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Fluctuations of the gravitational constant in the inflationary Brans-Dicke cosmology
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According to the Brans-Dicke theory, the value of the gravitational constant G which we measure at
present is determined by the value of the Brans-Dicke scalar field P at the end of inffation. However,
because of quantum Quctuations of the scalar Belds produced during in6ation, the gravitational
constant G(P) may take difFerent values in ditferent exponentially large parts of the Universe. We
investigate the probability distribution P„to Bnd a domain of a given volume with a given value of the
gravitational constant G at a given time. The investigation is performed for a wide class of efFective
potentials of the scalar Beld u which drives inBation, and with two diferent time parametrizations.
Our work is based on the analytical study of the diR'usion equations for P„,as well as on the
computer simulation of stochastic processes in the inQationary universe. We have found that in
some in8ationary models the probability distribution P„rapidly approaches a stationary regime.
The shape of the distribution depends, however, on the choice of the time parametrization. In
some other models the distribution P„is not stationary. An interpretation of our results and of all
ambiguities involved is outlined, and a possible role of anthropic considerations in determination of
the gravitational constant is discussed.

PACS number(s): 98.80.Cq, 04.50.+h

I. INTRODUCTION

One of the most amazing properties of inflationary cos-
mology is the process of self-reproduction of inflationary
domains of the Universe (for a review, see [1]). This
process exists in many versions of the inflationary uni-
verse scenario, including old inflation [2], new inflation [3,
4], chaotic inflation [5], and extended inflation [6]. Self-
reproduction of inflationary domains implies that there
is no end of the evolution of the Universe. This process
divides the Universe into many exponentially large do-
mains with all types of symmetry breaking and with all
types of compactification of space-time compatible with
inflation.

The best way to describe the global structure of the
Universe in this scenario is provided by the stochastic ap-
proach to inflation. The original version of this approach
[7] was based on the investigation of the distribution of
probability P, (P, t) to find a given field P at a given time
at a given point. This approach was not well suited for
the investigation of the process of self-reproduction of the
Universe. A more adequate approach is based on the in-
vestigation of the distribution of probability P„(P,t) to
find a given field P at a given time in a given physical
volume [5, 8, 9].
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The most detailed study of the distribution P„was
performed recently in [10], where it was shown that in
many inflationary models including the models with the
efFective potentials gP and e & this probability distribu-
tion rapidly approaches a stationary regime. This means
that, if one takes a section of the Universe at a given
time t and calculates the relative &action of domains of
the Universe with given properties (with given density,
with given values of various scalar fields, etc.), the result
will not depend on the time t, both during inflation and
after it.

This result represents a major deviation of inflationary
cosmology &om the standard big bang paradigm. A lot of
work is still needed to verify this result and to obtain its
consistent interpretation in the context of quantum cos-
mology. One should also study how our methods work in
the context of more complicated models, including sev-
eral different scalar fields [11,12, 10].

A natural idea would be to apply our methods to the
extended inflaton scenario [13],which is a hybrid of the
Brans-Dicke theory and old inflation. In this scenario
one has two scalar fields: the Brans-Dicke field P and the
inflaton field o. However, during extended inflation only
the former evolves in time, which reduces the problem to
the one we have studied already. Moreover, the value of
the scalar field P after inflation in this theory typically is

determined not by the stochastic dynamics during infla-

tion, but either by the position of a pole of a nonminixnal
kinetic terin of the field P or by the efFective potential of
this field which should be introduced into the theory in
order to make it consistent with observational data [14].

In this paper we will consider theories of another type,
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which are hybrids of the Brans-Dicke theory vrith new
[15, 16] or chaotic infiation [17]. In these models, espe-
cially in the chaotic infiation model of Ref. [17], simul-
taneous stochastic evolution of the fields P and n is very
nontrivial. One of the most interesting consequences of
this evolution is the division of the Universe after in8a-
tion into exponentially large regions with different values
of the gravitational constant in each of them. Indeed, the
gravitational constant G in the Brans-Dicke theory is a
function of the field P,

G=M~ (P)= (1)

where u is the Brans-Dicke parameter, u ) 500 [18, 19].
The value of the scalar field P almost does not change
after in8aton. Therefore, investigation of the distribution
P„(g,t) gives us the fraction of the physical volume of
the Universe where the gravitational constant 0 has the
effective value (1).

The stationary character of the probability distribu-
tion Pz(o ) in the theory of one scalar field cr in the stan-
dard general relativity theory is closely related to the
existence of the Planck boundary 0.~, where the poten-
tial energy density V(0) becomes comparable with the
Planck density M&~. Typically the distribution P~(o, t)
rapidly moves towards large o, for the reason that the
volume of domains with large V(0) grows very fast. The
distribution P„(cr,t) becomes stabilized as it approaches
the Planck boundary, where, as it is argued in [10], the
process of self-reproduction of in8ationary domains is less
efBcient.

In the Brans-Dicke theory the situation is somewhat
different. The Planck boundary is not a point, but a line
Pp(crp), where

4+2
V(oy ) = M~(P~) = (2)

Therefore, after the distribution P„(0,P; t) approaches
the Planck boundary, it can still xnove along this bound-
ary. One may encounter three different possibilities.

(1) The distribution P„(n,P; t) never becomes station-
ary for any values of P and 0. Nevertheless, the proper-
ties of doxnains of the inQationary universe filled by the
fields P and ir do not depend on the time when these do-
mains were formed. This is the most profound station-
arity which is present in all inflationary models where
the process of self-reproduction of in8ationary domains
is possible. In Ref. [10] we called this property microsta
tionarity, or /ocaL 8tationarity.

(2) The distribution P„(o,P; t) normalized over all pos-
sible values of P and cr gradually approaches a stationary
regime In Ref.. [10] we called this property macrosta
tionarity, or global 8tationarity.

(8) The maximum of the distribution P~(o, g;t) runs
away to infinitely large (or to infinitely small) values of P
and o. As a result, the relative fraction of vol@me filled
by any finite P and o as compared with the tota/ volume
of the Universe decreases in tixne, which means that the
global stationarity is absent. However, one may wish to
exclude from consideration domains with infinitely large
(or infinitely small) values of P and 0 and concentrate
on some finite part of space (P, cr) (for example, on those

values of P and 0 which are consistent with the existence
of life as we know it). Then in some cases one may find
out that the probability distribution P„(o,g;t) normal-

ized over this part of space (p, 0') (or the ratio & ~

'&'
il )

approaches a stationary regime. In this case we will speak
of a runatoay 8tationarity.

As we will see, all these possibilities may be realized
in the in8ationary Brans-Dicke cosmology, depending on
the choice of the efFective potential V(o).

There exists another important issue to be discussed in
this paper. Even if the distribution P„(cr,g;t) does not
depend on time, it may depend on the choice of possible
time parametrizations [10]. As we will see, in the Brans-
Dicke theory this dependence can be quite strong.

In Sec. II of this paper we describe chaotic in8ation
in the Brans-Dicke theory at the classical level, following
Ref. [17]. In Sec. III we derive the stochastic equations
describing the evolution of quantum 8uctuations of the
scalar fields P and o during inflation, as well as the ori-
gin of adiabatic energy density perturbations from these
8uctuations. In Sec. IV we describe the phenomenon of
self-reproduction of the in8ationary universe in the pres-
ence of both scalar fields as well as the stochastic ap-
proach to in8ation in Brans-Dicke theory. We study the
boundary conditions for P„in Sec. V. These equations
are extremely coxnplicated, and it is not always possi-
ble to solve thexn analytically. Therefore we performed
a computer simulation of the stochastic evolution of the
scalar fields during in8ation. We describe these numeri-
cal simulations and their results in Sec. VI. In Sec. VII
we analyze the case of a constant vacuum energy density,
where runaway stationarity appears. For general increas-
ing potentials V(0), the probability distribution in the
physical frame will rapidly move to large values of ~, con-
stituting what we called runaway solutions. These non-
stationary solutions are described in Sec. VIII. Impos-
ing boundary conditions at large 0 or introducing steep
potentials V(o ) will give a stationary distribution, as de-
scribed both numerically and analytically in Sec. IX. In
Sec. X we derive the stochastic equations using a different
time parametrization, where instead of the usual time t
we choose the time 7. lna(t) [7, 10]. The methods of
computer simulations of stochastic evolution in time ~
are difFerent from the methods which we use in our sim-
ulations of the evolution in time t. We describe these
methods and their results in Sec. XI. We compare the
results obtained in different time parametrizations and
xnake an attempt at their interpretation in Sec. XII.

As we already mentioned, under certain conditions the
probability distribution P„is stationary, i.e., time inde-
pendent. This apparently gives us a possibility to cal-
culate the position of the maximum of the distribution
P„and thus predict the most probable value of the grav-
itationaI constant in the Universe. However, this idea
involves some ambiguous speculations. The readers will
find them in the Appendix.

II. INFLATIONARY BRANS-DICKE
COSMOLOGY

In this section we will describe the classical evolution
of the in8ation field with a generic chaotic potential, in
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Here M&(4)) = —P, P /8(d is the Brans-Dicke field,
and o is the inBaton Geld. We will consider sev-
eral different potentials, including V(0.) 2 (7, 40. ,

—'q(m2 —Ao2)2, and 2
02 + 4o ln —. The theory

(3) looks similar to the extended infiation model [13].
The di6'erence, which will be very important for us, is

that in the extended inBation scenario inQation occurs at
(r = 0, whereas in our case infiation occurs during the
slow rolling of the field (r [17]. The complete equations

of motion in a Friedmann-Robertson-Walker (FRW) uni-

verse with scalar fields P and (r are

(D'+ —,'.z) y(t) = o,
D2&(t) 8V

II2 + ~ 4~ [i j2 + 1(T2 + V(0))

where rc = +1,0, D—:0 /Bt2 + 3&g/gt —Q2/a2, and
JI = a/a. During infiation we can consistently use the
slow rollover approximations V"((r), I(,2/a2 « II2,

2(r + 24) « V(0) Th'e. equations of
motion (4) then simplify to

j= ~a,
B = —12H~, H2 = 24~, V((T) .

