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Disk collapse in general relativity
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{Received 25 May 1994)

The radial collapse of a homogeneous disk of collisionless particles can be solved analytically
in Newtonian gravitation. To solve the problem in general relativity, however, requires the full
machinery of numerical relativity. The collapse of a disk is the simplest problem that exhibits the
two most significant and challenging features of strong-Seld gravitation: black hole formation and
gravitational wave generation. We carry out dynamical calculations of several diferent relativistic
disk systems. We explore the growth of ring instabilities in equilibrium disks, and how they are
suppressed by sufhcient velocity dispersion. We calculate waveforms &om oscillating disks, and
&om disks that undergo gravitational collapse to black holes. Studies of disk collapse to black holes
should also be useful for developing new techniques for numerical relativity, such as apparent horizon
boundary conditions for black hole spacetimes.

PACS number(s): 04.25.Dm, 04.20.Jb, 04.30.Db, 04.70.—s

I. INTRODUCTION

The simplest example of gravitational collapse is that
of a homogeneous sphere of particles initially at rest.
This collapse solution is analytic both in Newtonian grav-
ity and general relativity. In general relativity, this so-
lution is known as Oppenheimer-Snyder collapse [1] (the
solution is a "piece" of a closed Friedmann imiverse). Be-
cause of Birkhoff's theorem we know that this solution is
nonradiating. Both the particle motion and the gravita-
tional field are radially syxnxnetric, i.e., functions of one
spatial variable.

The radiating problem which is the simplest analogue
to Oppenheixner-Snyder collapse is that of an axisymmet-
ric, infinitely thin disk of particles initially at rest. This
case is simple because the particle motion still depends
on only one spatial coordinate, although the gravitational
field now depends on two. If the disk is constructed by
squashing a homogeneous sphere into a pancake, keep-
ing the density homogeneous, then the solution is still
analytic in Newtonian theory [2].

However, to solve the problem for relativistic gravita-
tion requires the full machinery of numerical relativity,
and has not been addressed until now. Indeed, the dy-
namical properties of a disk of collisionless particles has
never been studied in general relativity, although it has
been extensively treated in Newtonian theory [3]. In this
paper we tackle the collapse of an axisymmetric collision-
less disk of particles in general relativity theory. Particles
in an axisyxnmetric disk can also have angular motion,
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but because of conservation of angular momentum this
motion. is not dynaxnical. We consider cases in which the
disk particles are initially at rest and also in which they
have initial angular motion. In the latter case we focus
on disks with total J = 0, i.e., with equal numbers of
corotating and counterrotating particles.

In. Newtonian theory, it is known that equihbrium disks
supported against collapse by rotation alone are unsta-
ble to ring formation [3]. The disk can be stabilized by
"heating" the disk, that is, converting some of the or-
dered rotational energy into random "thermal" motion
[4]. We explore here whether or not a similar result holds
in general relativity.

Our study of disks is geared to analyze two relativis-
tic phenomena that do not arise in Newtonian theory:
collapse to black holes and the generation. of gravita-
tional waves. Since this is the simplest wave generation
problem, disk collapse provides a useful proving ground
for testing codes designed to treat gravitational radia-
tion in general relativity Once w. e can evolve disk sys-
tems accurately in general relativity, we should be able
to compute the gravitational field &om any axisyxnmetric
source, since the equations for the field are essentially the
same as those for general axisymmetric sources. The ma-
jor problems associated with general axisymmetric col-
lapse are all contained in this test case: formation and
evolution of black holes and propagation of gravitational
waves.

