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We investigate the global geometries of (2+1)-dimensional spacetimes as characterized by the
transformations undergone by tangent spaces upon parallel transport around closed curves. We
critically discuss the use of the term “total energy-momentum” as a label for such parallel-transport
transformations, pointing out several problems with it. We then investigate parallel-transport trans-
formations in the known (2+1)-dimensional spacetimes containing closed timelike curves (CTC’s),
and introduce a few new such spacetimes. Using the more specific concept of the holonomy of
a closed curve, applicable in simply connected spacetimes, we emphasize that Gott’s two-particle
CTC-containing spacetime does not have a tachyonic geometry. Finally, we prove the following
modified version of Kabat’s conjecture: if a CTC is deformable to spacelike or null infinity while
remaining a CTC, then its parallel-transport transformation cannot be a rotation; therefore its
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holonomy, if defined, cannot be a rotation other than through a multiple of 2.

PACS number(s): 04.20.Gz, 04.20.Jb

I. INTRODUCTION

This paper concerns time travel in (2+1)-dimensional
spacetimes governed by an analogue of Einsteinian grav-
ity [1,2]. Such spacetimes serve simultaneously as toy
models whose underlying structure is very similar to
(34+1)-dimensional gravity but with far simpler dynam-
ics, and as a handy notation for investigating a limited
kind of cosmic string dynamics. The second use for
(2+1)-dimensional spacetimes may sound less significant
than the first, but in fact it adds considerable physical rel-
evance to the work. For instance, when Gott discovered
[3] that in 2+1 dimensions surprisingly simple situations
could produce closed timelike curves (CTC’s) and there-
fore support time travel, physicists would have paid little
attention had there not been the possibility that such sit-
uations could be physically realized by cosmic strings in
3+1 dimensions.

In (2+1)-dimensional spacetimes the connection be-
tween physics and geometry provided by Einstein’s equa-
tions can be written in an almost trivial way as a relation
between the physical matter fields and the operation of
parallel transport of vectors around closed curves. This
paper is primarily about the use of the geometrical tool
of parallel transport for understanding the structure of
spacetimes, especially spacetimes containing closed time-
like curves. In Sec. IT we explain the relation between the
physical matter fields and the parallel transport opera-
tion, and discuss the merits and problems of a proposed
definitional association between this geometrical tool and
the physical notion of total momentum. One of the main
purposes of this paper is to show that, despite superficial
similarities, Gott’s CTC-containing solution in fact has
little in common with the solution for a spacetime con-
taining a single tachyon, which some investigators find
unphysical [4]. In order to do that we explicitly construct
the tachyon solution in this section. Finally, following
Carroll et al. [5], we use parallel transport to define the
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more specific concept of the holonomy of a closed curve
in simply connected spacetimes. In Sec. III we review the
known (2+1)-dimensional spacetimes containing CTC'’s
and introduce a few new ones. While doing so we find out
what we can about the parallel transport operation and
the holonomy in such spacetimes, and their relation to
the existence of CTC’s. In Sec. IV we prove the following
theorem, which can be seen as a modified version of Ka-
bat’s conjecture: if a CTC can be deformed to spacelike
or null infinity while remaining a CTC, then the result
of parallel transport around it cannot be a rotation. Fi-
nally, in Sec. V we comment briefly on the implications of
(2+1)-dimensional spacetimes containing CTC’s to time
travel in the real (3+1)-dimensional world.

II. THE PARALLEL-TRANSPORT
TRANSFORMATION AND THE HOLONOMY

The most striking feature of gravity in 241 dimensions
is the absence of vacuum degrees of freedom of the cur-
vature. Unlike in 3+1 dimensions, the Riemann tensor
R, p0 is a unique function of the Ricci tensor R,,. By
Einstein’s equations the Ricci tensor is in turn a function
of the energy-momentum tensor T, .

The geometry of a spacetime may be characterized
by the Lorentz transformations suffered by the tangent
spaces of points upon parallel transport around closed
curves. These Lorentz transformations are the main ob-
ject of study of this section and are important for the
entire paper. For brevity, they will be called parallel-
transport (PT) transformations. A PT transformation is
a Lorentz transformation that acts on the tangent space
of a given point, called the base point, and is defined
for a given curve that starts and ends at that point.
We can use PT transformations to express the relation
between the local geometry of the spacetime and the
energy-momentum tensor.
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The local geometry at a point of spacetime may be
characterized by the PT transformations for infinitesimal
closed planar curves within a neighborhood of that point.
In general, an infinitesimal loop ¢ can be characterized
by the antisymmetric tensor

fro = §ardat, &)

while the resulting infinitesimal transformation A, ¥(c)
can be expressed as the two-form

Wuy = Apy — Guv s (2)
hence the fact that the Riemann tensor is of rank four:
Wuy = 2 Ruop 77 (3)

In three dimensions, however, both f*? and w,, may be
expressed as single vectors:

Ny = 39 Evopf?° (4)

is the normal to the loop with a length equal to the area
it encloses, while

1
a? = —efPHw

2./9 i

is the axis of the transformation with a length equal to
its angle or boost parameter. In 2+1 dimensions, thanks
to Einstein’s equations and the identity

(5)

, 1
R* = JRg™ = P e Ry, (6)

we then have the following remarkably simple relation:
a* = 8rTHn, . (7

The quantity T#¥n,, itself can in general be interpreted
as the total energy-momentum of the matter “encircled”
by the infinitesimal loop c represented by n,, that is,
passing through the infinitesimal surface with boundary
c.

Consider, for example, a spacetime containing static
matter: T = 0 except 7% = p(z!,z2?). We then
have a® = 8mpny, a' = a? = 0; in other words, parallel
transport induces a rotation about an angle of 8wp times
the area of the projection of the loop onto a constant-
time surface, or 87 times the amount of matter passing
through the loop. This describes the geometry of the
spacetime: constant-time surfaces have Gaussian cur-
vature 8mp, while surfaces orthogonal to them are flat.
Similarly, a spacetime containing transcendent tachyonic
matter moving in the z! direction will have T#¥ = 0 ex-
cept T'! = p(z%,z?), so that a! = 8mpn,, a® = a2 = 0.
(Note that this energy-momentum tensor satisfies the
weak and the strong energy conditions but not the dom-
inant one.) Again, the geometry is flat in surfaces con-
taining the direction of motion of the matter. Paral-
lel transport around an infinitesimal loop that encircles
some of the matter results in a boost through a boost

parameter of 87 times the amount of matter encircled.
A third simple case is a spacetime filled with photonic
matter (matter moving at the speed of light) moving in
the z! direction. Here the energy-momentum tensor is
given by T% = T° = T = T'! = p with all other
components zero. We then have a® = a® = 8mp(n¢ +n1),
a? = 0, which represents a null transformation of param-
eter 8mp(ng + n1). The flat planes are again those con-
taining the direction of motion of the matter dz® = dz?!,
dx? = 0. Since these are also the planes orthogonal to
that direction, it is instead the planes generated by the
vectors B° = —b1 = 1,02 =0and ® =c' =0,c2 =1
that have “Gaussian” curvature —%R = 16mp.

In these three special cases, the vectors a* represent-
ing the PT transformations are parallel for all infinites-
imal loops, so a* for any infinitesimal loop can itself be
parallel transported around any other loop and return
to its starting value. Suppose we have a finite loop C
with base point p, bounding a surface made up of many
infinitesimal surfaces, each of which is bounded by the
infinitesimal loop ¢;. Then the PT transformation A(C)
can be represented by the vector

=Y, ®

where the vectors a!' are all parallel transported to the

point p before being added up. (It is crucial that the re-
sult of this parallel transport is path independent.) Since
A* is not an infinitesimal vector we cannot simply use the
representation

A(C) =6+, (9)

appropriate for infinitesimal Lorentz transformations,
where

Q#V = ﬁE“VpAP = Z \/gep.vpaf = Z(w;u/)i . (10)

1

Instead, we interpret 2, " as an element of the Lie alge-
bra of SO(2,1), the Lie group of Lorentz transformations,
and find

A(C) = exp(Q2). (11)

Therefore in the above examples it makes sense to sum
the vectors a!' = 87T*(n,); over the surface to ob-
tain, on the one hand, the vector A* representing the
PT transformation for the boundary of the surface, and
on the other hand 8« times the total amount of matter
passing through the surface. (Again, the “total amount
of matter passing through the surface” is only defined
because the vectors T#“n, can be parallel transported in
a path-independent way.)