We will be most interested in theories with V((T)
—,
" (T2", for which Eqs. (5) reduce to

2 (nA) ) tt

y (~i)»2

It follows that in those theories P and p = o move

along a circle of constant radius in the plane (y, P). We
can parametrize the classical trajectory by polar coordi-
nates (P(t), p(t)) = (r sintI)(t), r costI)(t)) with constant
r, and angular velocity

( ~ ) i/2 n-t
p(t) =

~

—
~ (

—
) (2 cos p(t)]"

(3u) 2
(7)

For n = 1 we find solutions with a constant angular ve-
locity

P(t) = sio (tto + &
—.2),

o(t) = ~ cos (tts + ~ t), —

f sttt(())tt+ i) )at =ao~ sin 80

(8)

Here 0 & 80 ( n/2. These solutions in the interval

00~ & t &( 2+ correspond to the usual power-law
behavior a(t) t . For n & 2, the angular velocity

the context of the Jordan-Brans-Dicke theory of gravity:

M2
R —-'(8(t) —-'(8(T) —V(o)

16m.

decreases with time and the classical solutions are more
complicated, but inBation is still power law. These solu-
tions are actually attractors of the complete equations of
motion (4), for all n [20].

We will now discuss initial and final conditions for
the inBationary universe. In the chaotic inBation sce-
nario, the most natural initial conditions for inBation
are set at the Planck boundary, V(o'~) = M~(Qy), be-
yond which a classical space-time has no meaning and
t,he energy gradient of the inhomogeneities produced
during inBation becomes greater than the potential en-

ergy density, thus preventing inBation itself. The ini-

tial conditions for inBation are thus defined at the curve
= (2 ) (2"„) op . On the other hand, infiation

will end when the kinetic energy density of the scalar
fields becomes comparable with the potential energy den-

sity, 2/2+ 2(T2 V(o) or m2 = V"(0) = H2($, (r). This
condition corresponds to the end of inBation boundary

~Mi (P,) = ~(t), .
We will also consider an inBaton potential which

leads to spontaneous symmetry breaking, V(0)
2 2

—"
((To2 —02), where (To = —.In this theory Eqs. (5)

are expressed as

0

The fields move approximately along a circle centered at
~7 = oo, in a clockwise direction if the initial condition
is to the left of the minimum of the potential and in an
anticlockwise direction if it is to the right. In fact, for
cr && oo they will soon approach the asymptotic solution
to (6) with n = 2, while for o « (To, we find the solution

p(t) =

(lo)

a(t) =a()t .

InBation will now occur in two disjoint sectors, either
to the left or to the right of the minimum. The Planck
boundary for initial conditions is again defined by V(0 ) =
M&(P), while the end of infiation is given by the condi-
tion io2 V((7). These two boundaries are defined by
the curves

(
Sl

) (o2 o2 ~2/2

(3~) i) 2 Itpo

In the absence of any potential for (tt, the Brans-Dicke
field remains almost constant after inBation, and there-
fore the Planck mass today is approximately given by

its value at the end of infiation, My —P, . On

the other hand. , the total amount of inBation is approxi-

mately

The value of the Brans-Dicke parameter u is bounded
by post-Newtonian experiments [18] and primordial nu-
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cleosynthesis [1S]to be very large, ur ) 500, and therefore
it is appropriate to use the approximation cu && 1 in the
following analysis.

III. STOCHASTIC METHODS

In this section we will describe the stochastic evolution
of the scalar 6elds during inflation and the generation
of adiabatic energy density Buctuations from quantum
Buctuations of these 6elds.

A. Quantum fluctuations of scalar flelds

P(x, t) = P(x, t) + jdsk 8(k —saH)
x apus(z) + atsuf, (z)

o(x, t) =o(x, t)+ jdsk' e(k' —saH)
x bs vs (x) +hfdf, v„',(x)

(12)

where e is an arbitrary parameter that shifts the scale for
coarse graining [7]. The physical results turn out to be
independent of the choice of e. The quantum Buctuations
are assumed to satisfy the commutation relations

[ag„ats,] = [bg„bt&,] = bs(k —k'), [as, b„,] = 0.
The exact solutions to the scalar fields' equations (4)

in de Sitter space with V(o) = 2m2o are given by [21]

The classical scalar fields P and o in de Sitter space are
perturbed by their own quantum Buctuations, which are
stretched beyond the horizon and act on the quasihomo-
geneous background 6elds like a stochastic force. In order
to calculate this eEect we will coarse grain over a horizon
distance and split the scalar 6elds into long-wavelength
classical background fields P(z) and o(x) plus short-
wavelength quantum fluctuations with physical momenta
k/a) H:

where ( and ( behave like an efFective white noise gener-
ated by quantum fiuctuations, {((t)((tf))= (((t)((tf))—
b(t —t') and {((t)((t')) = 0, which leads to a Brown-
ian motion of the classical scalar fields P and g, with a
typical step (15).

We can alternatively describe the stochastic process
in terms of the probability distribution P, (fr, p; t). This
distribution describes the probability to find the fields f))

and o at a given time t in a given point. Equivalently,
it describes the probability to 6nd, at a given time t in
the domain with a given comoving (i.e., nonexpanding)
volume, the fields with mean values f)I) and o. As was
shown by Starobinsky [7], this probability distribution
satis6es the Fokker-Planck equation

BP,
Bt

8 /M2(g) BH H ~28(H ~ P,))P+
Bo i 4s. Bo

' 8+2 Bfr

8 (M'(f)()) BH H ~' 8(H ~'P, ) )

8$ 2m 8$ ' 8s 2 8$
BJ 8J4,
Bo 8$ (i7)

H3—„(~-')=, ,p(p-1) (~-'- )+,' (4 -'- V(-))

where we have chosen the Stratonovich version of
stochastic processes. This equation can be interpreted
as the continuity equation BP,/Bt + V' J = 0 associated
with the conservation of probability. The 6rst terms of
each current correspond to the classical drift forces for
the fields p and fr (6), while the second terms correspond
to the quantum difFusion due to short-wavelength fiuctu-
ations (15).

One can then compute the field correlations during in-
Bation with the help of this probability distribution, as-
suming that H is approximately constant:

ik.x (2) 2 9 3 9uk (+) (2ff)s/p 2 /~9 ft ( 9) i I 4 + tet 4

~ik .x (2) 9 m 9vs (x) =
) / 2 /7r )7H„( k)(fI, i/ =

4
—~ —4,

(14)

H3
+ q(q —1) (t)I) fr'i )

—,' (~- -'V'(-))

For example, for V(o) = 2m2o2, we find

(18)

where )7 = —(aH) is the conformal tiine, and

Heft(e) = —t/ —exp(fe) (1+ —'). The eroplitotfe of the

quantum fiuctuations of 4t and o can be computed as

(f2) lf'
{e

' '
i)

H*
t

tt' {i -'p„") tr' t

Ht «u,

Ht « ~~',

by = (4~k'~u„~2)"= ~,
bo = (4mk's[vg [2)

which coincides with the Gibbons-Hawking temperature.
These quantum Buctuations then act as a stochastic

force on the classical background 6elds. One could write
the evolution of the coarse-grained fields in the form of
I angevin equations.'(4) s~+ H

(is)

Note that the dispersion of both 6elds due to Brownian
motion is identical for a relatively large time interval.

We will now describe the origin of energy density per-
turbations in the Universe from quantum Buctuations of
the scalar 6elds during inflation, and postpone the study
of the self-reproduction of the inflationary universe for
the next section.

B. Energy density perturbations

In this subsection we will describe the generation of
adiabatic energy density perturbations, when both fields
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a and P are included. The amplitude of these perturba-
tions has been computed previously in [22, 20]. We will
give here an alternative derivation.

The energy density perturbations could have origi-
nated during inflation in our model (3), as quantum fluc-
tuations of both scalar 6elds that 6rst left the horizon
during inQation and later reentered during the radiation-
or matter-dominated eras. The amplitude of those per-
turbations can be computed in the Einstein frame (g„„=
gag„„)by using the equality [23]

(, 2 P &Sp

p+") p iHc

where 1HC corresponds to the time when the perturba-
tions first left the horizon and 2HC to the time when they
reentered. Since during inQation p+p 0, the amplitude
of reentering perturbations can be written as

where M~ is now P dependent. For theories with poten-
tials of the type Ao, it behaves like

bp 50m

p My (P, )
(28)

Therefore, we note that the larger is the Planck mass at
the end of inQation in a given region of the Universe, the
smaller will be the density perturbation in this region for
this model. We will return to the discussion of this result
at the end of the paper.

6(d /2(dA) ' o

5n7r q 3n ) %=65

In .the case of the theory Ao, the density perturbation
(27) takes the usual ~A dependence. However, for the
theory m a /2, the perturbation on the horizon scale is
given by

8p 2g 8P

2HC j + J 1HC
(21) IV. SELF-REPRODUCTION OF THE

INFLATIONARY UNIVERSE
where g = 2/3 (3/5) for perturbations reentering during
the radiation (matter) era. During in8ation, the pressure
and energy density in our theory (3) in the Jordan frame
have the expressions

p = 2/2+ 2o2+ V(o),

14,2 + 1a2 V(a)
(22)

and thus p + p = P2 + o 2. The adiabatic energy density
perturbations follow &om the quantum Quctuations of
the fields. In the Einstein frame, ~gP = ~gp,

hp V'(o) bP
bo. —4—.

p V(o)
(23)

Using the equations of motion (5) we find (for the cold
mat ter-doininated universe)

bp

~HC

6 PbP+ a8a
5 P2+ a2

1HC

3K P+ o.

5vr P2+ o2

(24)

6p 24 K(a, P) V(o) ~ 1+P/a
p 5 M&(P) V'(a) ~1+ (P/a)

(25)

Note that in the large ur limit, P (( o during the last
stages of in8ation, which ensures the approximate equiv-

alence of the Einstein and Jordan frames. We then re-
cover the usual expression [1]

hp 24 K(o, g) V(a)
p 5 Mz(P) V'(a) iv

{26)

where Np stands for the number of e-folds before the
end of inQation associated with the horizon crossing of
a particular wavelength. For perturbations of the size of
the pregent horizon, we must compute the last expression
for Np 65 [1]. For a general potential V(o), we can
write the density perturbations (24) as

Quantum perturbations produced during inflation are
responsible not only for galaxy formation, but also for
the process of self-reproduction of the whole inQationary
universe. This is the important effect which we are going
to consider here in the context of Brans-Dicke cosmology.
We will begin with an elementary description of this ef-

fect, and then return to its description in the context of
the stochastic approach to inQation.

