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Global properties of static spherically symmetric charged dilaton spacetimes
with a Liouville potential
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We derive the global properties of static spherically symmetric solutions to the Einstein-Maxwell-
dilaton system in the presence of an arbitrary exponential dilaton potential. We show that, with
the exception of a pure cosmological constant "potential, " no asymptotically Bat, asymptotically de
Sitter, or asymptotically anti —de Sitter solutions exist in these models.

PACS number(s): 04.20.Ha, 04.50.+h, 04.70.Bw

I. INTRODUCTION

There has been considerable interest recently in the
properties of "stringy" black holes: classical solutions of
tree-level string effective actions, in which the Einstein
action is supplemented by fields such as the axion, gauge
6elds, and the dilaton which couples in a nontrivial way
to the other fields. In particular, dilaton black holes have
been shown to have novel thermodynamic properties [1]—
[3], and to behave like elementary particles in some scat-
tering scenarios [4].

Unfortunately, much of the work on dilaton black holes
to date has involved models with one serious deficiency:
the dilaton has usually been assumed to be massless. It is
widely believed, however, that the dilaton must aquire a
mass through some symmetry-breaking mechanism. In-

1

deed, this is necessary in order to avoid long-range scalar
forces which would otherwise arise. Gregory and Har-
vey [6] and Horne and Horowitz [7] have now finally made
some investigation of black hole models which include a
mass term —they have chosen a standard quadratic po-
tential for the dilaton 6eld. While a rigorous proof of
the existence of black hole solutions in these models has
still to be given, the arguments of Horne and Horowitz

[7] are nonetheless compelling.
Ultimately, it would be physically desirable to inves-

tigate models of black holes in eH'ective dilaton gravity
theories in four dimensions which involve a dilaton poten-
tial generated by some speci6c symmetry-breaking mech-
anism, rather than simply an ad hoc potential, as in the
work to date [6,7]. In particular, one could consider an
(Einstein kame) action such as

R 1 (—4gorcg l
S = d xg g — — g 8 $8sg —V(P) ——exp

~ ~

F r,F4r2 D —2 4 qD —2)

which includes gravity, an Abelian gauge 6eld, and the
dilaton P, with a nontrivial dilaton potential V(P) of the
form

where

& = &exp+ &sUsY& (1.2)
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and
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(1.4)

K2 = 4mG is the D-dimensional gravitational constant.
Equations (1.1)—(1.3) are somewhat more general than is
demanded by string theory. However, if we set go = 1 we

obtain the standard tree-level coupling between the dila-
ton and the electromagnetic field, while setting gi
A = (D,»&

—D,tr) /(3a'), in the I iouville-type term (1.3)
yields the case of a potential corresponding to a cen-
tral charge deficit. The term (1.4), on the other hand,
is the type of potential which arises in four dimensions
&om supersymmetry breaking via gaugino condensation
in the hidden sector of the string theory [8]. Potentials

Here go, gi, A, a, A, B, and C are constants and
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A fascinating discussion of the observational consequences
of a very weakly coupled massless dilaton is given in [5j.

Gregory and Harvey also considered a potential of the form

V = 2m cosh
The particular potential given in (1.4) is relevant for one

gaugino condensation.
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of the form (1.3) and (1.4) have been widely studied in
string cosmologies [9], but to date the only investigations
of static spherically syxnmetric solutions involving such
terxns have been restricted to the case of uncharged so-
lutions [10]—[14]. Maki and Shiraishi [15] have recently
derived nonstatic Kastor-Traschen-type [16]cosmological
multi black hole solutions for the action (1.1)—(1.3). How-
ever, such solutions were only obtained for certain special
values of the constants go, g& and of the time-dependent
coupling in the dilaton cosmological scale factor.

In many respects the action (1.1) is still oversimplified
because it neglects the possible contribution of additional
scalar fields, such as the string moduli which correspond
to the extra dimensions of spacetime after dimensional re-
duction. Static spherically symmetric solutions involving
both moduli and a dilaton have been discussed recently
by Cadoni and Mignemi [17],and by Cvetic and Tseytlin
[18], but in the absence of a potential. The introduction
of a potential greatly complicates the situation, however,
as is well demonstrated by the case of the quadratic po-
tential, where a complete integration proved impossible
even numerically [7].