We have previously studied disk collapse in the context
of nonlinear scalar gravitation, where many of the tech-
niques for handling infinitely thin disks were developed
[2]. The basic code for evolving axisymmetric spacetimes
in general relativity has been discussed in a number of
papers [5—7]. We will refer extensively to the equations
in Ref. [6] in the discussion that follows. The organiza-
tion of this paper is as follows. In Sec. II we present
the equations for an evolving, general relativistic disk.
In Sec. III we discuss analytic test problems including
Newtonian and relativistic disk solutions. In Sec. IV we

give the results of our numerical calculations.
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II. BASIC EQUATIONS integrated across the equator yields

The particles comprising the disk are ass»med to in-
teract exclusively by gravitation; i.e., they obey the rel-
ativistic collisionless Boltzmann equation (Vlasov equa-
tion). Accordingly, we have constructed a n»merical code
that solves Einstein's equations for the gravitational Beld
coupled to matter sources obeying the Vlasov equation.
This is the se~e mean-field, particle simulation code de-
scribed in Refs. [5,6] to study nonspherical gravitational
collapse. The code is designed to handle axisymmetric
systems with no net angular momentum. The present
version ass»mes equatorial symmetry. We solve the field
equations in 3+ 1 form following Arnowitt, Deser, and
Misner [8]. We use maximal time slicing and quasi-
isotropic spatial gauge in axisymmetry. The metric, vrrit-
ten in spherical-polar coordinates is

~

~

~

~

1 . -„T t'sm 8 -~l
rsin8dH . Bs(sinH K"„)+ 2 Bs

~

K
& ~sin 8 sin 8 & & )

1= -Ss+ B—„(r K"s), (4)

where 6 denotes 8 = z/2 + e, e -+ 0. Functions that
are symmetric across the equatorial plane, such as K„"

and Kf„are continuous there. Hence Eq. (4) reduces to
0 = 0. Now consider Eq. (3). Integrating it gives

+
0 = S„rsinHd8 ——Ks~

1 -„+
r

ds' = —a'dt'+ A'(dr + p"dt)'+ A'r'(dH + p'dt)'
+B r sin Hdqrs.

The matter satisfies the relativistic Vlasov equation,
which we solve by particle simulation in the mean grav-
itational field. The basic code is identical to the one
described in Refs. [5]. The key equations and definitions
of variables are given in the Appendix of Ref. [6]. The
equations below are written in terms of the auxiliary vari-
ables @ = B~~2, T = A/B, and g = lnT. (These were
generalized to include net rotation in Ref. [7].)

Since Ks is antisymmetric across the equator, Eq. (5)
gives

+
KP+ = —KP = — S,r sinHdH.

2
(6)

1 . + 1 1—sin 8@s]+ = @ri,s ——— p'r sin HdH.
r 4r 8$ (7)

Similarly, integration of the Hamiltonian constraint equa-
tion [Eq. (A6) of Ref. [6]] leads to

A. Jn~p conditions

The disk matter source afFects the metric via jump con-
ditions in the field equations across the equatorial (disk)
plane. These j»mp conditions replace the usual mat-
ter source terms that appear in the field equations. A
derivation and n»clerical implementation of such a j»mp
condition was presented in Ref. [2] for the simple case of
scalar gravity. There the governing equation is a nonlin-
ear wave equation with a matter source on the right-hand
side.

As an example of how the j»~p conditions may be
derived in 3+ 1 general relativity, consider the taro mo-
ment»m constraint equations (A4) and (A5) in Ref. [6]:

2 8
sinH " sins 8 g T 4')

= —Ss + B„(r K"s),—(2)r

B„(r K"„)+—K~~ B„g = S„— . Bs(sinH K"s).

Integrating the lapse equation [Ref. [6], Eq. (A7)] gives

—sin 8(ag) s[ = avgas s~——1 . + 1

r 4r
+

(p'+ 2S)r sinHdH.
8 B (8)

B. Matter sources

The boundary condition Eq. (6) is used to set the value

of Ks all along the equatorial plane. In the vacuum, out-

side of the equatorial plane, K& is deter~~+ed by inte-
grating the evolution equation, Eq. (A3) of Ref. [6], as
usual.

When finite difFerencing the Ha~iltonian constraint
[Eq. (A6) of Ref. [6]], the derivative terms Q s and q s
appear in exactly the combination as in Eq. (7). The
only place vrhere the matter source term p' appears in
the Hamiltonian constraint is through this boundary con-
dition. Equation (8) is used in an analogous fashion for
the lapse equation [Ref. [6], Eq. (A7)].