A. Elementary considerations

An important property of the inQationary universe is
that processes separated by distances l & 0 proceed
independently of one another [1]. In this sense any in-
Qationary domain of initial radius exceeding H can be
considered as a separate miniuniverse, expanding inde-
pendently of what occurs outside it, as a consequence of
the "no-hair" theorem for de Sitter space.

During a typical time H each such domain expands
e times, and its volume grows e 20 times. This means
that this domain becomes divided into 20 independent
inQationary domains. The values of the classical 6elds
P and a inside each of these domains can be obtained
by solving classical equations of motion for these 6elds.
However, in addition to this classical motion one should
take into account quantum Quctuations of these 6elds,
which become "&ozen" during the time H . They have
a typical amplitude 2, but they may have diferent signs
in each of the new 20 domains. Let us assume that this
amplitude is much greater than the classical shift of the
values of these 6elds during the time 8 . In this case
in five out of 20 domains the field P jumps towards its
smaller values, and the field o. jumps towards its greater
values. The same happens during the next time H

In the context of theories with V(a') Aa, this leads
to a continuous process of recreation of inQationary do-
mains. Using the classical equations of motion (6), one
finds that the condition that quantum difEusion is more
important than the classical drift of the fields P and o' is



50 FLUCTUATIONS OF THE GRAVITATIONAL CONSTANT IN. . . 735

satisfied for [17,24]

4 & ~') (29)

where the last term corresponds to the Planck bound-
ary. Prom this equation it follows that the in6ationary
universe with most natural initial conditions (i.e., not far
&om the Planck boundary) enters an eternal regime of
self-reproduction. During this regime the Universe be-
comes filled with all possible values of the fields P and
a, independently of their initial values in the region (29).
Consequently, the parts of the Universe where in6ation
ends will consist of many exponentially large domains
in which the Planck mass M~(P) and the gravitational
constant G(P) may take all possible values &om 0 to oo.

This scenario, which we called eternal inflation [5], de-
viates strongly &om the standard big bang theory. For
example, according to the standard theory a closed Uni-
verse should eventually collapse and disappear. In our
scenario a closed Universe which has at least one in6a-
tionary domain with a field P in the interval (29) will
never disappear as a whole.

Here one should make some comments to avoid ter-
minological misunderstandings which sometimes appear
in the literature. Eternal in6ation does not mean that
each part of the Universe eternally in6ates. The typ-
ical length of each geodesic at the stage of in6ation is
finite. However, there is no upper limit to the length
of these geodesics, and those extremely rare geodesics
which have large length give the dominant (and perma-
nently growing) contribution to the total volume of the
Universe. Therefore in our scenario in6ation in the whole
Universe has no end, even though it ends on each partic-
ular geodesic within a finite time.

One may try to reverse the question and ask whether
the in6ationary universe has any beginning. Unfortu-
nately, the answer to this question is much less definite.
One may argue that each geodesic being continued to the
past has finite length (it begins with a singularity) [25].
However, this is not enough to prove that the Universe
has a single beginning at some moment t = 0 in the past
(big bang). Whereas such a possibility is not excluded,
in order to prove it one should show that there is an up-
per limit to the length of all geodesics continued to the
past. Indeed, even if long geodesics are extremely rare,
they may give exponentially large contributions to the
present volume of the Universe. At present we do not
have any proof that that there exists any upper limit to
the length of all geodesics continued to the past. There-
fore finiteness of length of each geodesic being continued
to the past [25] does not mean yet that infiation is eternal
only in the future. We emphasize again that the length
of each particular geodesic at the stage of in6ation is also
6aite, and still we are speaking about eternal inQation.

On the other hand, the properties of each particu-
lar inBationary domain created in the process of self-
reproduction of the Universe do not depend on the time
when it was created (microstationarity). Therefore by lo-
cal observations which we can make inside our domain we
cannot come to any conclusion about the time when the
big bang happened. Therefore, our scenario removes the

big bang to the indefinite past and in this sense makes
its possible existence almost irrelevant [10]. In particu-
lar, the stationary probability distributions which we are
going to obtain will not depend on initial conditions at
the beginning of our computer simulations.

B. Stochastic approach

A formal method to describe the process of self-
reproduction of in6ationary domains is given by the
stochastic approach to in6ation. One of the possibilities
is to go along the lines of Ref. [8], to solve the Fokker-
Planck equation (17) for the distribution P„and then to
study Pz using these solutions.

For initial conditions of the fields a and P far away
&om the Planck boundary, the probability distribution
in the comoving frame behaves like a Gaussian centered
around the classical trajectory (a, (t), P, (t)) in the (a, P)
plane,

P, (a, 4;f) - exp (—
[~ —a.(t)l'

with dispersion coefficients [24]

[4- 4.(t)]'
262~(t)

(30)

4J 2 0' 0'0

3n2 2x p4

Pp(a, P; b,t) P, (a, P; At)e (32)
With the help of this approximate relation one can

study the qualitative features of the behavior of P„and
confirm the existence of the regime of self-reproduction
[8]. However, to obtain more detailed information about
Pz one should study directly the diffusion equation for
P&. This equation differs from the equation for P only
by the presence of an extra term 3HP~ [9, 10]:

Bt 8(T ( 4m (9(r " 8m. 2 Bo " )

(9$ ( 2m. 8$ 8m2 Bg " )
+3IIP„. (»)

These results are very similar to the results of the in-
vestigation of P, in the theory of a single scalar field
obtained in [8]. One may then use the fact that dur-
ing small time intervals At the probability distribution
P„(a',P; b,t), which takes into account the difference of
the rates of the quasiexponential growth of the proper
volume in different parts of the domain, is related to P
in a rather simple way:
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Apart &om studying the distribution of fields o. and
P in all domains during infiation, we will calculate the
volume of all domains where in8ation ends in a state with
given P within each new time interval. This gives us the
&action of the volume of the Universe where inHation
ends at a given time t within a given interval of values of
the field P. We call this new distribution 7„(P„t). This
distribution is closely related to P„.For example, in the
theories with V(o') = z" rr

P„(y., t) - P."P„(P., ~„t).
Indeed, during the time At all domains in the interval
40 from 0, —o.At to 0., will cross the boundary of the
end of infiation at cr = o, . According to Eq. (6), in

the theories we consider ho = —o At = ~ (s") o "At.n)

The value of the field P near the end of inflation almost
does not change, P = P„and o = o, =

& P, . This

yields Acr = —„" "„&,P,"At. Obviously, the fraction of
the volume of the Universe where inQation ends at a given
time t within a given interval of values of the field P = g,
is proportional to P„(g„o„t)Ao.This gives Eq. (34),
up to an overall normalization factor.

Since the value of the e8'ective Planck mass M~(P) af-
ter inHation almost does not change, this distribution
is most directly related to the &action of the volume
of the postin6ationary universe with the Planck mass

MJ (P, ) ~ —P, . In this paper we will be interested

mainly in stationary distributions. Whenever our distri-

butions are time independent, we will write them simply
as P„(P)or P„(P,) .

V. STATIONARY PROBABILITY
DISTRIBUTIONS

In general it is very dificult to find any analytic solu-
tions to Eq. (33) for P~(o, P; t). However, in certain cases
the corresponding solutions in the limit of large t can be
represented in the simple form

P.( & t) - ~ 'P. ( 4) (35)

3M4
Pp(rr, g) oc H ~ (o, P) exp

~ ~
@(o,P) . (36)

Using the identity D g —2D(Dfg) = efD2(e ~g)—
[(Df)z + D2f]g, one can show that the new function
4(o, P) satisfies a two-dimensional Schodinger-like equa-
tion

4+
i

H' '
i

4 —V(~P)C =8~'EC
~&)

with a new eH'ective potential

where E is some constant [9, 10]. In such cases
the normalized probability distribution P~(o, P) will be
stationary. i Analytical investigation of P„(cr,P) often can
be simplified if one studies instead the function @(o,P),
where

]

V(, 0)= H '(, 0)V'( )'+ H '(, 0) I

— —V"( ) I

167r'. . . 4'', (5 V'(o)'
9 '

3 ' (4 V(cr) )
64~4 6'

H (o, g)V(o) + H(o, g) —247r H.(cr, g) .
3(d

(38)

This equation [or Eq. (33)] should be supplemented
with boundary conditions. There are three possible
boundaries in the (o, P) plane.

(1) End of inflation boundary. Our diffusion. equations
are valid only during inBation. Therefore some boundary
conditions should be imposed at; the boundary where in-
Bation ends. These conditions follow &om the continuity
of the probability distribution P, and of the probability
current J [10]. In the theories with V(u) o " and

)) 1 the field P at the end of infiation almost does
not change. The continuity condition can be expressed
in terms of the field u changing &om the right side of the
boundary o, (from o.,+) to the left of it (to o,-):

P,(o,+) = P, (rr, ), J(o,+) = J(cr, ) . (39)

As is shown in [10], this leads to the following boundary
condition on P„:

( BM~ (+)
—

I

e- &-~ ~(~ 4) IBe (
(2) P/ancjr, boundary. The distribution P„(o,P; t) typ-

ically tends to be shifted towards the region of great-
est possible Hubble constant, which ensures exponen-
tially fast growth of the volume of inBationary domains

e30~ '&~'. However, one may argue that in8ation de-
stroys itself at values of the potential energy density
above the Planck scale by production of large gradi-
ents of density. Furthermore, the classical space-time
in which in6ation takes place ceases to make sense above
the Planck scale, where quantum Quctuations of the met-
ric are important. Therefore it is natural to impose
some boundary conditions at the Planck boundary which
would not allow a nonvanishing P„atdensities higher

One can reexpress this boundary condition in terms of
the redefined function 4(o, P) (36) as

Since the difference between P~ and P„is only in the nor-
malization, we will usually omit the tilde and write P„simply
as P~.
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than Mp4(4). As it is argued in [10], most of the re-
sults are not very sensitive to a particular choice of such
boundary conditions (absorbing, reflecting, etc.). There-
fore we will simply assume that the probability distribu-
tion P~(cr, P; t) vanishes when V(o ) = Mp(P):

Pp(o p, yp, t) oc e(o p, yp) = 0 . (42)
Here o'p, Pp is any pair of values of the fields o' and P
belonging to the line V(o) = Mp4(g) (Planck boundary).