Given the inherent difficulties involved in studies of
xnodels with nontrivial potentials, the present paper is
intended only as a first step: we will not study the prob-
lem posed by Eqs. (1.1)—(1.4) in full, but will restrict
ourselves solely to the case of a Liouville-type potential
V = V,„~. It is our hope that a further refinement of
the approach discussed here can be applied to the more
difficult case when a supersymmetry-breaking potential
of the type (1.4) is also included. We are of course most
interested in the case D = 4, but will leave D arbitrary,
(with the only requirement that D & 2), as this does
not involve many extra complications. Furthermore, we
will also leave the dilaton coupling to the electromagnetic
field arbitrary, rather than immediately specializing to
the string case (go

——1).
We will show in the particular case of an exponen-

tial potential (1.3) that no static spherically symmet-
ric asymptotically Bat charged black hole solutions exist.
Furthermore, no static spherically symmetric asymptot-
ically de Sitter (or anti —de Sitter) solutions exist either,
except in the special case gz

——0 when the potential is
simply a cosmological constant. (The gi ——0 model has
recently been studied by Okai [19].) Our result concern-
ing the potential (1.3) is of course more in the line with
the intuition provided by the scalar no-hair theorems
[20]—[22], rather than with the dilaton black hole solu-
tions [1] which avoid the no-hair theorems through the
coupling between the dilaton and electromagnetic fields,
with the result that the dilaton scalar charge depends
on the other charges of theory [23] rather than being an
independent "hair."

II. THE DY'NAMICAL SYSTEM

t' —4g, ~p l
V(P) = ) A;exp

~4~2 .
' (D —2)' (2.1)

there are some aspects of the analysis of [12] which would

appear to apply to arbitrary potentials. In particular,
one may conjecture the following.

(i) If V is nonzero then asymptotically (anti —)de Sitter
solutions exist if and only if

2 Po such that = 0 and V(go) P 0. (2.2)
4=40

The solutions are asymptotically de Sitter (anti —de Sit-
ter) for V(go) & 0 (V(go) ( 0).

(ii) If V is nonzero then asymptotically fiat solutions
exist if and only if

2 Po such that = 0 and V(go) = 0. (2.3)
d

The fact that trivial solutions exist under both these
circumstances is pretty obvious: if (2.2) holds then the
Schwarzschild —(anti —)de Sitter solutions with a constant
dilaton P = Po are solutions, while if (2.3) is satisfied
then the Schwarzschild solution with a constant dilaton

P = Po is a solution. Any 'particular potential may have
many such solutions, depending on the number of differ-
ent turning points.

It is not difficult to see that any nontrivial solutions
with the appropriate asyxnptotic form, and with a scalar
field which is "physically well behaved, " namely, at worst

const at spatial infinity, must also satisfy (2.2) or
(2.3) if all the fields have regular Taylor expansions at
spatial infinity. This can in fact be seen by direct in-
spection of the field equations written in terms of a con-
ventional radial coordinate. In particular, consider co-

tials. Such an analysis is useful for deriving "no-hair"
results in circumstances in which some assumptions used
in the standard no-hair proofs do not apply. We recall,
for example, that Bekenstein's proof [21] of the scalar
no-hair theorem for static black holes can be easily gen-
eralized to any convex potential [22], (i.e., for any V(P)
for which &

+ & 0 for all P), by simply multiplying the

appropriate scalar field equation by &&, rather than by P,
before carrying out the appropriate integration. In [10],
however, we derived the equivalent of a no-hair result for
the potential (1.3)4 without any restriction on the sign
of A. [For A & 0 (A ( 0) the potential (1.3) is convex
concave .

In [ll] and [12] the approach of [10] was extended to
more general potentials. Although the most general po-
tential we have considered is an arbitrary finite suxn of
exponential terms

We shall use the saxne approach here as has been
used by Mignemi and one of us [10]—[12] to study un-
charged static spherically symmetric solutions in models
of gravity involving a scalar Beld with nontrivial poten-

In [10] a particular g~ appropriate to Kaluza-Klein theories
with internal spaces of nonzero curvature was used, but the
arbitrary g case was included in [12].
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ds = —e "dt +e "dr +R dO
D —2' (2.4)

ordinates of the type used by Garfinkle, Horowitz, and
Strominger [2]:

in (2.6) yields the result

dV =0, A = 2V(go), (2.8)

where u = u(r) and R = R(r). We will henceforth use
units in which K = 1. The field equations obtained from
variation of (1.1) for a general potential V(P) are then
given by

1 dV 1 t' —4gog)
Q(t = —(D —2) ——g exp

i i

F sF
2 d 2o (D —2)

8 g gexp~ 0 ~F =0,
t' —4g04 &

&D-2) (2.5)

R s = [8 QBsg+ g sV]

4g, 4—l+2exp
i i

F,Fb'— g ~I' ~I"'"
2(D —2)

If we choose F to be the field of an isolated electric charge,

F =exp~
~ D dtAdr,(4gop ) Q

(,D —2) RD

then the field equations with the metric ansatz (2.4) are

RD 2dr dr 2

( 4g, 4»~ Q'
+go P I D I R2)

1 d'R
R dr2

4

(D —2)' (, dr )
(2.6)

1 d 2„d 1
D —2 dr dr

e "—{R ) = (D —2)(D —3) —4V
R2

t' 4g, 4 ~
exp l(D 2 I R,(D,)

R~ RR=r+R + r
(2.7)

together with one further equation which depends on the
others by virtue of the Bianchi identity. Although we

have assumed an electric Geld here, the solutions for a
purely magnetic field are readily obtainable once the so-
lutions for the system (2.6) are known since the field
equations for the magnetic case can be obtained from