To illustrate how this works let us assume that in the
first example given above, where T%° = p(z!,z?), p van-
ishes outside of some bounded region of the constant-time
surfaces, where this region represents an extended mas-
sive object. The PT transformation for any closed curve
that encircles this object is clearly a rotation through an
angle equal to the integral over the object of the Gaussian
curvature. Since the Gaussian curvature is 8mp, this PT
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transformation is represented by the vector A° = 87 M,
A! = A% = 0, where M is the total mass of the object.
This vector is also 8n times the energy-momentum vec-
tor we would obtain by parallel transporting all the local
energy-momentum vectors to the base point of the curve
and summing them up. There are three cases for the
geometry of the constant-time surfaces: if 0 < M < %,
the surface can be described as a cone with vertex angle
2arcsin(1—4M) and a rounded vertex; if M = 3 it can be
described as a half-infinite cylinder with a round cap on
the end; and if M = %, it is a round surface with topology
S§2%. These are the only possible values of M, assuming
that the spacetime satisfies the weak energy condition
p > 0, since there are no other non-negatively curved
surfaces without boundary. In the case 0 < M < i, the
cone can be mapped onto a plane with a wedge of an-
gle 8mM removed and the two boundary lines identified.
Exterior to the object this mapping will be an isometry.
Inside the object it cannot be. It is important to note
that the only constraint on the mapping is that it must
be an isometry outside the object, where spacetime is
flat. This means that the point mapped to the vertex of
the wedge can be chosen completely arbitrarily, as long
as it is within the object; this point in no way represents
the “center of mass” of the object. The notion that the
vertex of the wedge represents the center of mass [4,6]
is an extrapolation from the case of a single point parti-
cle, where the vertex coincides with the only location in
which there is mass and is therefore a reasonable place
to locate the “center of mass.” For extended or multi-
ple sources, however, this reasoning falls through and in
general one cannot rigorously define a “center of mass”
or “center of mass velocity.”

Returning to the discussion of the mapping from the
conical surface to the plane with a wedge removed, one
can extend this mapping from the constant-time surface
to the whole spacetime. Under this mapping, the space-
time exterior to the object will look like Minkowski space
with a wedge removed and the two faces of the wedge
identified. In this representation the 87 M rotation expe-
rienced by a vector being parallel transported around the
object is concentrated at the wedge crossing. This repre-
sentation will be used throughout the paper for massive
objects within which the energy-momentum tensor can
be put in the form 7% = p.

We can construct a similar coordinate system for a
spacetime containing a transcendent tachyonic object
“moving” in the z! direction, with T** = p(z°,z?). The
PT transformation for a curve that encircles this tachyon
will be a boost about the z! axis through a boost param-
eter of 8w P, where P is the total pressure of the tachyon
measured by parallel transporting to the base point of
the curve all the local energy-momentum vectors T#"n,,,
where n, is the normal to the surface bounded by the
curve. (It should be noted that because the energy-
momentum tensor in these examples is divergence-free
with the given coordinate systems, and not merely co-
variant divergence-free, all surfaces bounded by a given
curve are equivalent.) In this case, there are no geometri-
cal constraints on P, although the weak energy condition

requires P > 0. The surfaces ! = const are flat out-
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side of the region containing the tachyons; they can be
mapped onto (1+1)-dimensional Minkowski space either
with a wedge removed from one of the two regions that
is timelike related to the origin or, equivalently, with a
doubly covered wedge of the same size in one of the two
regions that is spacelike related to the origin. The size
of the wedge is measured by the parameter of the boost
required to take one edge of the wedge to the other edge;
that parameter will of course be 87 P. This mapping can
be extended uniformly to the whole spacetime, and will
be an isometry outside the tachyon. It concentrates the
PT transformation for curves that encircle the tachyon
at the wedge crossing. Figure 1 shows a spacetime con-
taining a tachyon with P = 0.03, in the representation
where the missing wedge is to the future of the tachyon.
The two half-planes bounding the wedge are identified.
Also shown are a closed curve encircling the tachyon and
the axis vector of its PT transformation.

We can construct a similar representation of the space-
time containing photonic matter moving in the z! di-
rection [T = T°! = T = T = p(z' — 2% 2%)].
confined to a bounded region of the z° + z' =const
surfaces. The same considerations about PT transfor-
mations apply here. The representation of this space-
time in Minkowski space has no missing or doubly cov-
ered wedges, but the coordinate system is discontinu-

{m====-=

FIG. 1. Part of a (2+1)-dimensional spacetime containing
a single transcendent tachyon of total pressure P ~ 0.03; the
thick solid line is the world line of the tachyon. The verti-
cal coordinate represents time and the horizontal ones space.
Outside of the tachyon the metric is the Lorentz metric. The
two half planes are identified with each other and the space
between them is not part of the spacetime. Also shown is a
loop encircling the tachyon (dashed line) and the axis of the
PT transformation for that loop; note that it is parallel with
the tachyon’s world line.
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ous on a null half-plane (z° = z! and either z2 > 0 or
z? < 0—we will choose the former). Each point in the
real spacetime mapped into this half-plane is mapped
to two copies, one of which will be continuous with the
mapping of the point’s past light cone and the other con-
tinuous with the mapping of the point’s future light cone.
The transformation bringing the former copy to the lat-
ter copy is the null transformation represented by A*,
where A° = A! = 87 M, A% = 0. This is also, of course,
the PT transformation for closed curves that encircle the
photonic object.

Thus in cases where the total energy-momentum is
well defined because it can be calculated uniquely, there
is an extremely simple relation between that energy-
momentum and the PT transformation for loops that
encircle all the matter in the spacetime. This rela-
tion has inspired some authors, most notably Deser
et al. [2,4] and Carroll et al. [5,7] to define the “to-
tal energy-momentum vector” of any (2+1)-dimensional
spacetime to be 1/8m times the vector A* representing
the PT transformation for a loop that encircles all the
matter in the spacetime. Normally in general relativity
the notion of total energy-momentum is not defined, pre-
cisely because the curvature of spacetime usually makes
it impossible to integrate a rank-two tensor over a hyper-
surface in a covariant way to obtain a vector. Further-
more, due to the exchange of energy and momentum be-
tween the matter fields represented by T),, and the grav-
itational field, it is impossible to construct any (globally)
conserved quantity from the T}, field, conservation gen-
erally being considered a necessary characteristic of any
good notion of total energy or momentum. It is possible
in asymptotically flat spacetimes to define a conserved
total energy-momentum vector P* representing not only
the matter field T, but also the energy and momentum
of the gravitational field. P* will be Lorentz covariant
with respect to coordinate transformations that reduce
to Lorentz transformations at spacelike infinity [8]. How-
ever, in 2+1 dimensions only empty spacetime is asymp-
totically flat, provided that the weak energy condition is
satisfied.