(3) Boundary ot large o. The two boundary condi-
tions mentioned above are not enough to ensure station-
arity of solutions, since the maximum of the probability
distribution may move along the Planck boundary. The
reason is very simple. In the ordinary in8ationary the-
ory the maximum of the probability distribution moves
towards the Planck boundary since near this boundary
the rate of exponential expansion of the Universe is max-
imal. In our case the Planck boundary is not a point
where V(o) = Mp4 but a line P(o) (2). The greater is
P along this line, the greater is the energy density there,
and the greater is the rate of expansion. Therefore one
may expect the probability distribution P~ to move along
the Planck boundary towards greater and greater values
of P and o.

This would mean that there is no macrostationarity
(global stationarity) in our model, whereas the microsta-
tionarity (local stationarity) is still present. Even though
greater and greater numbers of infIationary domains will
contain indefinitely large values of the fields, there will
be exponentially many domains with smaller values of
these 6elds as well, and the preperties of these domains
will not depend on the time t when they are created; see
[10],where this situation is discussed. In such models we
come to a peculiar conclusion that the main Eraction of
the physical volume of the Universe is in a state with an
indefinitely large M~. This might not be a real problem,
since life of our type simply cannot exist in the parts of
the Universe with too large (and too small) Mp.

Still it may be important to have global stationarity
(see the Appendix). The simplest way to achieve it would
be to impose absorbing or reflecting boundary conditions
at sufficiently large cr, which would preclude the motion
of the distribution P„towards large o. Such boundary
conditions are not unreasonable. Indeed, it is hard to
expect that in realistic theories inQation will be possi-
ble at indefinitely large values of P and O'. It may hap-
pen, for example, that the efFective potential V(o) be-
comes steeper at large o, and infiation (or at least the
process of self-reproduction of infiationary domains) be-
comes impossible there. For example, one may consider

2 2
a potential V Ao e . In this theory in8ation be-
comes impossible at cr & og = a . As a result, the
distribution P„acquires a maximum somewhere near to
the Planck boundary close to o = op. Another possibility
which leads to a similar effect is that the efFective poten-
tial V(o) decreases at sufFiciently large o', for example,

2 2
V Acr e . In this case the distribution P„moves
to large o until it reaches the maximum of V(o).

As we will see &om the results of our computer sim-
ulations, in both cases the effect of the modification of
V(o) at large o can be mimicked by the introduction of

a boundary at some value of the field 0 = cry. In our
analytical investigation of P~ we will assume that

4(o, P)i = 0 . (43)
The way we impose boundary conditions in our numerical
investigations will be explained in the next section.

VI. COMPUTER SIMULATIONS

The stochastic equations (37) are rather complicated
partial difFerential equations, and it is not always possible
to obtain their solution analytically even in the theories
with one scalar field [10]. In the two-field case the sit-
uation is even more complicated. Therefore, instead of
solving these equations directly, we will make a computer
simulation of the processes we are trying to investigate.

The main idea of our simulations is the following. We
consider N points in the (o, P) plane. Each such point
represents the value of the scalar Beld in a region of size
O(H i(o, P)) (h region). Our calculations should give us
the function Pp(o, P), whic'h is interpreted as the number
of h regions with field values o and P. In our figures
this function looks like a two-dimensional surface in a
three-dimensional space (o, P, P„).

The values of the fields in each point are initially set to
(o;, P;). Then we calculate the values of the fields in each
point independently, since each such point represents an
h region causally disconnected from other h regions ("no-
hair" theorem for de Sitter space).

Each step of our calculation corresponds to a time
change At = uH&, where He ——H(o;, P;), and u is
some number, u ( l. (The results should not depend on
u if it is small enough. )

The evolution of the fields in each domain consists
of several independent parts. First of all, each field
evolves according to classical equations of motion dur-
ing infIation. Second, each 6eld makes quantum jumps

bybcr = — " 'n, b = — " 'n . H

and r2 are random numbers which are difFerent for each
point.

To make a computer simulation of this branching pro-
cess, we follow each domain until it grows in size two
times, and after that we considered it as eight indepen-
dent h regions. 2 If we continued doing so for a long time,
the number of such regions [and our distribution P„(a,P)]
would grow exponentially, and it would be extremely dif-
ficult to continue the calculation. However, in order to
obtain a correct probability distribution it is not neces-
sary to follow all domains, since all of them evolve ab-
solutely independently. In order to obtain a normalized
distribution P„(o,P), after each step of the calculations
we were randomly removing some of the domains, but
we were doing it in such a way that the probability for

Note that this does not necessarily correspond to taking
steps bt = Ho ln2. Indeed, in the domains with H(cr, P) )&
Ho the size of the domains groms two times during a time
interval much smaller than Ho ln 2.
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any domain to be removed was proportional to the dis-
tribution Pz(o, tttt) at this step of the calculation. This
allowed us to keep the total number of domains Axed
and the distribution P~(o, P)'properly normalized with-
out changing at any stage of calculation the correct shape
of the distribution P~(o, P)'.

Special care should be taken about the points near the
boundaries. As we already mentioned in the previous
subsection, there are boundaries of three different types
in our problem.

(1) The end of inflation boundary. In the theories with

V(cr) Acr" this boundary is given by o ".—P. When

the 6eld 0. inside a given 6 region becomes smaller than
&--P, infiation in this domain ends, and the value of the

field P (and of the gravitational constant) in this domain
almost does not change after that moment. We discard
all domains where this happens. Then we add new ones
in order to preserve correct normalization of our distri-
bution. However, each time when we are adding new
domains, we distribute them with the probability distri-
bution proportional to P„atthat time. As we already
mentioned, this method allows us to keep the distribution
P„normalized at all times without distorting its shape.
If the probability distribution is not stationary, we fol-

low the development of our distribution at every step of
our calculations. However, if the distributions become
stationary, one can obtain much better statistics by in-

tegrating the distribution beginning &om the moment

when it approaches the stationary regime.

(2) The Plancjt: boundary. Here we may impose differ-

ent boundary conditions, depending on our assumption
concerning the Planck-scale physics. Fortunately, the re-
sults which we obtain are not terribly sensitive to these
assumptions.

The simplest condition is to discard all points which

jump over the Planck boundary, and to renormalize the
probability distribution P„in the same way as we are
doing when the points jump over the boundary where
inQation ends.

(3) The boundary at large O'. In order to obtain a
stationary solution we may need to have an additional
boundary at large o. %e will assume that there exists
a boundary at some sufBciently large value of the 6eld

There is some subtlety here. The volume corresponding to
each li region is proportional to H (o, P). Thus, if we are
interested in the relative fraction of the volume of the Uni-

verse, we should show in our figures not the total number of
6 regions with given values of the fields, but the total number
of such regions multiplied by 0 (crt P). However, typically
the difference between these two distributions is not impor-
tant, since P„(cr,P) depends on a and @ much more strongly
than H (o, P).

To avoid misunderstandings, we should emphasize that this

method cannot lead to any arti6cial prolongation of the stage

of in8ation. At the stage of self-reproduction of the universe

the number of new independent domains of the size 0 cre-

ated due to quantum Huctuations and expansion of the uni-

verse is much greater than the number of domains disappear-

ing at the boundaries.

o. = ~g. For simplicity, we will impose the same condition
at this boundary as at all other boundaries: we discard all
points which jump over this boundary, and renormalize
the probability distribution P„aftersuch jumps occur.

An alternative possibility is to consider that the effec-
tive potential V(o) becomes very steep at large o'i and
the distribution P„becomes stationary without any need
for imposing additional boundary conditions at large o.

To plot the distribution we make a two-dimensional
histogram of o and P and fill the histogram with the
points corresponding to each new step of our calculations.
After the distribution approaches a stationary regime, we
instead make a histogram which includes all points start-
ing with the step at which the distribution became almost
stationary. This does not change the shape of the sta-
tionary distribution, but effectively increases the number
of points involved in the calculation, and decreases rel-
ative deviation of our "experimental results" from the
probability distribution P„.After several hundred more
steps we get a rather smooth picture of the stationary
distribution P„(o,P).

In this paper we will present the results of our simu-
lations and of analytic investigation for potentials V(cr)
of several different types. The results of our calculations
will be represented as a distribution Pz inside a box with
axes z and y corresponding to the values of the 6elds o
and P. The field o grows along the x axis from o = 0 in
the left lower corner. The field 4t grows from P = 0 when
one goes upwards along the y axis from the same corner.
The height z of the surface in the box will correspond to
the value of P„(o,g;t). We will not make any attempt
to make our calculations with realistically small or large
values of parameters; our purpose is just to present the
most important qualitative features of the distribution
P„.

VII. STOCHASTIC PROCESSES
IN BRANS-DICER THEORY VfITH

A CONSTANT VACUUM ENERGY DENSITY

In order to get some insight into the complicated be-
havior of two fiuctuating scalar fields, cr and P, we will
temporarily make two steps back to simplify our model.
First of all, we will consider the theory with the sim-

plest efFective potential V(o) = Vo ——const. Also, we

will return for a moment from the Brans-Dicke theory
to the standard Einstein theory. This is equivalent to
keeping the field P = M~/ 2 fixed. In this case

H = Ho:— ~, = const. The diffusion equation for

P„in this theory looks very simple:

BP„(o,t) Hos 82P„(o,t)
Ot 8m2 90.~

The solution to the diffusion equation in the comoving
frame is a Gaussian with increasing dispersion 4 (t) =

4 ', t. Since the potential is constant, diffusion will always
dominate classical motion and the Universe will be eter-
nally self-regenerating, with a probability distribution in

(~— )'
the physical frame P (e;t) exp(yHet)exp( —sa, isi
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8=0, I'4V, ) "'
= const .