(2.6) by making the replacement gs -+ —
go and Q —i P,

where I is the magnetic monopole charge.
If we now xnake the expansions

from the lowest order terms. Thus in general it is neces-
sary for the potential to have a turning point at P = $0
for solutions with asymptotic expansions (2.7) to exist,
and such solutions will be asymptotically fiat, de Sitter
or anti —de Sitter solutions if V($0) = 0, V(go) ) 0, or

V((to) ( 0, respectively. Such solutions are consequently
ruled out for the I iouville-type potential (1.3), except in
the special case of a cosmological constant (g = 0) when

„~ = 0 identically.
If we make no assumptions about the existence of reg-

ular series expansions at spatial infinity then the proof of
necessity in (2.2) and (2.3) is much less trivial. Indeed,
in the context of models of gravity corresponding to the
low-energy limit of string theory one can conceive of in-

stances in which power series expansions of the form (2.7)
would not apply. In particular, although asymptotics
with P -+ —oo at spatial infinity would be disastrous in
conventional field theories, in the case of string theory all
couplings between the dilaton and matter fields involve

powers of e ~, so provided the dilaton energy-momentum
tensor is well behaved at spatial infinity one would ex-
pect the weak-coupling limit P -+ —oo to be physically
admissable. It is under such circumstances that the ap-
proach of [10]—[12] becomes useful: we reformulate the
field equations in terms of a first order autonomous sys-
tem of ordinary differential equations. Typically one
finds that the full phase space has various subspaces, one
of which corresponds to the system with no potential and
which contains critical points at the phase space infinity
that correspond physically to an asymptotically Hat re-

gion. If such critical points are not end points for integral
curves which lie outside of the subspace with V((t) = 0,
and if no other critical points correspond to an asymp-
totically Hat region, then a "no-hair" result is obtained.
The precise global properties of all solutions of interest
are often readily obtained.

%e will now apply this approach to the problem posed
by the action (1.1)—(1.3). In order to obtain an au-

tonomous system one must use the radial coordinate of
Gibbons and Maeda [1], defined by

in terms of the previous radial coordinate r. One further
modification is necessary for the phase space analysis,
namely to replace the (D—2) sphere of the spatial section

by a more general (D —2)-dimensional Einstein space, so
that the full metric is given by

d 2 = se " dt + R ( — id( + R g dx'dx~ (2.9).
at spatial infinity, assuming the solutions to be asymp-
totically (anti —)de Sitter solutions or asymptotically fiat
depending on the value of A, then substitution of (2.7)

where now u = u((), R = R((),
'R,, = (D —3)Ag;, ,

and c = +1. Of course, we are primarily interested in
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the case when A = 1 and g;z is the standard metric for
a (D —2) sphere. However, the A = 0 surface forms
an important boundary in the phase space, with various
critical points lying there, and thus we must leave A arbi-
trary for the analysis. We have included a factor e = +1

I

explicitly in (2.9), as this will allow for the inclusion of
critical points both in the region in which the Killing vec-
tor 8/Bt is timelike (s = +1), and the region in which

8/Bt is spacelike (s = —1), in the analysis below.
In terms of the coordinates (2.9) the field equations are

Q" = —g~eAe "+gosQ e ",
("= (D —3) sAe2~ —2sAe2",

I

Q''"
D —2 ]D —2&

—u' — 3t)' —(D —2)(D —3)she ~ + 2@Ac ~ + sQ e " = 0,
(D —2l -, , - 4

],D —3p - . (D —2)

(2.1o)

(2.ii)

(2.i2)

(2.13)

where

X=(', Y = g',

V=g', W = e",

( =—u + (D —3) ln R,
2a, 4g=u+ D —2

2a, 4y:—u+ (D —2) lnR—
D —2

If we now define

(2.14)

(2.i5)

X' = (D —3)sQ Z —sAW —(D —3)'P, (2.16)

Y' = D —3+ g e Z — 1+gogq cAW, 217

V' = (D —3 —gog, ) eq Z + (g, —1 [e31V

(D —2)'P-,
Z'= YZ,
W'= VW,

(2.is)
(2.19)
(2.2o)

where

I

then the constraint equation (2.13) may be used to
eliminate the terms involving A from the field equa-
tions (2.10)—(2.12), yielding the following first order au-
tonomous dynamical system:

1
(D —l)p + (D —2) + 2g g —(D —3)g X + 1 + (D —3)g Y[(D- )~ -~]' 0 1 1

+ (
D —3+ g

~
] V [(D —3)V —2(D —2)X] + 2(1+gog~)'Y [(D —3)V —(D —2)X]I (2 21)

and gs g (D —3)g~. [We will consider the particular case

gs ——(D —3)gz at a later stage. ]
Our aim is to analyze the phase space for this system of

equations. Since the metric and dilaton field are related
to the functions X, Y, V, Z, and W of the 5-dimensional
phase space, they are necessarily regular at all points of
the integrals curves apart from critical points. Conse-
quently, in order to determine the global properties of
all solutions, namely, the structure of their singularities,
horizons, and asymptotic regions, it suKces to study the
properties of the solutions at critical points of the phase
space. Further careful analysis is required in order to
determine which critical points are connected to which
other ones by integral curves, thus determining the dif-
ferent possibilities for spacetime structure.

