler if its holon-
omy group is contained in SP(1V) x SP(1) and (b) lo-
cally quaternion-Kahler if its restricted holonomy group
is contained in SP(N) x SP(l).

Proposition 1 (Besse [24]). A Riemannian manifold

(M, g) is hyper-Kahlerian if and only if there exist on M
two complex structures J~ and J2 such that (a) J~ and
J are parallel (i.e. , g is a Kahler metric for each) and

(b) J'J' = J'J'. -
Notice that J is still a parallel complex structure

on M and more generally, given (xq, zz, xs) in R with
xy + xp + x3 — 1

&
then the complex structure J

xq J + x2J + x3J on M is still parallel. So there is
a whole manifold (isomorphic to Sz) on parallel complex
structure on M.
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