The new parallel-transport based definition of total
energy-momentum in 2+1 dimensions attempts to over-
come this difficulty, but it is problematic in several re-
spects. First, there is the problem of choosing the loop.
Normally, we would like quantities that relate to an en-
tire system not to be defined with reference to arbi-
trary points within the system. If one chooses to call
such points “observers” (see [5]), this means that global
quantities should not be observer dependent. For in-
stance the special relativistic total energy-momentum is
equally well defined at any point in Minkowski space-
time or, if one prefers, on the world line of the center
of mass, which is uniquely defined. The normal (3+1)-
dimensional general-relativistic total energy-momentum
is a vector at spacelike infinity, which is also well defined
in asymptotically flat spacetimes. As emphasized earlier,
however, the PT transformation is a Lorentz transforma-
tion acting on the tangent space of the base point of a
given closed curve (and can be represented as a vector
in that tangent space). In order to be said to “encir-

cle” an entire system, we could require a curve to pass
only through empty spacetime, and to be the boundary
of an orientable surface through which all the matter in
the spacetime crosses in the same direction exactly once.
For tachyons, this requirement is problematic since one
cannot really say in which direction tachyonic matter is
“moving”—in a system with two separate tachyons, it
would be hard to say whether they passed through a
given surface in the same direction or in opposite direc-
tions. Even if one barred tachyonic matter by impos-
ing the dominant energy condition, there are still many
possible curves with many possible base points to choose
from that satisfy the above requirement. One might hope
that, as in the three examples described above, every
closed curve through a given base point would give the
same “energy-momentum” vector, and that the resulting
vector field would be a parallel vector field. Then each
“observer” (that is, each point) would observe a well-
defined total energy-momentum, and observers at dif-
ferent points would at least agree parallel-transportwise.
But this is not true if there is more than one separate
object in the spacetime, since through any given base
point there will be curves not deformable to each other
in empty spacetime, each of which satisfactorily encircles
all the matter. The PT transformations for such curves
will in general disagree, and are not even necessarily sim-
ilar. (We will say that two linear transformations 77 and
T2, on the same or on different spaces, are similar if
there is a linear mapping S such that T; = ST>S!.) For
instance, Fig. 2 is a diagram of a spacetime containing
three objects in relative motion, with removed wedges
shaded. The Lorentz transformations associated with
crossing the wedges of particles 1, 2, and 3 (in the di-
agram’s counterclockwise direction) are Aq, Az, and Ag,
respectively. Since the objects are in relative motion,
these Lorentz transformations do not commute. Figure
2(a) shows a closed curve, with base point marked by the
cross, whose PT transformation is A;A3A;. Figure 2(b)
shows another closed curve in the same spacetime that
also encircles all three objects, but in a different order.
(Note that in the three-dimensional spacetime, this curve
does not intersect itself, and is the boundary of a surface
through which all three particles pass exactly once in the
same direction.) The PT transformation for this curve
is Az3AzA1, which is not similar to AgAzA;.

One might be able to remove the ambiguity in choice of
curve by requiring that the closed curve not only encircle
all the matter in the spacetime, but also be deformable
to spacelike infinity through empty spacetime. The pur-
pose of moving the curve to spacelike infinity would be
to ensure that, no matter how the particles interacted or
moved, one could always translate the curve forward in
time (in order to demonstrate conservation of every and
momentum, for instance). In Sec. IV, we will make use of
the notion of a curve at infinity, and in particular study
its PT transformation. The definition of “deformable to
spacelike infinity” can be made rigorous (see Sec. IV), but
it remains to be proved that in a general spacetime such a
curve is unique (up to deformation through empty space-
time). For instance, it is unique in spacetimes contain-
ing noninteracting nontachyonic objects whose wedges do
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not intersect, since those wedges can be put in a circu-
lar ordering that must be followed by all curves that are
deformable to spacelike infinity. Even if it is unique in a
general spacetime, the vector representing its PT trans-
formation is not a vector in the tangent space of any
point, or a vector field defined at all points, but rather
something like a different vector for each spacelike di-
rection. The “energy-momentum vector” is then essen-
tially a parallel vector field at spacelike infinity. To be
fair, the standard (3+1)-dimensional general-relativistic
total energy-momentum is also a parallel vector field at
infinity. However, in that case the structure of space-

FIG. 2. Diagrammatic representation, in which the time
coordinate has been suppressed, of a (2+1)-dimensional
spacetime containing three masses in relative motion. The
masses are represented by the large dots; the shaded areas
are not part of the spacetime, and the two rays bounding each
shaded area are identified with each other. Different nonin-
tersecting loops in this spacetime, with the same base point
marked by the cross, are shown in (a) and (b). As explained
in the text, the PT transformations for these two loops are
different, although both loops satisfy the condition of being
the edge of a surface that the world lines of all the masses
cross through.

like infinity is well understood, because the spacetime is
required to be asymptotically flat. In the general (2+1)-
dimensional case the structure of spacelike infinity is not
at all well understood, and until it is this definition of
the total energy-momentum vector cannot stand on its
own. If this definition can be made to make sense, then
such energy-momentum vectors for distant subsystems
can be combined to obtain the energy-momentum vector
for the entire system. Because of the non-Abelian nature
of the group SO(2,1), however, this combination will not
be linear, and the problem then arises that the energy-
momentum vector will not be additive. The usefulness
of the fact that this definition gives us a vector becomes
questionable if we cannot add these vectors together.

This brings us to an even more problematic aspect
of the PT-transformation-based definition of the “total
energy-momentum vector:” it is not analogous to any no-
tion of energy-momentum in physical (3+1)-dimensional
gravity. It is based on the fact that Lorentz transforma-
tions in 241 dimensions can be represented by vectors
and on the relation a* = 87T}, n,. Since neither of these
conditions holds in 341 dimensions, there is no analo-
gous notion for physical systems. The physical (3+1)-
dimensional definition of the total energy-momentum
vector has no analogues in 2+1 dimensions, so there can
be no relevant notion of total energy-momentum in 2+1
dimensions. PT transformations in 241 dimensions have
direct analogues in 3+1 dimensions, and can therefore
help us understand the geometrical properties of physi-
cal systems, particularly those containing cosmic strings.
Whether or not it is well defined, this “total energy-
momentum” in 2+1 dimensions cannot help us under-
stand anything about energy or momentum in (3+41)-
dimensional systems and is therefore unproductive.

We will therefore not adopt the terminology of “to-
tal energy-momentum” to refer to PT transformations.
Nonetheless PT transformations are clearly useful tools
for understanding the geometrical properties of space-
times, and much of this paper is devoted to their study.
There is, however, another concept, that we shall refer
to as the “holonomy” of a closed curve, that is similar to
the PT transformation but even more useful because it
allows us to see distinctions that the PT transformation
misses. One of the main purposes of this paper is to em-
phasize that a spacetime containing a Gott time machine
is not similar to a spacetime containing a tachyon. The
idea that they are similar is due to a too-trustful attitude
toward PT transformations. The PT transformation for
a loop around a Gott pair of particles can in fact be
the same as the PT transformation for a loop around a
tachyon. But those PT transformations do not tell the
whole story about the exterior geometries of the space-
times. As Carroll et al. point out, “parallel transport of
a spinor around a single tachyonic particle is not equiv-
alent to parallel transport around the Gott two-particle
system, although parallel transport of an SO(2,1) vector
does not distinguish between the two cases” [5]. This is
because the spinor, unlike the vector, is affected by the
rotation through a full 27 induced by parallel transport
around a Gott pair, but not induced by parallel trans-
port around a tachyon. We know that parallel transport
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around a loop that encircles a Gott pair induces a rota-
tion through 27 because we can contract the loop con-
tinuously to a vanishingly small loop, which obviously
has a PT transformation at the identity. By measuring
the PT transformation of each intermediate loop in the
contraction we obtain a path C; in SO(2,1) from the PT
transformation of the original loop to the identity. Sim-
ilarly, by contracting a loop with the same PT transfor-
mation but encircling a tachyon, we obtain another path,
C3, connecting the same points in SO(2,1). However, it
can be shown (see Sec. IIT) that these two paths are not
homotopic to each other [5] thus exhibiting the multi-
ple connectedness of SO(2,1). The fundamental group of
S0O(2,1) is isomorphic to the integers, and its generator is
what we have been informally calling a “27 rotation”—a
path from the identity to the identity consisting of rota-
tions of all angles from 0 to 2w. The path CoC[ ! from
the identity to the identity is homotopic to this gener-
ator; therefore, while the PT transformation for a loop
encircling a tachyon is a boost, for a loop encircling a
Gott pair we might say it is a 27 rotation plus a boost.