Although the space is 5-dimensional, we have some
hope of analyzing it, due to various symmetries. Equa-
tions (2.19) and (2.20) ensure that trajectories cannot
cross either the W = 0 or S = 0 subspaces, which corre-
spond physically to A = 0 and Q = 0, respectively. Thus
we may restrict our attention to Z & 0 and W & 0 with-

out loss of generality. The hyperboloid defined by A = 0,
or equivalently, from (2.13),

'P —sQ2Z —eAW = 0, (2.22)

similarly forms a surface which trajectories cannot cross.
It partitions the phase space into the two physically dis-
tinct regions with A ) 0 and A & 0.

III. THE W = 0 AND Z = 0 SUBSPACES

If W = 0 or Z = 0, which corresponds physically to
A = 0 and Q = 0, respectively, then one equation [either
(2.20) or (2.19)] drops out and the phase space becomes
4-dimensional. In both cases, however, one direction in
the 4-dimensional subspace is "trivial" as a further degree
of freedom can be integrated out with a linear dependence
on two of the other dimensions. In particular, if W = 0
then
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(D —2i t' 1+g,g, & &(D —3)a, —as)
lD 3-+~,'~ &

D-3 ) " (3.1)

while if Z = 0 then

(1+g g, ) [(D —2)X —(D —3)V]+ [(D —3)g, —g ] c,
1+ (D —3)g 2 (3.2)

where co and cl are arbitrary constants. Of course, the
W = 0 (i.e., A = 0), system can be integrated completely
[1]. (See also Appendix B.) However, for our purposes
here it is sufficient to stop with (3.1) and analyze the
critical points.

The only critical points at a 6nite distance from the
origin in the full 5-dimensional phase space have both
S' = 0 and Z = 0, and so are common to both subspaces.
These critical points also have P = 0, and consequently
by (2.22) it follows that they are on the A = 0 surface
also. From (2.21) it follows that these points are located
at X = Xo, Y = Yp, and V = Vp, where

I

The integral curves which lie in the plane Z = 0 are just
the lines Y = const. Such curves correspond physically
to the spacetimes with Q = 0 and A = 0, and the general
solution for the physically interesting A = 1 case was
given long ago by Buchdahl [24]. The exact solutions
for all values of A are given in [10] and [12]. For each
value of co the critical points (3.3) form a hyperbola in
the Z = 0 plane. From the analysis of [10]—[12] it follows
that for each value of co one critical point, namely, the

point with5

co
Xo = Yo = — D —3+gp

- l/2
+ g

2
C

(3.3)

X' = (D —3)sQ Z +X — Y
(D —3+g 2)

D —3+g c )

Y'= D —3+g e Z,
Z' = YZ.

(3.4)

(3.5)

(3.6)

while Vo is given by substituting (3.3) in (3.1).
Consider the W = 0 (A = 0) subspace. If the V

direction is parametrized as in (3.1) then by eliminat-
ing V from the other equations we obtain an effective
3-dimensional system:

corresponds to a horizon, r ~ r, while the remaining
critical points correspond to a singularity at r ~ 0. The
trajectory with an end point at the horizon which lies
completely in the Z = 0 plane of course corresponds to
the Schwarzschild solution and the constant co is related
to the Schwarzschild radius. (See, e.g. , Fig. 1 in [10].)

An analysis of small perturbations about the critical
points X = Xp Y = Yo, Z = 0 in the 3-dimensional sub-
space yields the eigenvalues 0, 2Xo, Yq. The zero eigen-
value corresponds to the degeneracy in the Y direction
on the Z = 0 plane. Each critical point in the first and
third quadrants is the end point of a 2-dimensional bunch
of trajectories in the 3-dimensional space, while those in
the second and fourth quadrants are saddle points with
respect to trajectories out of the Z = 0 plane.