The dynamical equation for g [Ref. [6] Eq. (A2)] and
the shift equations [Ref. [6], Eqs. (A8) and (A9)] for P"
and P~ remain unchanged. Note that g, P", and P~ are
metric coefBcients and thus must be continuous across
the equator.

Since the particles are confined to the equatorial plane
8 = m/2 where P = 0, the particle four-velocity compo-
nent satisfies us = us = 0. Hence Ss = 0. Equation (2)

The geodesic equations of motion for the collisionless
matter particles are given by Eqs. (A10)—(A16) of Ref. [6]
with the following simplifications: us = 0 and 8 = w/2.
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Hence, as in spherical symmetry, only the radial motion
is dynamical for an infinitely thin disk.

The particles are binned in annuli to determine the
source terms for the field equations. Equations (A17)—
(A21) of Ref. [6] lead to the disk sources [9]

+
o—: p'r sin 8d8 = ) 2vrrAr ~

'

III. ANALY'TIC SOLUTIONS AND TESTS

Before we consider numerical solutions of the dynam-
ical equations for disks and their gravitational fields, we
give here some analytic results that will serve as code
checks and initial data for our evolutions.

+
Z„—: S„rsin 8d8 = ) 2~re, r ~'

2

Z—: Sr sin 8d8 = p'r sin 8d8

m

u~ (2nrAr ), .

(10)
A. Oscillating Newtonian disks

As discussed in Ref. [2], there exists a complete an-
alytic solution that furnishes a good test of a numeri-
cal disk code in the weak-field, slow-motion limit. The
solution describes an oscillating homogeneous spheroid
in Newtonian gravitation in the disk limit (eccentricity
e ~ 1). The surface density of such a disk of mass M
and radius R is

Here m is the particle rest mass related to the total rest
mass Mp by m = Mp/N with N the total particle num-
ber. We obtain Mo f'rom

3M &,
2~R' I, R')

where

Mo —— o02mrdr, (12) Start with the equation of motion for the semimajor
axis R of an oblate homogeneous spheroid [e.g. , Eq. (5.6)
of Ref. [11]].Take the limit e -+ 1 and find

o'p = ppr sin 8d8 = ) 2vrrbr ~' (13)
3m. GM h

4 R2 R3' (2o)

and where po is the rest-mass density.

1
Ogo'p + —0~(ro'pv ) = 0,r

1
~a ~~ + —~~ (rZ„v") = oB„a+ g„—g„P" + ZB„ln Aa,

where

(14)

(15)

C. Hydrodynamical disks

In the special case in which concentric shells of parti-
cles do not cross, collisionless matter may be treated as
hydrodynamical dust. Thus, as an alternative to inte-
grating geodesic equations followed by binning of parti-
cles, one could integrate the equations of relativistic hy-
drodynamics. The hydrodynamical equations have the
disadvantage that they are partial difFerential equations
(PDE's) and not ordinary differential equations (ODE's)
such as the geodesic equations. However, they have the
advantage that they produce intrinsically smooth source
profiles, unlike particle descriptions which are stochastic.

The basic equations of relativistic hydrodynamics in
3+1 Arnowitt-Deser-Misner (ADM) form are given in,
e.g. , Ref. [10]. For a cold axisymmetric disk they reduce
to the continuity and radial Euler equations:

where h is the conserved angular momentum per unit
mass of a particle at the surface. Since the motion is
homologous, the radius of each particle satisfies a similar
equation. Choose h to be a fraction ( of the equilibrium
angular momentum hp ——(3m GMRp/4) ~ . Set

R = RpX(t). (21)

Then the radius r of each particle satisfies

r = rpX(t),

X = a(l —e cos u),
P . P

t = —(u —e sinu) ——,2' 2' (24)

where we ass»me X = 1 and X = 0 at t = 0. In Eqs. (23)
and (24), the semimajor axis, eccentricity, and period are
given by

where rp is the initial radius. Substituting Eq. (21) into
Eq. (20) we see that, X satisfies the familiar equation
of an elliptic orbit for a particle with specific angular
moment»m h,g = ((M/Rps)i~2 around a fixed central
mass M,~ = 3vrM/4. The parametric solution for X(t)
1s

p 'I

e=1 —(,
4R,'P = 2m'

i

I, 3m GM(2 —P)s )
(25)