(3(d )
As before, quantum diffusion of the Geld 0 dominates its
classical motion, and the Universe will be in the stage of
eternal self-reproduction for the field P in the interval

~V~2i '" i V~s~"
I, 47r~ ) g 3m2 )

(46)

~~«EuS'-'-Srhrh ER«ut~h»h. «« '-"SS»'I 4'«» 'rWP'@i'itSAC. .~S ih e„J»S»rs.=,»'r-,"~S-.»!»S;Sr,:iSRSS'uM~'C«Ra W~«27M r« ESSES«uI»SrSSE'I«ih'hi»SSmr' SSEI-

~ir»'

that grows exponentially with time, due to the increase

in the physical vob~me of the Universe.
Let us now consider the same constant potential

V(o ) = Vo in the Brans-Dicke theory. The classical equa-

tions of motion read

Let us now analyze the behavior of the probability dis-
tribution P„when the field Itl enters the self-reproduction
range (46). Since H oc 1/4I, the distribution will move
towards the Planck boundary Ij(I = 4li (46) along the P di-
rection. Very soon the distribution P„reaches the Planck
boundary and remains concentrated in a very narrow re-
gion near it (see Fig. 1). As a result, the only possi-
ble changes of the distribution P„become related to the
Brownian motion of the field u along the Planck bound-
ary. The jumps of this field along the Planck bound-
ary are proportional to H~/2x, where H~ is the Hubble

constant near the Planck boundary, H& ——3 Vo . This
suggests (and the results of our computer simulations ap-
parently confirm this conjecture) that the behavior of P„

s'~4h "~s ' ' R»»«shs»srssi«rr 'uM' Ijur -'~rtk 4 "MJa4& Mh' '"l»s»s»" &»MMES«usrsRu»»"MRsh'srsurrsus~
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FIG. 1. Diffusion of the distribution P„al gonthe Planck boundary in the simplest theory with V(o.) = const, in the time t
parametrisation. (a), (b), and (c) show difFerent steps towards stationarity at the Planck boundary. (d) shows the same stage
of the difFusion as (c), but in a different perspective.
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at large t can be approximately described by an equation
for one-dimensional diffusion along the Planck boundary,
similar to Eq. (44):

OP„H 0 P„

The solution to (47) is, as in general relativity, a Gaus-
3

sian with increasing dispersion 4 (t) = 4, t and an ex-
ponentially growing factor that accounts for the increase
in volume at the Planck boundary:

P„(rr,t) exp(3H~t) exp ~—(0 —ao)'l
(48)

It is clear that in this case the distribution gradually
becomes Hat everywhere along the Planck boundary.
Therefore the main part of the volume of the Universe
will be in a state with inde6nitely large cr. However, as
soon as the dispersion E(t) becomes greater than the dis-
tance between oo and o, the ratio of the volume occupied
with a field o' to the volume containing field cro becomes
time independent. This is an example of the runaway
stationarity that we described in the Introduction. It is
essential that the potential be sufEciently Bat in order to
have this kind of stationarity. For example, such a regime

a2
may occur in the theories with V(0) ~ Vo(1 —e ).

On the other hand, a potential V(cr) o2" will not
present this runaway stationarity, since any o dependence
in H oc cr"/P will make the distribution move forever
towards large values of o until it is strongly peaked at
infinity, unless we impose an extra boundary condition at
o. = o'~. However, the behavior of the distribution along
the P direction will follow the same pattern as above,
being rapidly concentrated along the Planck boundary
[in general a complicated curve, depending on the form
of the potential V(cr)]. Its subsequent evolution will be
reduced to essentially a one-dimensional difFusion along
the Planck boundary.

To illustrate this feature, we performed computer sim-
ulation of difFusion for the simplest case of the theory
with V(o) = const (see Fig. 1). The first few images
[Figs. 1(a)—l(c)] correspond to the view "from the top. "
The horizontal line across the box in Figs. 1(a)—1(c) cor-
responds to the Planck boundary; the distribution P„is
concentrated above this line. In the beginning we have
a b'-functional distribution concentrated near some ini-
tial values of o and P. Then it rapidly moves towards
the Planck boundary; it looks like a round spot from the
viewpoint we have chosen [see Fig. 1(a)]. After that the
distribution widens in the o direction along the Planck
boundary, while preserving its width in the P direction
orthogonal to this boundary [see Figs. 1(b) and 1(c)].
Its shape can be better understood &om another view-
point see Fig. 1(d), which shows the same distribution
as Fig. 1(c) in a different perspective]. The most impor-
tant feature of this distribution is that its evolution very
soon becomes effectively one dimensional, being entirely
concentrated near the Planck boundary. We will take
advantage of this feature for the study of the runaway
solutions in the next section.

VIII. RUNAWAY SOLUTIONS

Let us study the behavior of the probability distribu-
tion P~ along the Planck boundary. In the case of an
increasing potential like Ao, the larger the value of o
in a given domain, the greater the increase in physical
volume of that domain. Therefore, the probability dis-
tribution Pz will tend to move towards large o. The way
it moves will depend on the type of potential. For some,
as we will see, it is an explosive behavior. The probability
distribution gives a statistical description of the quantum
diffusion process towards large o, but it proves useful to
analyze the particular behavior of those relatively rare
domains in which the field o. increases in every quantum
jump of amplitude H/2m We .can compute the speed at
which those domains move towards large values of the
field o &om the equation (where b,t = H )

So H~~ 4 (A&

where H~ is the Hubble parameter along the Planck
boundary. For n = 1 there is an exponential increase
of o in those domains, while for n & 1 we find an explo-
sive solution:

2fl )

We see that for all n & 1 those first domains of the dif-
fusion process reach in6nity in finite time. Note that the
total volume of such domains at that time will be 6nite,
and then they will start growing at an infinitely large
rate. This behavior is explosive and will correspond to
probability distributions that are nonstationary and sin-
gular at o. m oo. It is extremely difricult to study this
regime using computer simulations, but with the help of
the results obtained in the previous section we can get a
pretty good understanding of the behavior of P„in such
a situation.

The qualitative analysis and the computer simulations
of Sec. V suggest that the general solution to the diH'u-

sion equation for both fields will factorize naturally into
a motion perpendicular to the Planck boundary that will
reach stationarity very quickly, and a motion along it
towards large values of o. We will try to study this last
motion in the absence of a boundary condition at ug. We
assume that we can ignore the classical motion along the
Planck boundary. Indeed, for large ~ and small masses
and coupling constants, classical motion is almost ex-
actly orthogonal to the Planck boundary. This assump-
tion might be violated at large o for some theories with
very rapidly growing potentials, but in the most interest-
ing case of the theory Ao.4 the classical motion is exactly
orthogonal to the Planck boundary for all o. On the
other hand, for large ~ and small masses and coupling
constants, the motion along the Planck boundary almost
exactly coincides with the motion along the o axis. In
this case an approximate difFusion equation for P„anal-
ogous to Eq. (47) can then be written as
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~

H"' (H"'P, ~~+3H P„,
at 8~'O~ ( ~ B~ ~

~ ' )

where the Hubble parameter along the Planck boundary
in the theories with V =

2
o. is given by

8vr V(o) 8m, (2 8x (
3 M2($) 3 3 (2n&

Equation (51) can be written as

(52)

84 84
2 + as~4', (53)

where

exp(Eu)H ~ P„,
8 & X i"' &4 —3~&

27m (2n) ( 4

4 s f 4 ) 2n, 2n
o 4, a=9m~

~

—,p=
(4 —3n) A

' 4 —3n

(54)

Let us first analyze the case V(o ) = Ao /4. This cor
responds to p = —2. It is clear from (53) that there are
no stationary solutions to this equation in the absence of
a boundary condition for o.. Furthermore, we know &om
quantum mechanics that potentials of the type —1/s
have singular solutions at s = 0 (o = oo). Therefore we

expect the distribution P& to be singular at oe = oo. This
was also expected &om the analysis of those first domains
that reach infinity in finite time —see Eq. (50).

On the other hand, for the theory V(o) = m2o 2/2, the
Schrodinger potential (53) is of the type —s, which has
nonsingular solutions at large u. For small s the solution
of Eq. (53) is a Gaussian centered at s(t) = (s), with dis-

persion b (t). The potential then acts asymmetrically on
I

it, pulling more at large s and leaving a long exponential
tail at small s. The maximum will move towards large
o, while maintaining a regular solution at infinity. This
is expected &om the previous analysis of the most rapid
domains (49). For n = 1 we find that the first domains
will take an in6nite time to reach in6nity, giving a regular
solution at any time.

However, in both cases we do not have runaway sta-
tionarity. Indeed, let us consider Eq. (51) and assume
(for simplicity only) that in the very beginning the func-
tion Pz was constant. Then both for n = 1 and for
n = 2 the first term in the right-hand side (RHS) of this
equation initially is positive. Neglecting this term, we

obtain P„exp[3H(o)t], which does not exhibit any
runaway stationarity. Taking into account the 6rst term
in the RHS of Eq. (51) makes the growth of Pz at large
o even faster. This confirms our expectations that in or-
der to obtain runaway stationarity one should have an
extremely Bat effective potential.

IX. STATIONARY DISTRIBUTIONS FOR
VARIOUS THEORIES

In this section we will study stationary probability dis-
tributions for several difFerent potentials V(o). Our in-

vestigation will mainly rely on the results of our computer
simulations, but we will try to make analytical investiga-
tion whenever possible. As we have argued in the previ-
ous sections, the simultaneous diffusion of both fields can
be approximated by a quick difFusion in the (t) direction
towards the Planck boundary and a subsequent diffusion

along it until it reaches the boundary at o = op, or un-
til a stationary distribution is established for some other
reason.

(1) V(o') =
4 o . In this case the motion along

the Planck boundary is governed by (53) with p = —2

and a = 72m/vA and with the boundary conditions
4'(0) = 4(s&) = 0. It is difficult to find an exact analyt-
ical solution to this simple equation, but one can easily
solve it in the WEB approximation:

p(s) (E —m) exp —(Ess —a)r&s + pa srcsec)) ', Ess & a,

4'(s) 2 (—,—E) cos (a —Es2)'~s —~a l Es2 &a,
(55)

where E ~'[1 —4(sr~A/6) )s). This solution has a
very sharp maximum close to the boundary o. = o.

p and
an exponential decay for small o (large s2 = 1/o.). This
behavior is precisely what we observe in the numerical
solutions described below.

We take the following parameters for our computer
simulations: cu = 50, A = 0.3. In the beginning of
the series of calculations we took the points with co-
ordinates (o, P) close to the Planck boundary, but in
different initial positions with respect to the boundary
og. We have found that the duration of the intermedi-
ate nonstationary regime depends on the initial values of

P and o. However, typically the stationary distribution
P~(o, ()t)) is established very rapidly, after just a few steps
At Ho . The resulting stationary distribution is pre-
sented in Fig. 2. Line OA in this 6gure corresponds to the
end of infiation; there is no infiation for (o, P) to the left
of this line. Line OB corresponds to the Planck bound-
ary; V(cr) is greater than the Planck density MJ (P) un-
der this line. The line cr = og is an additional boundary
discussed above.