The critical points which lie on the sphere at infinity in
the effective 3-dimensional phase space may also be found

by standard means. These points may be classi6ed as

Jl, 2

K 2:

YX=O, Y=+oo, Z=
D —3+g 2

X=+oo, Y=X, Z= .q* (a —s+ g.*)

Yp=
D —3+g 2'

—g X

~a —a) (n —a+g.~)
'

Ll 4

Ml2: X=koo, Y=O, Z=O,

D —3+g 2

X=+oo, Y=+X,Z=O,
D —3

P=0,
'P = X /(D —3). —

The case go = 0, for which the W' = 0 subspace just represents the standard Reissner-Nordstrom solution can readily be
treated by a separate analysis. However, this will not concern us here.
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X = p(l —p) sin8~cosg~,

Y = p(l —p) sin8~ sing~,

Z = p(1 —P) cos8&,

(3.7)

The points L1 4 of course correspond to the end points of
the one-parameter family of critical points given by (3.3),
while the points M~ 2 are labeled here so as to correspond

to the critical points at infinity with the same physical
properties as in [10]—[12]. Since the phase space here
describes a system which is physically diH'erent to the
models discussed in [10]—[12], the points J~ 2 and Kz 2

have no direct correspondence to cases considered there.
In Fig. 1 we plot the surface of the sphere at infinity in
terms of the coordinates 8& and Pz defined by

X' = —sAW —(D —3)'P, (3.8)

Y' = (g,
~ —1) eAW~ —(D —2)'P, (3.9)

6"=VW, (3.10)

with

in the limit p ~ 1. We will postpone the discussion of
the properties of solutions approaching these points until
the next section.

Now consider the Z = 0 (Q = 0) subspace. If the Y'

direction is parametrized as in (3.1) then by eliminat-

ing Y &om the other equations we obtain an effective
3-dimensional system:

1+ (D —3)g 2
D —1 —g ~

X —2(D —2)XV+ (D —3)V + c
1 y 1 (3.11)

in this case. This system, which is physically equivalent to Einstein gravity coupled to a scalar field with a single
exponential potential is of course precisely one of the systems that has already been studied in [10]—[12], and the
properties of the solutions are identical. In addition to the critical points common to the W = 0 and Z = 0 given
above the following additional critical points are found:

L5 8'

12

X=koo, V=

XX=koo, V=X, W=
—sA 1+ (D —3)g 2

1

(D —2) + 1+ (D —3)g 2

X=koo, V= , W=0,
D —3

(D —1 —g2) D —1 —g2
1 X W X 1

D —2 )
' —sA

7=0,

g,
2 —(D —1) X'

(D —2)'

g 2X2
1

1+ (D —3)g

The points Ls s, N~ 2, and P~ 2 have been labeled here in precisely the same fashion as in [12].

IV. THE 5-DIMENSIONAL PHASE SPACE

It is not extremely difficult to piece together the structure of the integral curves in the full 5-dimensional phase
space (X,Y, Z, V, W) given the existence of the various symmetries and special subspaces discussed above. As we
have already noted all critical points in the 5-dimensional phase space which lie at a finite distance from the origin
are confined to the W = 0, Z = 0 subspace, and this leads to great simplifications. Similarly most of the critical
points at the phase space infinity are those obtained in the preceding section; the only additional critical points are

g 0I 1

A&0 A&0
I
1~I
I
I
I

I

I
I

L, M2 L3 L4 PI
—2X

FIG. 1. The hemisphere at infinity in the reduced W = 0 (A = 0) subspace in terms of the coordinates 8 P defined b
~ . ~. Although these mtegral curves do not correspond to physical solutions it is nevertheless helpful to sketch them since by
continuity arguments they will determine the behavior of the physical integral curves which lie within the sphere at infiniti niy
but near its surface.
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found to be the one parameter family L(y):

X = +oo, Y = yX, V = vX, Z = 0, R" = 0, (4.1)

where

2- 1/2
D —3 + g0

(D —3)

2- »/2
D —3 + g

2( y
0

(D —3)
(4.2)

and

(D —2) D —3yg —(D —3) (1+g g ) 6 (D —3)g, —g 1

(D —3) D —3+g 2

2 + (D —3) (1 —y2)
(4.3)

together with the isolated points

S 2: X = koo, Y = X, V = X,

Z = X
sA (D —3)g, —g,

g»

sQ2 (D —3)g, —g 1

'

1,2 X=+oo, 1 =V=X]
(a, )

1 g
sA(D ——2)a, '

A» A3

sQ2a 2 ' p 0
—(go + g, )2a, x2

A
2

where

a, =—(D —1)g,' + 2gog, —(D —3)g,
' + (D —2)',

a2
—= (D —2) go (go + g, ) + (D —2)

a. =—(D —2) —g, (g, +g, ) .

d8 = —e "Ch + e dR + R g,~
dz'dz (4.4)

where now u = u(R) and v = v(R), instead of coordi-

The points L(y) represent the extension of points L~
to the 1-parameter set of critical points which coincide
with the intersection of the A = 0, Z = 0, W = 0 surface
and the sphere at infinity.

Following [10—12j we will specify the asymptotic be-
havior of solutions by using the proper radius R as the
radial variable through coordinates

nates (2.4) or (2.9). The properties of the solutions in the
neighborhood of the various critical points may be read-
ily determined. One finds three possible behaviors for the
proper radius R: (i) R m 0 corresponding to a central
singularity as in Table I; (ii) R ~ oo, corresponding to
an asymptotic region as in Table II; or (iii) R = const,
which is true only in the case of the points S» 2 . Points

1

S have P = const also, and they correspond to the end

points of Robinson-Bertotti-type solutions as is demon-
strated in Appendix A.