18
The radial and tangential particle velocities are given by
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X
8) = —f') (26)

C. Relativistic disk

(3~aM) "'
4'=(X,

IE 4&~ )I
~ (27)

It is simple to derive the gravitational wave amplitude
for an oscillating disk in the quadrupole approximation.
In axisymmetry, in the absence of rotation, there is only
one polarization and its amplitude is given by

Here we construct a relativistic generalization of the
cold homogeneous Newtonian disk described in Sec. III A.
This is useful for studying the dynamical behavior of
disks in the strong 6eld region, where almost nothing
is known.

Consider a disk of particles in circular equilibri»m.
The Hamiltonian equation [Ref. [6] Eq. (A6)] reduces to

3-
eh+ ———I„sin 8,2" (2S) V Q= —2z —,P (36)

where

I„=—— r pd z = —— r odr = ——MR . (29)
1 2 3 2m 3 2

$$ 3 15

where we have temporarily restored. a factor of Sz' to the
right-hand side. We can obtain an analytic solution if
we first cast Eq. (36) into Poisson's equation by setting
p'/@ = 2pN, obtaining

Here we have used Eq. (19). Using Eqs. (20) and (21) we
find

V g = —4zpN, (37)

rh+ ————Msin 8 BOX +
~

——+
4 ~ X X')

and then equating pN to the homogeneous Newtonian
density profile for an oblate spheroid in the pancake limit
[12]. We then find

(30)
g = 1 —4~, (38)

B. Kalnajs disk

8 cos g = vy —Of' )

Using = 8).
(31)
(32)

Here v is the magnitude of the isotropic velocity in the
rotating &arne and g is a random angle about the particle
position in the disk plane. The distribution of particle
velocities is given by

When g = 1, the above Newtonian disk solution cor-
responds to a»»iformly rotating disk in dynamical equi-
libri»~. As mentioned in the Introduction, such a disk is
»»stable to the formation of rings but can be stabilized
by heating. Kal»ajs [4] has given an analytic prescription
for constructing hot homogeneous disks in equilibrium.
They all have the same surface density o and gravita-
tional potential 4 as the cold disk in Sec. IIIA, but
differ in the amount of random motion. In these models,
the particles have an isotropic velocity distribution in a
rotating &arne that moves with angular velocity 0:

where ON is the Newtonian potential for a Battened
spheroid [12]. In the disk interior, this yields

3zM~ ( lr
CN = —

~

1 ——
z ~

(interior).
4Z. ~ 2 Z,'~ (39)

M = 2MN. (4o)

Comparing Eqs. (36) and (37) we find that the surface
density Eq. (9) is given by

o =2@o~, (41)

where oN is the corresponding Newtonian density given
by Eq. (19).

The angular motion of a particle in an equilibrium disk
is determined by setting dv.,/dt = u„= 0 and using
Eqs. (AS) and (A13) of Ref. [6]. The result is

(a,„/a)Bzr 2

B,„/B —a,„/a + 1/r
(eq»ilibri»rn), (42)

The total mass of the disk M is related to the Newtonian
mass MN appearing in 4N by

Here

f(v)vdv = 2zK v —v vdv.

v = (020 —0 )(R~ —r ),
hp

Op ——

(34)

where B = @z is given by Eqs. (38) and (39). The lapse
a is found &om the maximal slicing (K,' = BqK,*. = 0)
condition, Eq. (A7) of Ref. [6] specialized to eqmhbri»~,
for which q = 0 = K'-. The source term Z appearing in
the j»~p condition for the lapse equation is given by

and K is a normalization constant. Models in this family
are parametrized by the ratio 0/Ae. Cold disks have
0 = Oe. Hot disks with 0/Ao ( 0.816 are stable against
ring formation.