The curve above the line OA is of the most interest for
us. It represents the stationary Bow of domains crossing
different parts of the boundary OA at the end of inBation.
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This gives us the probability distribution 'P„(g,) that at
the end of inllation the field P takes some particular final
value ttt, . The maximum of this curve corresponds to the

most probable value of the Planck mass M~ = —P, at
the end of inBation. The top of the "mountain, " which
shows the stationary distribution P„(a,g), corresponds
to the most probable value of M~ during inflation. Not
unexpectedly, the curve above the line QA looks like a
shadow of the mountain P&. Indeed, as we have already
mentioned, the distribution P„and the distribution 'P„
are directly related to each other [see (34)]. Meanwhile,
the shape of the distribution P„atsmall a' and large P
is obviously related to its shape at large cr and small g,
since in the intermediate regions the points (P, a) fol-
low classical circular trajectories [see, e.g. , (8)]. Conse-
quently, the position of the maximum of 'P„canbe ap-
proximately obtained by drawing a circle with the center
at P = a = 0, which goes through the crossing point of
the Planck boundary and the boundary 0 = o.b.

(2) Vjo) = s exp (4). The exponential term Is

added here in order to show' that one can avoid introduc-
ing additional boundaries at 0 = o.g if the effective po-
tential becomes very steep at large o. The result is that
the WKB solution (55), instead of decreasing sharply to
cr = Og, decays exponentially fast. It is just the eKect of
substituting an infinite barrier by an exponential barrier.
As we see in the numerical simulations, with a proper
choice of the place where the effective potential becomes
very steep one can reproduce the same result as if there
were a boundary at ab op (see Fig. 3).

In this figure we show the boundary of the end of inBa-
tion by a somewhat wavy line above the Planck bound-
ary. At small 0 the boundary of the in8ationary region
goes as a straight line from the point a = 0, P = 0 (com-
pare to the line OA, Fig. 2), but then it becomes curved
because of the exponential term which precludes in8ation
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at large o.. Finally this line crosses the Planck boundary.
The distribution P„is surrounded by this line and the
Planck boundary.

On the left wall of the box we show the distribution
P„,which in the previous picture we have shown above
the line OA. In other figures we will do the same every-
where when the end of inBation boundary is significantly
curved.

4

(3) V(a') = "4 exp( ——,). In this case there is a sharp

cutoK of the effective potential at u ) 00, which also
leads'to the existence of a stationary solution, as if there
were a boundary near harp (see Fig. 4). As in Fig. 3, the
wavy line corresponds to the end of indation boundary.

(4) V(a) =
2

cr2. In this case the Planck boundary
is not a straight line but a parabola P2 = a. The2' 2
eigenvalue equation associated with the probability dis-
tribution along the Planck boundary is (53) with p = 2