A natural and systematic language in which to express
such distinctions is provided by the concept of the holon-
omy of a loop [5], which we shall now define. We remind
the reader that the universal covering space of SO(2,1),
denoted here SO(2,1), is the set of equivalence classes
under homotopy of paths in SO(2,1) that end on the
identity. The holonomy of a loop that is contractible
to zero is defined to be the element of SO(2,1) that is the
path in SO(2,1) made up of the PT transformations of
the intermediate loops during the contraction. A prob-
lem arises if the loop can be contracted to zero in two
different ways that give homotopically distinct paths in
S0O(2,1); this could only happen if the two contractions
were not homotopic to each other, which could only hap-
pen if the spacetime had a nontrivial second homotopy
group mz. Therefore in order for both the existence and
the uniqueness of a loop’s holonomy to be assured, both
the first and the second homotopy groups of the space-
time must-be trivial.

Unlike SO(2,1), SO(2,1) contains elements that are not
the exponential of any element of its Lie algebra [which is
of course the same as the Lie algebra of SO(2,1), namely,
the space of two-forms]. Thus while the exponential map
for SO(2,1) is onto but not one to one, the exponen-
tial map for SO(2,1) is one to one but not onto. This
indicates another failure of the parallel transport-based
definition of the total energy-momentum vector: some
closed curves, such as those surrounding a Gott pair,
have holonomies that are not representable by vectors
because they are not the exponential of any element of
the Lie algebra. This forces us either to project the holon-
omy down to SO(2,1) to obtain the PT transformation
and then find the vector representing that transforma-
tion, which entails losing information about the geom-
etry of the spacetime without gaining much in return,
or to say that spacetimes like the Gott solution have an
undefined total energy-momentum, which seems like a
shame considering that they contain nothing but ordi-
nary matter—and which indicates a failure of the defini-
tion, not something wrong with the spacetime.
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Carroll et al. [5] give an elegant geometrical description
of SO(2,1) and SO(2,1) in terms of anti-de Sitter space
and its universal covering space, respectively. Picking
an arbitrary point in anti-de Sitter space to represent
the identity element of SO(2,1), the tangent space can
be identified with the vector representation of the Lie
algebra of SO(2,1). Under this identification, the ex-
ponential map in the two spaces can be identified, giv-
ing a one-to-one mapping between SO(2,1) and anti-de
Sitter space. This mapping can be extended to a one-
to-one mapping between SO(2,1) and universal anti-de
Sitter space. (For the exact mapping, see [5].) Inex-
tendible geodesics through the origin in universal anti-
de Sitter space are mapped to paths in SO(2,1) of the
form exp(AQ2) (A € R), where Q2 is an element of the Lie
algebra of SO(2,1). The Penrose diagram of universal
anti-de Sitter space is shown in Fig. 3. (Again, see [5]
for the exact form of the conformal coordinates.) The
angular coordinate is suppressed in this diagram. The

4r

2r

FIG. 3. Part of the Penrose diagram of (2+1)-dimensional
universal anti-de Sitter space, representing the Lie group
SO(2,1). 6 is the time coordinate, ranging from —oo to +oo;
¢’ is the radial coordinate, ranging from 0 to m. The an-
gular coordinate is suppressed. The dashed line ¢’ = 0 is
the coordinate singularity at the origin of polar coordinates.
The heavy solid line ¢’ = 7 represents spacelike and null in-
finity. The identity of SO(2,1) is represented by the point
6 = ¢’ = 0. Three geodesics through the origin, two timelike
and one spacelike, are shown. The shaded regions are points
not reachable by geadesics through the origin, i.e., points with
no inverse images under the exponential map. The solid lines
separating the different labeled regions represent null surfaces.
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origin is at # = 0, ¢’ = 0. The line ¢’ = 0 is a coordinate
singularity at the origin of the polar coordinates; points
on it represent the pure rotations covering the element of

SO(2,1)

1 0 0
A= |0 cos§ —sinf | . (12)
0 sinf cosf
The line (' = 7 represents spacelike and null infinity.

Future and past timelike infinity are disjoint points and
not represented on the diagram. A few geodesics through
the origin are shown. Region I on the diagram contains
the rotations with 0 < 6 < 2w. The holonomy for loops
around a single massive particle in an open spacetime is
in this region, or at the point (' = 0, § = 27. Region
II contains the rotations with 27 < 6 < 4m. Region
III contains the boosts; the holonomy for loops around
a single tachyon lies in this region. Region IV and the
other shaded region are not accessible from the origin by
geodesics, although they cover the same region of anti-
de Sitter space as region III. Carroll et al. [5] showed
that the holonomy for a loop around a Gott pair lies in
region IV. Thus, while the PT transformation for such
a loop is a boost, the holonomy is not. We will refer to
this diagram in the next section to identify holonomies
in various specific spacetimes.

III. EXACT SOLUTIONS CONTAINING CLOSED
TIMELIKE CURVES

As in 3+1 dimensions, it is not hard to invent (2+1)-
dimensional spacetimes that contain CTC’s. The easiest
kind involve no matter; these are Minkowski space with
points identified under the action of a discrete group of
isometries. Although such examples may be considered
artificial, they are nonetheless helpful in trying to un-
derstand the geometries of CTC-containing spacetimes.
Here we will consider groups of isometries that are iso-
morphic to the integers; that is, we will constrain the
solutions to be merely singly periodic, rather than dou-
bly or triply periodic. Spacetimes constructed by this
method can be classified according to the generator of
the group of isometries. Since an isometry of Minkowski
space can be decomposed into a Lorentz transformation
about some axis plus a translation parallel to that axis,
there are nine possibilities: timelike translation; rota-
tion; rotation with timelike translation; boost; spacelike
translation; boost with spacelike translation; null trans-
lation; null transformation; and null transformation with
null translation. Of these possibilities, the rotation and
the spacelike translation definitely do not produce space-
times containing CTC’s, since a point will be identified
with other points that are spacelike related to it. Simi-
larly, the null translation, null transformation, and com-
bination will identify points only with other points that
are null or spacelike related to them, not timelike re-
lated. This leaves the timelike translation, which pro-
duces probably the simplest example of a spacetime con-
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taining CTC’s, the rotation with timelike translation, in
which the rotation makes it more difficult for CTC’s to
form but they do so anyway, the boost, producing Misner
space, which is well known for containing CTC’s, and the
boost with spacelike translation, producing Grant space,
the object of some recent investigation [9,10], in which
the spacelike translation makes it more difficult for the
CTC’s of Misner space to form, but they form anyway.
We will consider each of these spacetimes in turn.

The simplest is the one in which points of Minkowski
space are identified under a timelike translation, so that
in the rest frame of that translation the time coordinate
is cyclic. Every point of the resulting space is then ob-
viously timelike separated from itself. Furthermore, any
closed curve in this spacetime has a trivial PT transfor-
mation. (Note that, since all of these spacetimes are mul-
tiply connected, loops in them do not have well-defined
holonomies.)

Less trivial is the example of Misner space, in which
points are identified under the action of a boost. The
displacement between identified points is now timelike if
and only if the points are spacelike related to the boost
axis. So while CTC’s do not go through every point in
the spacetime, there are CTC’s arbitrarily far from the
axis. The axis itself cannot be included in the space-
time, which is therefore multiply connected; the CTC’s
are among the loops not homotopic to zero. Clearly the
PT transformation for any loop will be the boost that
brings the base point of the curve to its identified point
in Minkowski space. Since this is a power of the boost
used to construct the spacetime, in some sense we can
count the number of times the loop “crossed” the identi-
fication.