The only critical points which correspond to an asymp-
totically flat region are M» 2, and as anticipated from our

earlier analysis no critical points in Table I have (anti —
)

de Sitter asymptotics, except in the special case g 1 0
when the points N~ 2

are (anti) de Sitter. In order to de

termine the nat ure of the set of trajectories which have
end points at the various critical points it only remains to
find the eigenvalues spectrum of linearized pert urbations.
These results are given in Table III.

TABLE I. Asymptotic form of solutions for trajectories approaching critical points at phase
space infinity from within the sphere at infinity, in the case that B m 0.

Values of constants

+1, A = 0

gi' & (D —1)
eA ( 0, A = 0

+—2(a —3)

2'U

2[a '+(~—3)11

~2(a1 ' —1 )

~—(D—2)g

~(0—2)g1

there is a factor g —g missing from in front of the square root term in the corresponding equation (2 4&) in [&2].
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TABLE II. Asymptotic form of solutions for trajectories approaching critical points at phase space in6nity &om within

the sphere at infinity, in the case that R m oo. Here P~ = 1 + (D —2) (D —2) —
g~ (go+ g, ) / (g +g ) and

/3. = 1 —(D —2)g, / (g, + g, ).

K, 2

M~2

1,2

Values of constants

t =+1, A)0
eA) 0

g, & (D —1), eA & 0, A = 0

sA & 0, sgn A = sgn s(g —1)

eAn~/a~ & 0, A = 0, )ra~as ) 0

2tl

R2(D —3) /u 0

const

R

R'~~

2v

const
const
R2(u, —&)

const

24

R(D—2)(D—3)/u,

const
R(D-2)u,

g(D-2)/u

g(D —2) /(uo+u, )

V. THE STRUCTURE OF THE PHASE SPACE

For A & 0 and s = 1 the only critical points at phase
space infinity for which R ~ oo are K~ z and M~ 2, which

both lie in the W = 0 subspace (corresponding to A = 0).
The only trajectories approaching M& are the asymptot-
ically Bat solutions lying entirely in the W = 0 subspace,
which of course include the familiar Gibbons-Maeda dila-
ton black-hole solutions. In general, trajectories which
approach the points K& 2 lie entirely within the W = 0
subsPace. However, if g

z & (D —3)gogz, then there will
be trajectories which approach this critical point from
outside the W = 0 subspace.

On the face of it trajectories approaching the critical
points Kz 2 are potentially of interest, particularly for

't

those trajectories which correspond to the weak coupling
limit e24' ~ 0. Indeed, one finds that the curvature in-
variants of spacetimes asymptotic to K~ 2 do have sug-

gestive properties. To be specific, in the case D = 4,
pp 1 all the components of the Riemann tensor in
an orthonormal frame go to zero as 1/R2 as R -+ oo, and

curvature invariants go to zero as 1/R . Nevertheless, al-
though the z' = const section resembles a 2-dimensional
Rindler spacetime as B -+ oo, the global structure is
such that the 4-dimensional spacetime is not asymptoti-
cally Hat. The explicit solutions which approach K from
within the W = 0 subspace are found in Appendix B for
arbitrary D and go. It is seen that all of these correspond
to naked singularities.

There are no other critical points with R + oo for
A & 0. All the trajectories for this system which enter
the e = 1 region either end at My 2 Ky 2 the Robinson-
Bertotti-type points S& z, a central singularity, or at a
horizon. The Robinson-Bertotti-type points exist if

6'A/ (go (D —3)g~ —
ge ) ) 0)

8/ fg~ (D —3)g~ —
go ) ) 0)

sgnA =sgns(g +g )/(g (D —3)g —g ).
The point S~ attracts a 3-dimensional bunch of trajecto-
ries. These are given explicitly in Appendix A.

TABLE III. Eigenvalues of critical points at phase space in6nity. The eigenvalues for small
perturbations which are degenerate have the degeneracy listed in parentheses. The values of y and
v listed are defined by (4.2) and (4.3).

Eigenvatues (with degeneracies}

( )
go go (D 3)g)

(D —3) D —3+ g,~

L(y)

Mi

P

0, (8); 2; y; v.
—1 (&)' D

D —2 ' D 2( ')' -D 2(g +')
—1,(g);; 1+

—
g~ (D —3)g —

go ] 9+ (D —11)g 2

1+(D —3)g 2 ' 2 1+ (D —3)g

S &g.g, (g. + g, )
(D —3)g, —g.

—
I

—'
I

(g) —(g. +g ) ((D —3)g —g ).
) CX2 2

—g, g )/9(B —g) g,* —g, ' + (D —g)] + (g, + g )
*

(t —gg g )I
.