and a = 144Tr~2/m. In the WKB approximation,

~~~W' N~tjh~l' '
. "%+i&'"I+

8 orp PzA v ",w4t ty i tkoth @&erase ppresr+&ahrs tl: as+she txopra4, , rp& g«, to east s4 h le ptÃ4, s thh4184pta 4s 41 hp 4

FIG. 3. Same as in Fig. 2 for the potential V(cr)
4 4

- 4- exp —
4 . The distribution 'P„is shown on the left side
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FIG. 2. Stationary probability distribution Ip in the
plane (a, ttl) for the theory V(a.) = —"a, in the time t
parametrization. The line OA corresponds to the end of in-
Bation, and the line OB to the PlancII; boundary. InBation
occurs between these two lines. The line above OA shows the
probability distribution 7 ~.
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FIG. 4. Same as in Fig. 3 for the potential V(cr)
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2 —1/4 S E, G8
@(s) (E —as ) exp —(E —as ) + arcsin

2 2~a E as (E,
(56)

4(s) 2 (as —E) cos —(as —E) i — ln
~

—1/4 8 2 y 2 E Is~a+ (as —E) as )E,
2 2~a g ~E ) 4

where E + '[1 —( ~ ) ~s]. This solution has

a very sharp maximum close to the boundary 0 = op and
an exponential decay for small o (small s4 = cr). This
behavior is precisely what we observe in the numerical
solutions. The distribution P„is very similar to that of
the theory 4o4 (see Fig. 5).

(5) V(0) =
2

0'2+ 4o4ln —.Naively, one could ex-
pect that the main part of the volume of the Universe in
this model should originate as a result of inBation begin-
ning from the points on the Planck boundary with the
smallest angle 8. Indeed, Eq. (8) shows that the smaller is
the initial angle, the greater is the degree of in8ation [17].
However, because of the self-reproduction of inBationary
domains and the more rapid expansion of domains with
greater P along the Planck boundary, the distribution P~
does not stay near the point with the smallest 8, but
moves towards the largest possible P and 0' (see Fig. 6).
As we discussed in the last section, this is a general result
for any increasing potential, so P„is expected to have a
maximum close to the boundary 0 = ~g.

(6) V(0) = z&(m2 —A02)2. This is a typical potential
used in the theories with spontaneous symmetry break-
ing. It has a minimum at uo ——~. In this theory we

have two alternative regimes. If one begins at cr = 0, one
may have an inaationary regime at small cr [16],similar to
the inBationary regime in the new inBationary universe
scenario. If, on the other hand, inBation begins at large
o., then one has an inBationary regime similar to that in
the theory 2 0 + 4' . The only difference is that in
the theory under consideration the field 0 eventually rolls
down not to o. = 0, but to cr = 0'0. The first possibility

is illustrated by Fig. 7. On this figure the point cr = 0
corresponds not to the left corner, as usual, but to the
center of the x axis. Note that if one begins with several
inBationary domains with difFerent initial conditions, at
small cr and at large u, the domains with large o always
win, and the distribution P„very soon becomes almost
entirely concentrated at o' ) cro (see Fig. 8).

X. v PARAMETMZATION

r = ln ' = dt' H(0(z, t'), P(x, t')) .
a(x, t)
a(z, 0) o

(57)

This "time" proves to be rather convenient since in this
time, by definition, all parts of the Universe expand with
the same speed e, and P„is proportional (though not

The usual Fokker-Planck equation is written in terms
of a time parameter t as measured by the synchronized
clocks of comoving observers. However, in general rela-
tivity one can use many different time parametrizations.
For example, one can measure time by the local growth
of the scale factor of the Universe and define a new time
parameter [7]

FIG 5. Same as in Fig. 1 for the potential V(n) = —cr2.

FIG. 6. Same as in Fig 1for the po. tential V(o) = —o +
4 a 2—o. 1n —.4 0'p
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equal [10]) to P . One can easily derive the classical
equations of motion and quantum diffusion in the new

par ametrization:

0$ Mz~(P) BH
B~ 2~H 8$ '

Bo M&2(P) BH
07 47CH Bo.

~mmt'+08 pl& '
& « t' ~

~
~ |~~

(3M4 y l
Pp(o, g;7-) oc e H '(o&P) exp

I

q SV(o) y
(61)

oi&'s&spic&r g& p"""gw "t8»'"~ "i&v'&'»»~ ir'&~ &) 'l&p' '~' v»&w»t»'&~ '&&s& w" '~ r& s. '&g» »&' »&s»~&p» r» &".»&&'& &&&" &&&» wg~ »&'+i i'&I'»& '

(59)
The conditions for the self-reproduction of the in-

Hationary universe are the same as in the time
parametrization (29). Furthermore, we are interested in
the diffusion equation for the scalar fields in the physical
frame, where P„(o,P;7) = P, (rr, P;7)e satisfies

BPp 8 MJ, (p) BH H 8 f'H

Br Bcr 4vrH Bo 4vr Bo. (2n. "j
8 Mz~(re) BH H 8 f'H

8$ 2zH 8$ " 47r 8$ (2n.

(60)

In this case, thanks to the absence of the 3HP„term,
there is a candidate for an exact stationary solution of
Eq. (60) given by

E
'

i r i &
r. .. %&&&&,"&"'»:,;!l&»&4q+&, .»»Plw!»!f.».":'"»':"'l+:,"». "'+&4&&:P;,&+.&&t&:&& e,»;. ,;.,:„.», "„,„„..»v"V

(b)

FIG. 8. Same as in Fig. ? for initial conditions at both
large and small a. This series of pictures shows that if one
begins with equal number of "points" at large and at small
o., the volume corresponding to large o. always dominates in
the limit t -+ oo.

FIG. 7. Same as in Fig. 1 for the potential V(o)
~z(m —Ao ) . It describes the stationary distribution for
the case that inflation begins at ~ ( o.o.

Note that this expression is proportional to the square
of the Hartle-Hawking wave function of the Universe.
Unfortunately, this "stationary solution" does not actu-
ally exist in any realistic model of inBation for the rea-
son explained in [10]: The maximum of this distribu-
tion coincides with the position of the minimum of V(o)
where there is no in8ation and our stochastic equations
do not apply. To find a correct solution, @re should im-

pose boundary conditions [10]

Note that dt = H (o, P)d~. Therefore if one is inter-
ested in the probability distribution over the invariant four-
dimensional volume, one should take into account the cor-
responding subexponential corrections to the leading e de-
pendence of the three-dimensional (3D) volume on the time

[H(o, &)P,(o, y)]I- =0,
(o, y)l~ = 0,

&~(o &)I-, =o

which considerably modifies the shape of the distribu-
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tion P„.Nevertheless, the naive "solution" (61) tells us
something important about the shape of the distribution
P„.%'e expect this distribution to be peaked at the end
of in6ation boundary, instead of being concentrated near
the Planck boundary as in the time t parametrization.
The exponential factor exp s&~(

&
~

remains constant3M~4(y) l
SV(cT) )

all the way along the end of inflation boundary for the
theory Ao. . Therefore in this theory one expects the
distribution to move towards small P and o, where the
prefactor JI in (61) is maximal. In other theories this
argument does not apply, and in general one may obtain
a stationary distribution with parameters depending not
only on the boundary of the end of infiation but also on
the boundary at o's. All these features are observed in
the numerical simulations.

XI. COMPUTER SIMULATIONS OF DIFFUSION
IN TIME ~

Computer simulations in the time w are similar to the
ones in the time t, but there are several important differ-
ences.

First of all, there is no need to make any splits of the
domains. The reason is that all domains in the time 7.

expand with the same speed, by definition of this time
as a logarithm of expansion. Each step of our calculation
now corresponds to a time change A7 = u, where u is
some small number, u & 1.

As before, evolution of the fields in each domain con-
sists of several independent parts. Each field evolves ac-
cording to classical equations of motion, (58), and in
addition to this each field makes quantum jumps by

bo = ~" sinri, hP = ~" sinr2. Here ri and r2 are

random numbers which are different for each point.
As in Sec. V, in addition to the distribution P„(P,o, r)

we computed also the volume of all domains where inBa-
tion ended within each new time interval Ar. This gives
the f'raction of the volume of the Universe where infiation
ends at a given time v within a given interval of values
of the field P. We call this distribution 'P~(g„r).In the
theories with V(o) = 2"„o'z",

(63)

FIG. 9. In the theory with V(o) = const the distribution
P~(P, o; 7 ) moves away from the Planck boundary. Compare
to Fig. 1(d).

The distribution moves away from the Planck boundary
(see Fig. 9). This explains many features of the distri-
bution Pz in more complicated theories to be considered
below.

(2) V(o') = 4xr . In this theory we do not have any
typical mass scale which would correspond to a maxi-
mum of the probability distribution. Therefore in time
t the distribution was moving towards large o and P,
until it was stabilized either by a boundary at large
o or by the change of the potential at large o [e.g. ,

V(o) = 4o4exp ~ ~, see next item]. In the present
CJp p

case the distribution moves towards smaller and smaller
o and P, and there is no stationary regixne unless the po-
tential V(o) at small o becomes, for example, quadratic
in o (see below). Figure 10 shows how the distribution
xnoves towards the corner o = P = 0. This figure should
be compared to Fig. 2, where the corresponding distri-
bution is shown in time t.

As in the Sec. V, the curve above the line correspond-
ing to the end of in8ation shows the probability distribu-
tion 'P~(g„r)that at the end of infiation the field P takes
some particular final value P, . Note that in the present

It is very instructive to compare the results of com-
puter simulations in time t and in time 7. for various
effective potentials V(o'). The general tendency we ob-
serve is that the distribution Pz(P, o, r) is more closely
concentrated, not near the Planck boundary or near the
boundary at large o. [as was the case for the distribution
P„(P,cr, t)], but near the boundary corresponding to the
end of in6ation. The reason for this difFerence is very
simple. In the time v. there is no additional enhance-
ment of the volume filled by the fields corresponding to
large values of the Hubble constant. Now let us consider
several particular examples.

(1) V(o) = const. This corresponds to the simple
model we considered in Sec. VI. In the time t the distri-
bution rapidly moved towards the Planck boundary and
then diffused along it (Fig. 1). Evolution of P~ in the
time 7 is quite difFerent, for the reason discussed above.

FIG. 10. Probability distribution in the plane (cr, P) for
the theory V(o) = —"o, in the time r parametrization. Com-
pare to Fig. 2.



746 JUAN GARCIA-BELLIDO, ANDREI LINDE, AND DMITRI LINDE 50

2
FIG. 11. Same as in Fig. 10 for the theory V(o) =

~
o' .

case this distribution depends on ~ and moves towards
, =0.
(3) V(0') = 40' exp (—r . No qualitative difference

tlap

appears here as compared with the theory 40 since the
exponential term does not modify the potential at small

2

(4) V(a) =
2 0 . In this case the distribution P„is

stationary (see Fig. 11). As one can see, it is concentrated
near the boundary of the end of inflation. This 6gure
should be compared to Fig. 5.

(5) V(0) =
2

02+ 4+4 ln —.In this model, and in a
2

simpler model with V(o') =
2 cr + 4a4, the quadratic

term stabilizes the distribution P„(seeFig. 12). The
resulting distribution is stationary even in the absence of
the boundary at large o.; compare with Fig. 6.

(6) V(0) = z&{m —Ao'2)2. Here we have two al-
ternative regimes. If one begins at large o, then one
has an inflationary regime similar to that in the theory

2 0 + 4 o . The corresponding distribution will be very

g~g+~4M~w";+~~. , gg+~PIt~~w~(p. )~v s~„i,p~~p )~Qg~j%.ppff~wQwt /~PP~~, „y&p~,g

FIG. 13. Same as in Fig. 10 for the potential V(o')
—'„(rn~ —Aa2)~. It describes the stationary distribution for
the case that in6ation begins at o. & ao.

similar to that shown in Fig. 12. One may have an infla-
tionary regime at small 0 [16],similar to the inflationary
regime in the new inflationary universe scenario. The
corresponding d.istribution is shown in Fig. 13; compare
with Fig. 7.

Note that the stationary distributions we have ob-
tained look different from those for the same theories
in time t. This means that the normalized distribution
P„in the large time limit does not depend on time, but
it does depend on the choice between different "times"
(t, 7, etc. ) A similar conclusion was earlier reached for
other models studied in [10). The reason for this strange
behavior can be understood by using the following simple
analogy.

Let us consider a two-dimensional plane (z, y) and a
cone formed by the lines y = x and y = —z going &om
the point (0, 0) towards positive y (see Fig. 14). Let us
paint light gray the area inside this cone to the right
of the y axis, and paint dark gray the area inside the
cone to the left of the y axis. Now we will consider y
as a time direction, cross the cone by the lines of 6xed
y at a distance dy &om each other, and compare the
light gray area and the dark gray area in the interval
&om y to y + dy. Obviously, for all dy the ratio of the
light gray area to the dark gray area will be equal to

FIG. 12. Same as in Fig. 10 for the potential V(cr)—cr + —(r ln —.m 2 A 4 cr
2 4 crp

FlG. 14. A cone in a two-dimensional space formed by the
lines y = x and y = —x. Two diferent parametrixations of
"time" y give diferent ratios for the dark gray over the light

gray area, although they are both stationary.
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1, independently of the time y (stationarity). Now one
may choose another "time" direction y' by rotating the

y axis, and slice the cone by the lines of constant y' and
y'+ dy'. In this case the ratio of the light gray area to
the dark gray area in the interval from y' to y'+ dy' also
will not depend on the time y' (stationarity), but this
ratio will not be equal to 1 anymore. This strange efFect
is possible due to the fact that the total area of the dark
gray part of the cone, as well as of the light gray one, is
in6nite. As usual, when the integrals are divergent, their
ratio depends on the way one takes them. A similar
eKect appears in our case as well. The total volume of
all inBationary domains in a self-reproducing universe is
infinite in the limit t ~ oo (or 7 ~ oo). Therefore the
relative fraction of the volume of all domains with any
particular properties may depend on the way in which we
are sorting out these domains. This is the main reason
for the difference between P„(0,P; t) and P~(o, P; r) . T»s
difference exists even if each distribution is stationary.

XII. DISCUSSION

Let us try to summarize our results and discuss their
possible implications. First of all, we have con6rmed that
the regime of self-reproduction is possible not only in the
ordinary inBationary theory, but in the Brans-Dicke in-
Bation as well. However, the Brans-Dicke inBation has
some new interesting features. In this theory the upper
(Planck) boundary for the energy density of a classical
space-time is not a point V(0') = M& as in the Einstein

theory, but a line V(o) = 4, P4. Similarly, the end of
inBation boundary in the simplest models of chaotic in-
fiation with V(0') 0" is not a point 0 MJ but a
line cr P/~~. In the ordinary infiationary models the
probability distribution P„to find the inBation 6eld o at
a given time in a given volume typically is concentrated
either near the Planck boundary or near the boundary
where infiation ends [10]. In the Brans-Dicke theory with
V(0) a" or with V(cr) e this distribution also ap-
proaches one of these two boundaries, but after that it
may continue moving, sliding along the boundaries.

As a result, the probability distribution P„approaches
the stationary regime only if there exist some additional
reasons which preclude this sliding. This may happen,
for example, if the efFective potential becomes very steep
(or if it decreases) at large 0. We have studied this possi-
bility both by making computer simulations in the theo-
ries with potentials which become rapidly increasing (or
decreasing) at large 0, and by introducing a phenomeno-
logical boundary at o. = o.p. We obtained stationary
probability distributions for a wide class of theories with
two different time parametrizations.

If nothing precludes sliding of the probability distribu-