More complicated than Misner space is Grant space, in
which the identification is performed under the action of
a boost plus a spacelike translation parallel to the axis of
the boost. Again, the points threaded by CTC’s are the
ones that are spacelike related to the axis of the boost.
However, due to the additional spacelike displacement,
CTC’s passing through points near the axis must loop
“around” the identification many times. This is in con-
trast with Misner space, which has no intrinsic distance
scale so that all points spacelike related to the axis are
essentially equivalent. Although the axis can now be in-
cluded in the spacetime, the spacetime is still multiply
connected because the axis itself now has the topology
S1, and is not homotopic to zero. Thus the spacetime
has topology R? x S1, so its fundamental group is iso-
morphic to the integers. CTC’s passing close to the axis
are in elements of the fundamental group corresponding
to large integers. The PT transformation for any loop
is the boost used in the construction of the spacetime,
to the power of the integer corresponding to its funda-
mental group element; loops homotopic to zero will be in
the identity of the fundamental group and will have the
identity as their PT transformation.

The last CTC-containing spacetime constructed by
identifying points in Minkowski space is in some ways
a counterpart to Grant space. The isometry is a rotation
through an angle 6 plus a timelike translation chosen
parallel to the axis of rotation. All the points identi-



50 (2+1)-DIMENSIONAL SPACETIMES CONTAINING CLOSED. .. 7251

fied with a given point p in Minkowski space lie on a
helix that winds around the axis of rotation. Except for
a finite number, all of these points will be in either the
future or the past light cone of p, because their spatial
separation from p (in this reference frame) is bounded
while their temporal separation goes to plus or minus in-
finity. So every point in this spacetime lies on a CTC.
The PT transformation for a CTC that joins p to its nth
identified point ¢ in Minkowski space (where we order
the identified points in the obvious way) is a rotation of
angle nf. We will now show that, if nf is not a mul-
tiple of 27, then this CTC will not be deformable to
spacelike infinity. We first note that a rotation of né
in the spacetime about the spacetime’s axis, brings p to
a point directly to the past of g. Now in a deforma-
tion to spacelike infinity we can assume without loss of
generality that p (and hence ¢) moves out on a space-
like geodesic orthogonal to the axis, movements in time
and tangentially around the axis are irrelevant because
g will move in exactly the same way, leaving the inter-
val between them unchanged. So if p is not directly to
the past of g, that is, if n6 is not a multiple of 27, then
a movement out to spacelike infinity will increase their
spatial separation without bound, while their temporal
separation remains fixed. This spacetime therefore has
the curious (and telling) property that, while there are
CTC’s arbitrarily far from the axis, a CTC cannot be
deformed to spacelike infinity if its PT transformation is
a rotation (the only possibilities being rotations and the
identity). If 0 is a rational number times 27, there is a
“single” CTC at spacelike infinity, not counting repeated
traversals of the same curve; that CTC is the one for the
smallest positive n such that nf is a multiple of 2w. If
on the other hand 6 is not a rational number times 27,
then there will be no CTC’s with trivial PT transfor-
mation, and the spacetime is very odd indeed, there are
CTC'’s at all spatial distances, but for each CTC there
is a distance past which none of the other CTC’s are ho-
motopic to it; thus there is no “single” CTC at spacelike
infinity. One lesson we can draw is that the existence of
CTC'’s, and particularly CTC’s at infinity, is linked not
to the PT transformation of a curve that loops around
the spacetime once, the “total energy-momentum” of the
spacetime, but rather to the PT transformations of the
CTC’s themselves. This example is a good illustration of
the techniques we shall use in the next section to prove
the main result of this paper.

While such model spacetimes are interesting to play
with, they are artificial from a physical viewpoint in the
sense that their interesting geometrical properties are
built directly into them, rather than being caused by
physical matter and interactions. Therefore it is inter-
esting to try to find CTC-containing (2+1)-dimensional
spacetimes containing only what would be considered
“physical” matter [that is, matter somehow analogous
to physical (3+1)-dimensional matter] and whose geom-
etry arises from the gravitational effects of that matter
rather than, say, from a manipulated topology.

The first example of such a (2+1)-dimensional space-
time was discovered [2] as soon as (2+1)-dimensional
gravity first came under intensive investigation. The so-

lution contains a single point mass with spin. Since then
similar solutions have been found for extended, rapidly
rotating particles, although these solutions are under
some dispute [11,12]. The geometry of a spacetime con-
taining one stationary such source, of mass M and angu-
lar momentum J, is similar to that of a spacetime con-
taining a single stationary spinless mass; external to the
source it may be described by Minkowski space with a
wedge of angle 8t M removed and the two faces of the
wedge identified. Unlike in the case of a spinless source,
however, the transformation P bringing a point = on one
face to its identified point P(z) is not simply the rota-
tion Rgrpr, but that rotation plus a translation in time
of 8nJ: P(z) = Rgrm () +8nJi. Thus a future-directed
timelike curve that circles the particle in the correct di-
rection gains a constant jump backward in the time coor-
dinate regardless of how near or far the curve is from the
source. For a point particle one can approach the particle
arbitrarily closely, making the trip around its circumfer-
ence arbitrarily short, so there are clearly CTC’s close to
the particle. (Note that, while it helps, a nonzero mass is
not necessary for the solution to contain CTC’s.) In fact,
CTC’s pass through every point in this spacetime (con-
trary to a claim in [11]). From a point far away from the
particle, it is not necessary to circle the particle at that
distance; instead the curve can first head straight for the
particle, circle closely around it many times in order to
go backward in the time coordinate an arbitrary amount,
and have enough time to return to the base point. How-
ever, there are no CTC’s of large spatial size; if the entire
CTC is at outside of a distance 7o = 4J/(1—4M) from the
source, the time necessary to get once around the source
is larger than the jump backward in the time coordinate
gained. Thus the spacetime does not contain CTC’s at
arbitrary spatial distances, let alone CTC’s that can be
deformed to spacelike infinity. The holonomy for a curve
that encircles the source is simply a rotation of angle
8mM, just as for a spinless particle of mass M.

Gott subsequently showed [3] that there are CTC’s
in a spacetime containing two massive particles moving
past each other at high velocity. If the particles are of
equal mass M and moving in opposite directions each
with speed 8 < 1 relative to the “laboratory” reference
frame, then it is necessary and sufficient that

B > cos(4mM) (13)

for there to exist CTC’s in the system. These CTC’s
encircle the two particles in the direction opposite to their
relative motion, just as the CTC’s in the spinning particle
solution encircle the particle in the direction opposite to
its spin. Figure 4 is a to-scale picture of such a spacetime
and one of its CTC’s. This CTC is geodesic except at the
two points marked by dots, where it crosses the wedges
of this representation. Also shown is the axis of the PT
transformation of this curve, more about which shortly.
In the “laboratory” reference frame of the Gott space-
time, the frame related to each particle rest frame by a
boost of magnitude x, the wedges that are cut out of
Minkowski spacetime are warped in such a way that, by
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crossing them in the direction opposite to the direction
of motion of the particle in the given reference frame,
one jumps backward in the time coordinate, as one does
when crossing the wedge of a spinning particle; one also
jumps forward in the direction in which one was travel-
ing. Unlike in the spinning-particle case, however, the
wedge for each individual particle is scale invariant, so
the magnitude of the jump backward in the time coor-
dinate is not constant but proportional to the distance
from the particle. We can therefore enlarge a given CTC
equally in all directions. The only distance that does
not scale with the size of the CTC is the spatial separa-
tion between the two particles, which stays constant and
therefore diminishes in relative magnitude as we enlarge
the CTC. Since this spacelike interval hinders the time-
like curve from returning to its base point, its reduction
in relative magnitude will not endanger the existence of
the CTC at large size. This can be shown rigorously
by writing out the coordinates of a particular CTC and
showing that it can be deformed to arbitrarily large size.
While there is thus in some sense a “CTC at infinity” in
this spacetime, Cutler showed [13] that not every point
in the spacetime is the base point of a CTC. In fact, there
are complete, edgeless, achronal surfaces not asymptoti-
cally null in the spacetime, both to the future and to the
past of the CTC-containing region and the spacetime has
a Cauchy horizon. So the “CTC at infinity” is somehow

FIG. 4. A Gott two-particle spacetime. The view is from
above, that is, from the future looking toward the past.
Again, the vertical direction represents the time coordinate
and the horizontal directions the space coordinates. The
thick solid lines represent the world lines of the particles.
The two half-planes coming off of each world line are iden-
tified with each other. Thus the two large dots shown on the
two half-planes coming off of each world line represent the
same point in the spacetime. The two wedges between these
half-planes do not represent parts of the spacetime. Outside
the particles, the spacetime is flat, and the metric in the co-
ordinate system shown is the Lorentz metric. The two line
segments shown are both timelike and together form a CTC.
The arrow represents the axis of the PT transformation for
this CTC with base point at the base of the arrow; it is space-
like.

limited to a subregion of spacelike infinity.