2z=~Br +u

where we have used Eq. (A16) of Ref. [6]. Because a
and u& are interdependent, it is necessary to iterate the
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lapse equation and Eq. (42). As an initial guess we use

1 + @(exterior)

The rest-mass surface density oo defined in Eq. (13) is
given by

2o.~@
+ u2/gPr (44)

(equil)
XLy = (ted, (45)

The other equations remain unchanged. In the Newto-
nian limit, this solution goes over to the cold oscillating
disk of Sec. IIIA.

An interesting nonequilibrinm solution is the one in
which ( = 0. This corresponds to the collapse of a homo-
geneous disk in which all the particles are at rest initially.
This is the pancake analogue of Oppenheimer-Snyder col-
lapse of a homogeneous sphere. In the disk case, however,
the solution is radiative and is not known analytically. In
this case the total mass and rest mass are related by

2Mp

1+ (1+6mMO/5')~/2 (46)

(see Ref. [12]).

IV. NUMERICAL RESULTS

In this section, we give examples of evolutions com-
puted with our fully relativistic particle disk plus gravity
code. Convergence and other tests of the basic code have
been reported on in other papers [5—7]. For realistic sim-
ulation grids, the convergence properties of the code with
the new disk source boundary conditions were consistent
with earlier results.

In Table I we s»mmarize the cases discussed in the text.
When possible, we show gravitational waveforms and also
make contact with analytic results. The waveforms are
extracted with the standard gauge invariant extraction
method of Abrahams and Evans [13]. The waveforms
are extracted at a Gxed coordinate radius and displayed
as a function of coordinate time. (Our radial coordinate
is equivalent to the isotropic Schwarzschild coordinate
for spherically symmetric spacetimes. ) In certain cases

fmm which the total rest mass can be computed using
Eq. (12).

We can obtain a solution to the initial value equations
for a nonequilibrium disk at a moment of time symmetry
when the particles are moving at a fraction ( of their
equilibrium velocity:

when it was necessary to extract the waveforms at small
radii, r 10 M, we tested the procedure by making cor-
rections for the Schwarzschild background. These cor-
rections were of the same order as the inconsistencies in
the waveforms extracted at different radii: 10—20%. In
Sec. IVB we discuss further the sources of error in the
extracted waveforms. We also monitor quasilocal mass
indicators; for the runs shown here the total mass is nu-
merically preserved to within about 3%.

A. Oscillating cold Newtonian disk

As a check on our code, one would Grst like to simulate
the collapse of the oscillating homogeneous disk described
in Sec. III A. Unfortunately, such a cold configuration is
unstable to ring formation. This is the familiar result for
cold equilibrium disks with 0 = 00 and ( = 1 discussed
above; we find numerically that it also holds for cold os-
cillating disks. We can still employ this analytic model to
check the Beld solver in our code provided we supply the
unperturbed source function n analytically as a function
of time. We then allow the code to solve the Geld equa-
tions and thereby determine the gravitational radiation
numerically from the metric and extrinsic curvature.

Here we give results &om a typical evolution of a ho-
mogeneous disk with ~/Mo —30 and velocity cut-
down factor ( = 0.9. This choice of radius is suffi-
ciently large that the system remains essentially New-
tonian throughout its evolution. We place the outer
boundary at r /Mo ——500 and use a mesh with 30
radial zones inside the matter, 220 outside, and 16 an-
gular zones in the upper hemisphere. In Fig. 1 we com-
pare the gravitational waveform extracted at an arbitrary
fixed exterior radius of 42 M using a gauge-invariant tech-
nique [13], with the analytic prediction Eq. (30). After
an initial transient, the waveforms coincide very closely.
The slight noise in the extracted waveform arises kom
interpolation error when the analytic source is mapped
onto the numerical grid.

The excellent agreement between the analytic and nu-
merical results here gives confidence in the reliability of
the numerical implementation of the jump conditions and
the solution of the Geld equations.

B. Oscillating Kalnajs disk

To test the particle simulation aspects of our code, we
set up stable equilibrium Kalnajs disks as described in
Sec. IIIB. Our code successfully holds these in equilib-

TABLE I. Disk evolution cases.