tion along the boundaries, one typically obtains a non-
stationary distribution. However, the local stationarity
still exists: The properties of domains with given values
of scalar fields P and o do not depend on the tixne when
these domains were formed.

Whether the probability distribution P„is stationary
or not, in the process of its evolution it probes all val-
ues of the fields P and cr for which infiation and self-

reproduction of the Universe can take place. As a result,
after inBation the Universe becomes divided into many
exponentially large domains with difFerent values of the
efFective Planck mass M~(P).

It would be natural to assume that the probability
to live in a typical part of our Universe is proportional
(though not equal, see below) to 'P~(P, ). In particu-
lar, if our calculations gave us a b-functional distribution
'P~($, ), we would have a definite prediction for MJ and
thus for G. Our results show, however, that the distri-
butions which we obtain for large values of masses and
coupling constants are rather smooth. If one takes very
small masses and coupling constants, which is necessary
to obtain small density perturbations bp/p, the distribu-
tions become very sharply peaked indeed, but still they
are not b functional.

The probability to live in a given part of the Universe
depends not only on its volume (which is proportional
to the distributions Pz and 'P„if they are sufficiently
narrow) but also on the conditions inside this volume.
These conditions depend very strongly on the value of
M~. For example, it is well known that a decrease of
the Planck mass MJ by less than an order of magni-
tude from its present value in our part of the Universe
would make the lifetime of the Sun so small that no bi-
ological molecules would appear on the Earth. An even
bigger decrease of M~ would lead to an extremely effi-
cient nucleosynthesis and to the absence of hydrogen in
the Universe [26]. An increase of M~ would slow the
expansion of the Universe. In such a Universe the de-
parture from thermal equilibrium during the process of
baryogenesis would be small, this process would be inefB-
cient, and the Universe now would be practically empty.
On the other hand, a decrease of M~ decreases the re-
heating temperature after inBation, which may also cause
the absence of baryons. Finally, in the simplest model of
infiation with V(0') =

2
02, density perturbations pro-

duced during inBation are inversely proportional to M~
[see Eq. (28)]. Therefore a change of M& would lead to
a profound modi6cation of the properties of galaxies.

This suggests that the knowledge of the distribution P„
being complemented with anthropic considerations may
help us determine the most probable value of the gravita-
tional constant in the domains of the Universe where life
of our type is possible. This is a very exciting possibility,
resembling the "big 6x" paradigm of the baby universe
theory [27], but, just like the baby universe theory, it in-
volves many speculations. One of the problems of such
an approach is the dependence of 7„onthe choice of
time parametrization. We will brie8y discuss this issue
in the Appendix. Whether or not this most ambitious
part of our program will be successful, it is certainly true
that the theory of a self-reproducing in8ationary Brans-
Dicke universe ofFers us many interesting and unexpected
possibilities.

For example, in the standard inBationary cosmology
the Planck mass was fixed, and in order to obtain a de-
sirable amplitude of density perturbations ~ 5 x 10

P

in the theory 2 o one should introduce into the theory
a new mass scale, m 10 GeV, which is six orders
of magnitude smaller than the Planck mass M~ 10
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(dpi
Mp(y) - 50m

~

—
~I~) (64)

This equation tells us that if we live in a part of the Uni-
verse with ~ 5 x 10, then in this part of the Universe

the effective Planck mass automatically happens to be
one million times larger than m, which is the only mass
scale we have in our simple theory. In other words, we do
not need to introduce into the theory two different mass
scales difFerent from each other by a factor of 10 . It is

enough to have one mass scale; the rest of the job will be
accomplished by quantum fluctuations in the inflationary
universe. In this scenario both smallness of the density
perturbations and greatness of the Planck mass appear
as two sides of the same purely environmental effect.
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APPENDIX: TO%'ARDS DETERMINATION
OF THE MOST PROBABLE VALUE OF

THE GRAVITATIONAL CONSTANT G(P)

One of the most interesting problems of elementary
particle physics is to understand why the gravitational
constant is so small or equivalently the Planck mass M~
is so large. In the context of our model this problem is
formulated in a very unusual way. Our Universe con-
sists of many exponentially large domains with different
values of G = M& (P). Therefore instead of finding a

GeV. This cannot be considered as a one-tuning; after
all, the electron mass is 22 orders of magnitude smaller
than the Planck mass. Still it is very interesting to see
how the same issue looks in the context of the inflationary
Brans-Dicke theory.

In this theory m is Bxed but the Planck mass is not. It
takes all its possible values in different parts of inflation-
ary universe. Correspondingly, the amplitude of density
perturbations in different parts of the Universe takes all
possible values from 0 to order 1. If by calculating 7„
and using anthropic considerations we are able to explain
why we live in a part of the Universe with — 5 x 10

P

(see Appendix), then we will simultaneously explain why

is so small and why M~ is so large in our part of the
P

Universe. But there is a chance that we live in a part of
the universe with ~ 5 x 10 without any special rea-

P
son, just as some people live in exotic countries without
even knowing that they are exotic. Nevertheless, even in
this case we will get something interesting. We should
simply look at Eq. (28) in a different way, writing it as

unique value of M~ for the whole Universe, one should
study the distribution of all possible values of Mp in our
Universe. This might give us a possibility to understand
why the gravitational constant is so small in the part of
the Universe where me live.

First of all, one can make a natural assumption that
the number of observers asking questions about the parts
of the Universe with given values of fields P and 0 is pro-
portional to the volume of these parts. This suggests that
the answer to our questions may be related to the inves-
tigation of the distributions P~ and 7„.However, it is
not clear whether it is possible to justify this suggestion,
especially if one recalls that these distributions depend
on the choice of the time parametrization.

Note that these probability distributions have a very
well determined operational meaning when one uses them
to predict the distribution of a scalar Beld in the Universe
at a specific hypersurface t = const (or v = const) under
given initial conditions at t = 0 (or at 7 = 0). Now the
main question is whether it is possible to use the results
of our calculation of P„andP„to get some information
about the most probable value of the gravitational con-
stant in those parts of the Universe where we can make
observations and ask questions about the gravitational
constant.

One may argue that as far as we have a nonvanishing
probability to live in the domains with a given value of
M~(P), and as far as the total volume of all such do-
mains integrated over all times is infinite (the integral
exponentially diverges at t -+ oo), there is no reason to
compare these infinities and study details of behavior of
P„.We live, which means that we have picked up one of
these domains, but all attempts to go any further than
that and to explain "our choice" would not make any
sense. This would be similar to attempts of a man &om
Switzerland to understand why he was born there rather
than in China where the total number of people is much
greater.

According to this point of view, one should use our
results in a very limited way. One should Bnd those do-
mains where the distribution 'Pz and the probability of'

existence of life of our type do not vanish. (The an-
swer to this question does not depend on the choice of
time parametrization. ) One should then find out what
is the value of the effective Planck mass in each of these
domains, and relate it to other properties of space and
matter in these domains.

In the Discussion we took this most conservative at-
titude towards our results. Even in this case inflation-
ary cosmology goes far beyond the standard big bang
paradigm, which assumes that the gravitational constant
should be the same in all parts of our Universe.

This conservative attitude is quite legitimate. It is

quite possible indeed that one should not ask why he or
she was born in this or that country and in this or that
part of the Universe. However, this idea is suspiciously
similar to the old belief that it does not make any sense to
question initial conditions in the Universe: The Universe
is big and flat for the reason that it was born big and
fiat; it contains more baryons than antibaryons for the
reason that it was created that way. After the invention
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of the theory of baryogenesis and of in8ationary cosmol-

ogy this way of avoiding complicated problems does not
look particularly attractive.

On the other hand, we are not well prepared to go
beyond this point. In order to understand why do we
live in a part of the Universe with a given value of the
gravitational constant, one should learn first what is life,
how it appears, is it correct that the probability for life
to appear is proportional to the space available, etc. Be-
fore we do this, there will be no guarantee that we are
on the right track. However, instead of waiting until the
theory of everything is constructed, we may use in8ation-
ary cosmology as a good playground where we can test
various hypotheses. This might help us to learn how to
formulate correct questions (and, if we are lucky, to get
correct answers) in the context of the new cosmological
paradigm.

To illustrate some ambiguities involved in this ap-
proach, let us consider a problem formulated some time
ago by Nielsen [29]. Assume that we live in a peak of
probability to be born at some particular time t. This
hypothesis at the first glance looks quite reasonable and
innocuous. In any case, it does not look obviously wrong
if we are looking to the past. Indeed, the total popula-
tion of the Earth now is much larger than it was before,
and it continues growing exponentially. Most of the peo-
ple who have ever lived on the Earth were born in the
20th century. This gives us a total of less than 20 bil-
lion people. If we assume that a typical person should be
born near the maximum of the probability distribution,
and if we assume that we are typical, then we would not
expect much more than 20 billion people to be born &om
now on. But this is possible only if very soon, within the
next few decades, the population of Earth starts rapidly
decreasing [29].

We definitely want this doomsday prediction to be
wrong, but what could be wrong about it? The point is
that this prediction is a consequence of the assumption
that the total number of people to be born is finite, and
we live near the maximum of the distribution. However,
if the total number of the people to be born is infinite,
then we live at some time t not for the reason that this
time is near the maximum of the distribution, but for
the only reason that we must pick up some finite time t
rather than the time t = oo. For example, in our scenario
the total volume of the Universe grows exponentially at
all times. Consequently, the total number of domains of
our type, the total number of planets of the type of the
Earth, and the total number of people populating these
planets also grow exponentially [10]. Thus, in this sce-
nario the total population of the Universe does not have
any maximum and any fallo8 at large t.

This example shows that one should be extremely care-
ful with probabilistic arguments to avoid many hidden
ambiguities. For this reason we removed this discussion
&om the main body of the paper, to make sure that our
speculations do not mix with reliable results.

One of the obvious problems with the distributions P„
and 7& is the choice of the time parametrization. In-
deed, as we have seen, the position of the peaks of these
distributions does depend on this choice. Of course, one

may argue that life as we know it uses ordinary time t re-
lated to periodic processes, rather than the time 7 which
measures the logarithm of the distance between galaxies.
Does it suggest that the proper distribution to study is
P~(o, g;t)'? Let us make this assumption for a moment
and see what we will learn.

First of all, the peaks of the distributions P„for all
theories we studied correspond to the state with a max-
irnal possible value of the Hubble constant compatible
with the self-reproduction of inBationary domains. For
all theories V(o') o" the peak of P„appears near the
upper boundary os, and the peak of P~ appears near

os —,which gives Mp 2os~ T.he boundary as
may correspond either to the place where V(o') changes
its shape and becomes very steep, or to the place where
it becomes decreasing.

Now one should multiply the volume of the domains
with given M~ by the probability that life of our type can
exist in these domains. The results look rather strange.
Anthropic arguments seem to allow variations of M~
at least by one order of magnitude. Meanwhile typi-
cal distributions 'P~ are extremely sharp if masses and
coupling constants are realistically small. Multiplication
of these distributions typically gives a distribution which
is sharply concentrated near one of the boundaries of
the anthropically allowed region. This is very similar to
the results obtained by Rubakov and Shapos&nikov when
they discussed anthropic considerations in the context of
the baby universe theory [30].

The situation becomes even more complicated when
one considers models where the distributions P„and P~
are nonstationary. In such models the probability distri-
bution 'Pz permanently moves towards in6nitely large P.
This growth eventually outweighs all anthropic bounds
and pushes the distribution towards the region where life
of our type could exist only as an extremely unstable phe-
nomenon. This would be clearly incompatible with the
results of anthropic considerations, which suggest that
we live not far away &om the center of the anthropically
allowed region of possible values of M~.

One may try to interpret this conclusion as an argu-
ment against Brans-Dicke cosmology, or at least against
those versions which lead to the runaway solutions for
P„and Pz. Another possibility is to use the distribu-
tion in the time 7, which is typically much less sharp.
Note that this time parametrization also has certain ad-
vantages (see [32]). Still another possibility is that the
distributions P„andP„,being very useful for the descrip-
tion of the global structure of the inBationary universe
Ot a given time, cannot be used for the calculation of the
probability of life appearing in the part of the Universe
of our type. Indeed, as we know &om [28], the notion of
time (either t or v) makes sense in the context of quan-

There exist some arguments in the context of the baby uni-
verse theory that the Brans-Dicke theory with an account
taken of the wormhole effects is reduced to the standard Ein-
stein theory [31j.
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turn cosmology only after the appearance of observers.
It is excitingly interesting to participate in the inves-

tigation of this problem. However, at the moment we do
not even know whether physics provides a wide enough
framework to study the appearance of life, or some ad-

ditional ingredients are needed [1]. This is an extremely
complicated and speculative issue. We hope to return
to its discussion in a separate publication. In the mean-
time we decided to restrict ourselves to the conservative
approach outlined in the Discussion.
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