Soon after Gott presented this solution, Deser et
al. pointed out [4] that the PT transformation for a CTC
in this spacetime was a boost, and furthermore that the
condition stated above for the existence of CTC’s in the
spacetime coincided exactly with the condition for the
PT transformation to be a boost for loops that encir-
cle the two particles the way the CTC’s do. Thus the
axis of the PT transformation for the CTC shown in
Fig. 4 is spacelike. Carroll et al. explained [5] that this
meant that the holonomy of the CTC was in region IV
of SO(2,1) (see Fig. 3). This holonomy is the product of
the holonomies for loops that go around each source sepa-
rately, and those holonomies, as explained in the previous
section, are both in region I of SO(2,1). Since rotation
through a positive angle means moving in the future-
directed timelike direction in the universal anti—de Sitter
space representation of SO(2,1), the holonomy could not
be in region III of SO(2,1). This is part of the basis for
our insistence that, though they can both be encircled
by closed paths with boost PT transformations, tachyons
and Gott pairs are quite distinct situations, both phys-
ically and geometrically. Physically, the Gott pair is
made of matter satisfying the weak, strong, and domi-
nant energy conditions, matter as normal as one could
hope to find in (2+1)-dimensional systems. Geometri-
cally, as Grant conjectured [9] and Laurence proved [10],
the CTC-containing region of the Gott solution is iso-
metric to half of the CTC-containing region of multiply
connected Grant space. (Although the Gott spacetime is
simply connected, its CTC-containing region is not.) A
tachyon’s spacetime can be described as Minkowski space
missing a wedge; the CTC-containing section of Grant
space is more like just a wedge. Both spacetimes require
boost identifications, but there the similarity ends. (In
fact Grant space requires an identification by a boost plus
a translation, which both the PT transformation and the
holonomy miss.)

This apparent similarity between the exterior geome-
tries of a Gott pair of particles and a tachyon is part of
the basis for an argument by Deser et al. [4] that Gott’s
(2+1)-dimensional solution is unphysical. It is important
to note that the use by Deser et al. of the term “cos-
mon,” referring both to particles in 2+1 dimensions and
to cosmic strings in 3+1 dimensions, obscures the distinc-
tion between (3+1)-dimensional systems, whose physical-
ity we can argue about, and (2+1)-dimensional systems
where the adjective “physical” can only be used in a very
limited sense. According to their argument, Gott pairs
of cosmic strings are supposed to be unphysical because
Gott pairs of particles in 2+1 dimensions resemble in a
particular way tachyons in 2+1 dimensions, which are
presumably objectionable because tachyons in 341 di-
mensions are thought not to exist. (The proper analogue
in 341 dimensions may be tachyonic strings, which are
also thought not to exist.) There may be reasons why
Gott pairs of cosmic strings cannot exist in Nature, but
they certainly are not the result of any problematic as-
pects of Gott pairs in 2+1 dimensions. As we have seen,
their claim is not true that the exterior wedge identifica-
tion in the most general case “could be equivalent to a
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boost rather than to a rotation, in which case CTC’s are
always present;” the counterexample is particularly rele-
vant: the solution for a single tachyon in 2+1 dimensions
contains no CTC’s. In addition, as a few examples show,
there is nothing objectionable about a holonomy in re-
gions IIT or IV of SO(2,1). Figure 5 shows the solution for
an elastic collision between two masses A and B. (This
spacetime is a combination of the decaying-particle solu-
tion discovered by Carroll et al. [7] and its time-reversed
image.) Although this is clearly an acceptable solution,
its geometry to the future and past of the collision event
resembles that of a tachyon. In particular, a closed curve
that passes directly to the future and directly to the past
of the collision has a holonomy in region III of SO(2,1).
Another example of an unobjectionable spacetime con-
taining a curve with holonomy in region III is provided
by any spacetime with two identical masses in relative
motion (not necessarily satisfying the criterion for the
existence of CTC’s) and any curve that encircles the two
masses in opposite senses. Finally and most importantly,
Carroll et al. showed conclusively [5] that one cannot ob-
ject to the Gott solution on the basis of its holonomies.
They proved that in a closed universe it is possible out of
static initial conditions to produce a Gott pair, that is,
a pair of particles encircled by a curve with holonomy in
region IV; as proved by ’t Hooft [14], this Gott pair will
not produce CTC’s because the closed spacetime is too
small.

FIG. 5. A (2+1)-dimensional spacetime in which two
masses A and B bounce elastically. Again, time is repre-
sented by the vertical dimension and the spacetime is locally
flat with a Lorentz metric outside of the sources. The planes
divide the space of the figure into three disjoint regions. Of
these, only the near and far regions are part of the actual
spacetime, while the region sandwiched between them is ex-
cised. At any time, except the time of the collision, the posi-
tion of particle A is represented by two identified points, and
similarly for particle B; hence each particle has two world
lines in this representation.
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The other problem Deser et al. present with regard to
the Gott spacetime is that it contains CTC’s at spacelike
infinity; this is supposed to be an unacceptable bound-
ary condition. We wonder, however, how they know so
much about boundary conditions at spacelike infinity. In
our own Universe we do not know what spacelike infinity
looks like (if it exists) since we have not seen it yet. We
certainly have no way of knowing whether or not there
are CTC’s there. The working physicist is, of course,
free to impose simple and convenient boundary condi-
tions (e.g., asymptotic flatness) on a system in order to
isolate and understand the processes occurring within it.
But boundary conditions are tools of physicists, and they
should not be confused with laws of physics. There may
be laws of nature that restrict the possible structures of
spacelike infinity, and even that prohibit CTC’s there,
but in the absence of evidence such laws should not be
postulated ad hoc.

Returning to the description of CTC-containing ex-
act solutions in 2+1 dimensions, the Gott solution has
analogues containing two photonic particles [15] or two
tachyons instead of two massive particles. The structure
of these solutions is similar to that of the Gott solution;
in particular they share the property that all the CTC’s
may be deformed to spacelike infinity. They also share
the property that there are CTC’s in the spacetime ex-
actly when the holonomy for loops that encircle the two
particles (the same way the CTC does) is in region IV of
SO(2,1). [For the two-tachyon solution it is clearly cru-
cial to make the distinction between regions III and IV
of SO(2,1).] In the two-tachyon case the condition for
the existence of CTC'’s is

B < cosh(4nP), (14)

where the tachyons travel in opposite directions, each
with speed B8 > 1 relative to the “laboratory” reference
frame, and where P is the total pressure of each tachyon.
The condition in the two-photon case is simply

4rM > 1, (15)

where M is the energy of each oppositely directed pho-
tonic particle in the “laboratory” reference frame.