Case
Oscillating cold Newtonian (analytic source)
Oscillating Kalnajs
Cold relativistic equilibrium
Hot relativistic near-equilibrium
Cold relativistic

Ro/I
30.0
20.0
8.0
10.0
1.5

&/no
1.0
0.8
1.0

0.85
1.0

0.9
0.9
0.99
1.0
O.G

Fate
Oscillates
Oscillates

Rings
Collapses and virializes
collapses to black hole
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This contrasting behavior leads to errors in the extracted
waveforms because extraction relies on delicate cancella-
tions of the near-zone Beld components. However, when
smoothed out, the waveforms extracted at different radii
agree within the accuracy stated above.

C. Cold equilibrium relativistic disk

Here we consider eq»i&tbrium disks constructed accord-
ing to the prescription of Sec. IIIC. The question we wish

FIG. 3. Gravitational waveform from the oscillating
Kalnajs disk shorn in Fig. 2. The quadrupole waveform ex-
tracted at a radius of r/M = 21 (solid line} is compared with
the quadrupole formula result, Eq. (28} (dashed line).

to answer is whether this disk is unstable to rings as in
the Newtonian theory when the source and gravitational
Geld are evolved consistently. In Fig. 4 we show a rela-
tivistic disk with Ro/M = 8. Before the evolution pro-
gresses very far, ring formation begins and by t = 30M
is completely dominant. Less relativistic conGgurations
behave similarly. This calculation was carried out with
300 radial by 16 angular zones and 12 000 particles, but
r»~~ with as many as 48000 particles did not not slow
down the ring formation.

D. Hot relativistic disk

As discussed before, ring formation is suppressed by
the addition of suKcient random particle motion. Un-
fortunately, only small values of velocity dispersion can
be used without dissipating the outer region of the disk.
Here we consider the evolution of a relativistic disk
with Ro/M = 10, and velocity dispersion parameter
0/Os ——0.85 and ( = 1.0. Because of its compactness,
this near-equi&ibrium relativistic Kalnajs disk is unsta-
ble to collapse. As shown in Fig. 5 the disk initially
collapses and then oscillates about a new equilibrium of
about Rs/M = 8.0. At late times it virializes to a static
eon&librium state.

In Fig. 6 the gravitational waveform extracted at
r/M = 12.0 is compared with the quadrupole formula
result. As discussed above, we have evidence that the
stochasticity of the particle source is responsible for the
short-time scale discrepancies between the waveforms.
This calculation used a 200 radial by 16 angular zones
and 12000 particles. Tmproving the accuracy requires
higher grid resolution and more particles; unfortunately

8—
t=o t=16

Y
4

8—
t=49

FIG. 4. Snapshots of the particle posi-
tions for the evolution of a cold, equilibrium
relativistic disk. The initial disk radius is
R /Ms= 8.0. The rapid growth of concen
tric rings is apparent.

8 0 2 4
I I . l I i

6

X
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FIG. 5. Snapshots of the particle positions
for the evolution of a hot, near-equilbrium
relativistic disk. The initial disk radius is
~/M = 10.0 and the velocity dispersion pa-
rameter 0/Ao = 0.85. Following collapse,
the disk settles doom to a new equilbrium
state.
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the noise in the waveform is a ~N effect so iacreasing
the number of particles quickly becomes computationally
prohibitive.

E. Cold disk collapse

Fiaally, we consider the collapse of a cold homogeneous
disk, the disk analogue of Oppenheimer-Snyder collapse
in spherical symmetry. Initially, all particle velocities are
equal to zero (( = 0). We consider a very relativistic case
with Rp/M = 1.5. (Recall that in isotropic coordinates
a Schwarzschild black hole has a radius Rp/M = 0.5.)
With such a compact disk, the collapse is quick enough
that an apparent horizon appears before the ring instabil-
ity becomes significant. In Fig. 7 we show results &om an
evolution carried out with 300 radial by 16 angular zoaes
and 24000 particles. The apparent horizon appears at a
time of about 4.0 M and riag formation is just discernible
at the disk center at this time.