2
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If a trajectory has an end point at a horizon it will pass
into the e ( 0 region and its asymptotics will be found
by considering the e ( 0 critical points. So we will now
consider the various possibilities for such trajectories. We
note that it is the product of c and A that is important.
Thus all the remarks below about the critical points with
c = —1 and A ) 0 also apply to the case for which e = 1
and A(0.

As in the case of the models discussed in [12], the struc-
ture of the phase space is quite distinct acording whether

g
2 & (D —1) or g

2 ) (D —1). For g
2 & (D —1)

the critical point N~, lies at phase space infinity and for
small gz it attracts a 5-dimensional bunch of trajectories.
For g~ = 0, trajectories approaching N~ are asymptoti-
cally de Sitter. While we cannot prove explicitly that
analogues of Reissner —Nordstrom —de Sitter solutions ex-
ist in the case g&

——0, the fact that the point N& is
a 5-dimensional attractor combined with the fact that
the Z = 0 subspace is known to contain trajectories
with two horizons which end at the point N~, namely,
the Schwarzschild-de Sitter solutions, make it very likely
that at least some perturbations away &om the Z = 0
subspace end at Nz and have two horizons. As a check
on these arguments numerical work is in progress and
will be reported elsewherer [25]. In a recent paper Okai
[19] reaches similar conclusions, and shows that if such
black hole solutions exist (for g~ = 0) then there can be
at most two horizons. At this stage the reader should
also recall that we are not allowing go = 0, and hence
the usual Reissner-Nordstrom-de Sitter solutions are not
contained in our system. It is straightforward to repeat
the entire analysis for the case go

——0 to obtain the stan-
dard results.

The points Pz z which lie in the Z = 0 (i.e. , Q = 0)
subspace have asymptotics identical to those of the points
K~ 2 if one makes the replacement go -+ g~/(D —3), so
the above remarks about Kz 2 apply here as well. In
fact, the case of the potential corresponding to a central
charge deficit in 4 dimensions, g&

———1, has the precise
behavior of the particular example discussed above. If we
restrict our attention to the cases in which P~ 2 can be

'7

end points for trajectories for physical spacetimes with
A ) 1 then we obtain the restriction that g & 1. The
point P~ is either a 3-dimensional or 4-dimensional at-
tractor depending on the relative signs of go and gz. For
some regions of the parameter space there will be trajec-
tories with end points there for nonzero Q.

Finally, the asymptotics of the points Tz 2 are in gen-
7

eral very complicated. It is easy to verify that there
are no particular values of go and g which yield either
asymptotically flat or asymptotically (anti —)de Sitter so-

lutions. The dimension of the set of solutions with an
end point at T varies greatly for diHerent g and g,
but typically it is at least 3-dimensional if o;z & 0 and
o.2 ) 0. It is possible to derive an exact class of solu-
tions with end points at T by looking for solutions with
V = Y and TV = pZ, where p is constant. This condi-
tion places a constraint on the remaining variables, and
the requirement that the field equations preserve the con-
straint further fixes p to be the same as the ratio of R'
to Z that was found for points T 2. Since these exact so-

lutions have A = 0, however, they are of limited physical
interest, and we will not list them.

One further technical point should be made here. It
was noted in Sec. III that the 5-dimensional autonomous
system was not valid for go = (D —3)gz, since the trans-
formation between the two sets of variables becomes de-
generate for this combination of the parameters. It is
possible to construct a 3-dimensional autonomous system
for this combination, and proceed to examine the phase
space. We have done this as a check and find roughly the
same structure as for the more general system that we

have described here, with the exception that some points
such as Sq 2 are absent. Most importantly, the asymp-
totic forms of the solutions given in Tables I and II are
not altered.

To conclude, we have shown that, with the exception
of a pure cosmological constant, charged dilaton black
holes with "reasonable" asymptotic properties, namely,
an asymptocially fiat or asymptotically (anti —)de Sitter
behavior, do not exist in the presence of a Liouville-type
dilaton potential. This conclusion may seem trivial if
one only considers series expansions of the type (2.7).
However, it is a somewhat less trivial if one allows for
the possibility for an asymptotic behavior of the dila-
ton physically consistent with the weak coupling limit in
string theory. Our conclusion is based on the observa-
tions that (i) the critical points M 2

are end points only

for integral curves which correspond physically to V = 0,
and (ii) none of the other critical points correspond to
solutions with a "reasonable" asymptotic behavior. In
the pure cosmological constant case critical points which
are asymptotically (anti —)de Sitter do exist, and given
the structure of the phase space it seems highly plau-
sible that integral curves with end points at these crit-
ical points do include a class of charged dilaton black
hole spacetimes. However, although the method we have
discussed is a useful tool for ruling out the existence of
various solutions it does not provide an obvious way of
rigorously proving the existence of solutions. Okai, who
made investigations using power series [19],has also been
unable to prove unequivocally that black hole solutions
do exist. Perhaps a numerical approach is the best in
such circumstances.