Kabat showed [6] that there were CTC’s in some sys-
tems of n spinless particles with equal masses M, moving
in the laboratory frame with equal speeds tanhy in a pat-
tern with 27 /n rotational symmetry. The condition for
the existence of CTC’s in such a spacetime is

coshy sin(n /n)sin(4w M) + cos(r/n)cos(4nM) > 1. (16)

(Note that for n = 2 this reduces to the condition for
the Gott spacetime.) This is also the condition for the
holonomy for loops that encircle the particles (the same
way the CTC’s do) to be in region IV of SO(2,1). Figure
6 shows such a spacetime with n = 4, as well as one of the
CTC’s and the axis of its PT transformation at several
base points. As in Fig. 4, this axis is spacelike.
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FIG. 6. A Kabat four-particle spacetime. A CTC is shown,
along with the axis of the PT transformation for the CTC
at three different base points. (One of these axes is mostly
obscured by a wedge.) These axes agree when parallel trans-
ported along the CTC. As one can see from the picture, they
are spacelike. Again, large dots represent points where the
CTC crosses the wedges.

Finally, by combining the spinning particle solution
with the Gott solution, it is possible to create a border-
line solution containing CTC’s deformable to spacelike
infinity, the holonomy for which is not in region IV of
SO(2,1) but rather on the boundary between region I
and region IV. We begin with the Gott solution, contain-
ing two point particles, each of mass M and each moving
relative to the “laboratory” reference frame with speed
B = cosdmwM, and impact parameter 2d. Although this
spacetime contains no CTC’s, it is on the edge of sat-
isfying the criterion for their existence. The PT trans-
formation A for loops that encircle both strings is a null
transformation. We now endow each particle with spin
angular momentum J in the same direction as their or-
bital “angular momentum.” For any J CTC’s will ap-
pear around each particle separately, but these will not
go (deform) to infinity. As a simple calculation will show,

however, at J = d4/1 — 32/4n closed null geodesics ap-

pear, and these go to infinity. For J > d/1 — 3% /4w the
spacetime contains CTC’s that go to infinity, for which
the PT transformation remains the null transformation
A.

IV. CLOSED TIMELIKE CURVES AT INFINITY

Regardless of their relevance to questions of “physical-
ity” for (2+1)-dimensional spacetimes, parallel-transport
transformations are obviously useful tools for under-
standing the geometrical structure of such spacetimes.
For instance, they provided the first evidence of a sim-
ilarity between the CTC-containing regions of the Gott
spacetime and Grant space [9], and helped elucidate the
actual isometry relating these two regions [10].

As discussed in Sec. II, one of the main complications
is using holonomies to understand spacetimes is the prob-

lem of the choosing the loop for which to calculate the
holonomy. It seems to us that if one is trying to under-
stand holonomies in CTC-containing spacetimes, as we
are here, then it makes the most sense to concentrate on
the holonomies for the CTC’s themselves. This choice
has the two advantages of being unambiguous and being
more fruitful than an arbitrary other choice.

Kabat put forward the following conjecture: “Closed
timelike curves exist surrounding a system of spinless
particles only if their total momentum is spacelike” [6].
While this conjecture is ambiguous as stated due to the
use of the phrase “total momentum,” we would interpret
it as saying that the PT transformation for a CTC sur-
rounding a system of spinless particles is a boost. We
would add the stronger conjecture that the holonomy for
a CTC surrounding a system of spinless particles is in
region IV of SO(2,1).

In all of the known CTC-containing systems of spin-
less particles the CTC’s are all deformable to spacelike
infinity. Furthermore, in all the known CTC-containing
spacetimes in which the CTC’s are deformable to space-
like infinity, including both the multiply connected ones
and the matter-containing ones, the PT transformation
for those CTC’s is either the identity, a null transforma-
tion, or a boost. We submit that if the Kabat conjecture
is true it is because CTC’s in systems of spinless parti-
cles are necessarily deformable to spacelike infinity. It
would follow immediately from a proof of this statement,
together with the theorem we shall prove in this section,
that the PT transformation for any CTC in a system of
spinless particles is either the identity, a null transforma-
tion, or a boost. Perhaps it can be proved that the PT
transformation for a CTC in a system of spinless particles
cannot be the identity or a null transformation.

This section is principally devoted to proving the fol-
lowing theorem: the PT transformation for a non-self-
intersecting CTC at infinity is not a rotation. This the-
orem is proved in all generality for (2+1)-dimensional
spacetimes, making no assumptions about their matter
content or topology. We believe that this theorem lies
at the heart of the relationship between CTC’s and non-
rotational PT transformations first noticed by Deser et
al.

In order to prove the statement rigorously, it is first
necessary to give several technical definitions for the no-
tions we have been using loosely up until now. A con-
nected open set is said to be flat if it is isometric to
some open subset of Minkowski space. This subset and
the corresponding isometry will be unique up to isome-
tries of Minkowski space. A set is said to be locally flat
if every point in it has a flat neighborhood. On an open
set this is equivalent to the condition R,, = 0, which is
equivalent to the condition T,, = 0. A (locally flat) path
p(A) (A € I), where [ is an interval of the real line, is said
to be segmentwise flat if for every compact subinterval I’
of I, the image of I' under p has a flat neighborhood.
For instance, in a spacetime such as the Gott, Kabat,
or tachyon solutions that is constructed from Minkowski
space by removing wedges, any path that does not cross
any wedges is segmentwise flat. Note that if p intersects
itself, that is if p(Ao) = p(A1) for Mg # A1, then the PT
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transformation for p restricted to [Ag, A;] must be trivial
for p to be segmentwise flat.

Unless I is itself compact, segmentwise flatness of p
does not imply that the entire image of I under p has
a flat neighborhood. For instance, let I = [0,1) and
suppose that limy_,; p(A) = p(0). If p encircles a point
mass then any neighborhood of p(I) will also encircle it
and will therefore not be flat. However, given a seg-
mentwise flat path p(A) we can define a path g())
(A € I) in Minkowski space, unique up to isometries of
Minkowski space, such that for any compact subinterval
I' of I and flat neighborhood N’ of {p()) : A € I'} there
is an open subset M’ of Minkowski space and an isometry
P’ : N' - M' such that g(A) = P'(p())) for all A € I'.
To construct ¢, pick a sequence {I,,} of compact subin-
tervals of I, starting with Iy, such that n < m implies
I, C I, and U,I, = I. Pick a flat neighborhood N,
of {p(A) : A € Ip}, and an open subset My of Minkowski
space isometric to Ny, letting Py : Ng — M, be the isom-
etry. Define g(A) to be Py(p(A)) for A € I,. Now, given
a flat neighborhood N; of {p()\) : A € I;}, we wish to
choose the open subset M; of Minkowski space isometric
to it in such a way that for all p(\) where A € I the
isometry P; : Ny — M; matches the isometry P, that
is, g¢(A) = Po(p(A)) = Pi(p())). This can be done by
matching P; to Py at a single point p(\o), where A\ € Iy,
and on its tangent space, denoted Ty Xo)> thus uniquely
determining P; and ensuring that it matches P, through-
out the connected component of NoNNV; containing p(Ao).
This connected component clearly contains p(A) for all
A € Iy. We thus define g(A) = P;(p())) for A € I;; this
definition will be consistent with the previous one for all
A € I;. Repeating this procedure for each I, in turn
we obtain a definition of ¢q for all A € I. We now show
that this construction is unique, that is, for any compact
subinterval I' of I, M' and P’ : N' - M’ can be chosen
so that P'(p(\)) = q(X) for all A € I'. There will be some
n such that I' C I,,. Again, P’ can be chosen to match
P, at some point p(Ag), where Ao € I, and on its tangent
space Tp(»,)- With this choice it must match throughout
the connected component of N’ N N,, containing p()o),
which includes p(A) for all A € I'. Thus the path g())
(A € I) is well defined and is unique for each choice
of P, 0-

A segmentwise flat path p(A\) (A € I) is said to
go to (future timelike, future null, spacelike, past null,
past timelike) infinity if the corresponding path g()) in
Minkowski space goes to (future timelike, future null,
spacelike, past null, past timelike) infinity. A loop at
infinity with property P is a surface s(r,A) (r € [0, +00),
A € [0,1]) such that (1) for each ro € [0,+00) s(ro,A)
(A € [0,1]) is a loop with property P and (2) for each
Ao € [0,1], 5(r, Ao) (r € [0,+00)) is a segmentwise flat
path that goes to spacelike or null infinity. This last re-
quirement automatically implies that the image of s is
a locally flat subset of the spacetime. We now turn to
applying these definitions to CT C-containing spacetimes.