In order to prolong the numerica, l evolution after the
black bole forms and counteract the efFect of throat
stretching" that occurs ia our maximal (and other sin-
gularity avoiding) time-slicing conditions, we have imple-
mented a moving mesh algorithm that moves the inner
radial grid zone to track the growth of the conformal
factor g. With this method, we are able to evolve the
black hole and preserve constancy of out quasilocal mass
measures (the Brill and ADM masses) to a few percent
for around 15 M aSer hole formation. Evolution beyond
this time is prevented by the n»clerical difficulties in inte-
grating the particle geodesics on the extremely stretched
mesh.

This time is sufhcient, however, to see the pulse of
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FIG. 6. Waveform from the hot relativistic disk shorn in
Fig. 5. Wave amplitudes are labeled as in Fig. 3.

radiation from collapse and, perhaps, the first half wave-
length of a quasi-normal-mode oscillation. ln Fig. 8 we
show an estimate of the asymptotic quad upole wave
form extracted at r/M = 8.0. After an initial peak rep-
resenting radiatioa in the initial data we see an oscillat-
ing signal with total wavelength of approximately 16 M,
comparable with that of the most slowly damped E = 2
quasinormal mode oscillation which has A = 16.8 M. The
energy radiated is less than 0.1'%%uo in the quadrupole mode,
and we estimate that it is less than 0.01' in higher E
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FIG. 7. Snapshots of the particle positions
for the collapse of a cold relativistic disk. Ini-
tially the radius is Rs/M = 1.5 and the par-
ticles are all at rest. The apparent horizon
(dashed line) first appears at t 4.0 M.
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modes. In a future paper [14] we study the waves from
this case with a somewhat different method.

We monitor the area of the apparent horizon and its
polar and equatorial circumferences (see Ref. [6] for def-
initions). As shown in Fig. 9, the normalized apparent

horizon area A/16''Mz has a value of 0.95 when it first
forms, and asymptotes towards the Schwarzschild value
of 1.0 before the calculation terminates. The black hole
is initially oblate when the apparent horizon forms. The
normalized proper circ»mferences oscillate around their
Schwarzschild values C,s/4+M = C„/4+M = 1.0 as the
black hole radiates off its initial asphericity. This oscil-
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FIG. 8. Gravitational waveform from the disk collapse
showa in Fig. 7. The quadrupole waveform extracted at
r/M = 8.0 is shown as a function of retarded time.

0.95
I

l I I I I I l I I I I l I I l

5 10 15

FIG. 9. Horizon diagnostics for the black hole formation
shown in Fig. 7. The proper equatorial circumference, polar
circumference, and area of the apparent horizon normalized to
their Schwarzschild values C,~/4s M, C„/4s M and, A/16s'M
are plotted as functions of time in units of M.
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lation period again is comparable with that of the most
slowly d~mped E = 2 quasinormal mode.

V. CONCLUSIONS

Vfe have presented here preliminary results kom a new
relativistic mean-6eld, particle-simulation code that can
evolve disks of collisionless matter and compute the emit-
ted gravitational radiation. The disk analogue to the
Oppenheimer-Snyder solution, cold homogeneous disk
collapse, is an interesting benchmark for numerical rel-
ativity codes as it is one of the simplest scenarios that
encounters the two most computationally challenging fea-
tures of relativistic collapse: black hole formation and
evolution, and gravitational wave production and prop-
agation. The hydrodynamical formulation of this prob-
lem, provided in Sec. IIC, should permit implementa-
tion of disk collapse in codes without collisionless matter
sources.

Failure to complete the computation of the full radi-
ation data in the case of disk collapse to a black hole
re8ects the fundamental problem in numerical relativ-

ity. Specifically, no general algorithm is currently known
that can integrate Einstein's equations for long enough
after a black hole forms to compute the full gravitational
waveform. It may be possible that this problem can be
solved with suitable apparent horizon boundary condi-
tions, "cutting out" the black hole (see e.g., Ref [15)).
We expect disk collapse to be a useful proving ground
for developing apparent-horizon boundary conditions and
other black hole evolution techniques in an axisymmetric
context.
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