Note added: Explicit calculations show, in fact, that in the
presence of a cosmological constant no asymptotically (anti —)
de Sitter solutions exist with two horizons. In the case of a
negative cosmological constant, asymptotically anti-de Sitter
black hole solutions with a single horizon are found numeri-

cally [25].
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APPENDIX A

The points S1 2 are end points for solutions which are
7

of Robinson-Bertotti type. We justify this statement here
by explicit derivation of such solutions. Let us suppose
that there exist solutions for which 4) = const V (. From
(2.14) and (2.15) it then follows that

(D —2)X —Y' —(D —3)V = 0.

AR' =p Z, W' = Q'g, /(Ag, ).

Thus such solutions only exist for ge/(Agi) ) 0. Sub-

stituting back into the field equations we find that X =
Y = V. The solution can be put in the form

If we take the the derivative of this equation and use the
field equations (2.16)—(2.20) we obtain the condition

ds =ig gs

g yg ~ i/[(& —s)g, —gs]

2(g, +g, ) q'
(D —2)(D —3)g, A

x q
—Z dt'+ g+g0 1 . +g;~de'de~ &,

(D —3)g A C+ g (D —3)g —g Q Z
(Al)

APPENDIX B

Let us solve the field equations of the W = 0 subsystem
in the domain of outer communications (s = +1). The
field equations reduce to

("=(D—3) Ae~,

l

(D —3+ g,')9" =2 (B2)

(l2 rs
~

D 3+g0 ) 0

D —3 D —3+g2 D —3

2 2

+(D —3)Ae ~ — e "=0,
D —2

(B3)

where co is the integration constant defined by (3.1), and
y is completely determined in terms of g and i) by a
further intergration of (3.1). Equations (Bl) and (82)
can be integrated directly with the result

where C is an arbitrary constant, and we have used
the freedom of rescaling t. Solutions exist only if
(go+ gi) /(giA) ) 0, or if A = 0 in the case that

gg = —gi. If (D —3)gi —ge /gi ) 0 and A ) 0
then the metric has the structure of a Robinson-Bertotti
spacetime, namely, the product of a 2-dimensional anti-
de Sitter spacetime with a D —2 sphere. Similary, if
(D —3)g —g /g ( 0 then the z' = const section is a

2-dimensional de Sitter space.

+ g,"i
(D —3)eik = e2k + c (B6)

A further integration of (B4) and (B5) yields the result

Ae'~ = g

2Q2 e"= &

D —2

le
1

sinhs[(D —S)h ((-( )]
' i

1
(D-s)s(t'-4 )"

1
7sins [(D-3)h (g-g )]
'

k

sinhs gD 3+g s h (t'-—g )
1

(D-s+gos) (4—4, )
A;

sins gD 3+g s S (g —g—)

+17

0,

17

e1 ——+1,

0,

= —11

where (i and (& are arbitrary constants.
To compare with the results of Gibbons and Maeda [1]

let us introduce a new radial coordinate~ r = I egad(, so
that

e r = (D —s) A Ir —r, r ), (B7)

2ir) 2

g" =
~

D —3+g ' e'"+.,k ', (B5)

where e1 = +1,0, —1, e2 ——+1,0, —1 and k1 and k2 are
constants which on account of the constraint (B3) must
satisfy the condition

(' = (D —3) Ae ~+eik (B4)
where (D —3)AP& ——k . In the case e = +1, e2

——+1,
the metric functions are found to be

'o~o
Kr. r )&~ »s

e2" oc
/(P+ t'e)

—2(D —S)

(r —r) rr —r t

)lt + Fe) I +tiey' (BS)

This coordinate is denoted i) in the notation of [],].
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(D —S)k —c g

(r r ) ~(o —s&a (r—

—(D —2)c0(r —r ) '&o-»", (r —r ) (r
& + .i [ i + .r

D —3
C — — —C D —S+g

—A
ro J qr+r j

—(D —2) 90

)
-"'

+To j

where the constants c and A are given by

k2 D —3+g 2

2k (D —3)

A = exp D —3+g k2 (g2
—(,)

(811)

(812)

2(D —3)( r- ) o-.+, ~

e "
oc

par + 1)
~D —3j

( r ) o-s+q~
pD 3—

(ar + I)

(813)

One may verify that setting

a, = {n —s}a,~ (D —3+g ')",
and hence c =

2 and by (86), c = (D —3)g k /

D —3+g, one obtains the familiar Gibbons-Maeda

charged dilaton black hole [Ij.
Now consider the case t'& ——0, &2

——0. One then 6nds
that

(D —2)9
( r ) o:s+s+

e'~ oc
]par+ I j

where a = A(D —3) (f —
(&) . If a g 0 then these

solutions approach the points Ml 2 as f M oo, while if
s

a = 0 they approach K» 2 as r —+ oo. It is clear that these
solutions represent naked singularites, and hence have
limited physical interest. It is straightforward to show
that the solutions obtained in the case ~l = —1, ~2 = —1
similarly approach either Ml 2 or ~1 2
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