Theorem. The parallel-transport transformation is not
a rotation for a CTC s(r,)) (r € [0,4+00), A € [0,1]) at
infinity such that s(ry,A;) = s(r2, ;) implies 71 = 7
and either A} = Ay or |A; — Ay = 1.
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Proof. The general outline of the proof is as fol-
lows. First, we construct a surface g(r,A) (r € [0, +00),
A € [0,1]) in Minkowski space, locally isometric to s(r, A).
The method here is similar to that used earlier to con-
struct a path in Minkowski space locally isometric to a
given segmentwise flat path. Since Minkowski space does
not contain any CTC’s the mapping from s to ¢ will
be discontinuous: for all r € [0,+00), s(r,0) = s(r,1)
whereas ¢(r,0) # g(r,1). The composition of the isome-
try from the tangent space Ty(,,1) of q(r,1) to Ty(,,1) =
Ts(r,0) with the isometry from T, (o) to Tg(r o) Will then
induce an isometry P, on Minkowski space whose homo-
geneous component is similar to the PT transformation
for the CTC s(r, ) (A € [0,1]). These isometries P, will
be shown to be identical for all values of r. Finally, we
will show that the homogeneous component of an isome-
try P of Minkowski space cannot be a rotation if the dis-
placement undergone under action by P is timelike for a
sequence of points approaching spacelike or null infinity,
as it is for the points ¢(r, 1).

We begin by constructing the surface g(r, A), r € [0, o],
for some 7o > 0. Let S(ro) = {s(r,A) : 7 € [0,70],\ €
[0,1]}. For each Ao € [0,1], the path s(r,)o) is seg-
mentwise flat, so the curve {s(r,Ao) : r € [0,79]} has a
flat neighborhood Ny (o, Ag) [with No(rg,0) = No(ry,1)].
For each Ao € (0,1), there is an open interval I()\o) C
(0,1) such that

R(ro,Ao) = {s(r,\) : A € I(Ao),r € [0,70]}  (17)

is contained in No(r¢, Ag). [This is because a sequence of
points in S(rg) — No(ro, Ao) with values of A converging to
Ao must have a limit point in S(r¢) — Ny(r0, Ao), which is
impossible because No(r¢, A¢) contains all points in S(rg)
with A = Ap.] Similarly, for \¢ = 0 and 1 there is a set
I(0) = I(1) = [0,a) U (b,1](0 < a < b < 1) such that

R(To, 0) = R(‘I‘o, 1)
= {s(r,A) : A € I(0),r € [0,70]} (18)

is contained in Ny(ro,0). We now define N;(rg,Aq) to
be the connected component of R(rg, Ao) in No(rg, Ao) —
(S(ro) — R(r0,X0)). N1(ro, o) is a flat neighborhood of
{s(r,X0) : 7 € [0,7¢]} that intersects S(ro) exactly in
R(ro,Ao). The collection of these Ny(ro, o) for all Ao €
[0,1] is a covering of S(ro), from which we may choose a
finite subcover by the compactness of S(r¢). This sub-
cover will necessarily include Ny (r¢,0) = Ny(ro, 1), since
it is the only N; that contains {s(r,0) : r € [0,79]}. Of
this finite collection choose a subcollection such that no
neighborhood, when restricted to S(rp), is contained in
another neighborhood, and such that each point of S(r¢)
is covered by at least one and at most two neighborhoods.
[If a point of S(ro) is covered by three different neighbor-
hoods, one of these is a subset when restricted to S (ro)
of the other two and may therefore be discarded.] Let
the values of Ao for the neighborhoods of this subcollec-
tion be Aq,...,An, where 0 = A\; < Az--- < A, =1 (we
include both Ag = 0 and Ag = 1, although their neigh-
borhoods are the same). These neighborhoods have the
property that R(ro, );) intersects R(ro, );) if and only if
i—jl|<lor>n-—2.
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Using these flat neighborhoods N;(rg, A;) we now con-
struct the surface ¢(r, A) in Minkowski space. Let M; be
an open set in Minkowski space isometric to N;(7g, A1)
and let P; : Ni(ro,A1) — M; be the isometry. For
r € [0,7¢) and X € [0,a) define g(r,A) = Pi(s(r,A)).
(Note: We could define g for values of A throughout
I(\1), but for now we choose to let ¢ be undefined
for A € (b,1].) The isometry P, from Ni(ro,A2) to
Minkowski space is uniquely determined by specifying
it for a single point and the tangent space at that point,
since Nj(ro, A2) is a connected open set. We specify this
isometry at some point s(r’,\’), where r' € [0,79] and
X € [0,a) N I(Az), to match the isometry P; at that
point. P; and P, will then match throughout the con-
nected component of Ni(rg, A1) N N1(rg,A2) containing
s(r', "), which includes all of {s(r,\) : 7 € [0,7],A €
[0,a) N I(A2)}. Hence we may extend the definition of ¢
to include values of A in I(Az), in a way that is consis-
tent with the old definition: for 7 € [0,70] and A € I(Az)
set g(r,A) = P2(s(r,A)). [Since Ni(ro, A1) N Ni(ro, A2)
may have other connected components, and P; and P, do
not necessarily match on these, we have not constructed
an isometry between N;(rg, A1) UN1 (7o, A2) and an open
set in Minkowski space.] We now repeat this procedure
successively for each interval I();), obtaining a defini-
tion of g(r,A) for all A € [0,1] and r € [0,70]. The
last application of the procedure uses the isometry P,
on Ny(ro,An) to define ¢(r,A) for A € (b,1] rather than
forall A € I(\,)—for A € [0,a), g is already defined using
the isometry P;. Thus although s(r,0) = s(r,1) for all
r, q(r,0) # q(r,1) where g is defined. For any r € [0, 7o)
and X € I(A\;) NI(Ai41), g(r, A) is defined twice, once as
P;(s(r,A)) and once as P;11(s(r, A)), but by construction
the two definitions agree.

We now wish to extend the surface g(r,A) so that it
is defined for all 7 € [0,+00). For a given r; > 7o
we can obtain another surface ¢'(r,A\)(r € [0,71], A €
[0,1]) using the same construction. Clearly, we can set
q'(0,0) = ¢(0,0), as well as set equal the two induced
mappings from T,0,0) to Tgo,0) = Tg(0,0)- We now
wish to show that they then match for all r € [0,70]
and A € [0,1]. To do this we show that they match
on the curve r = 0, A € [0,1]. The construction of
g gives for each 7 and A a mapping from T,(, ) to
Ty(r,n), and similarly for ¢'. These two mappings will
also be shown to match for r = 0, A € [0,1]. Since
for any Ap € [0,1] the curve s(r,Aq) (r € [0,+00)) is
segmentwise flat, the curves ¢(r,Xo) (r € [0,70]) and
q'(r,X0) (r € [0,71]) in Minkowski space corresponding
to the curve s(r, Ag) are uniquely determined by specify-
ing ¢(0, Ao) and ¢'(0, o) and the mappings from T, x,)
to Ty(0,x0) and to Tgr(0,2,), Tespectively. It follows that ¢
and ¢’ match for all r € [0,7¢] and A € [0,1].

The construction of g provides the following for each
Ao € [0,1]: a neighborhood N(Ao) of s(0,Xo); a neigh-
borhood M(Xo) of g(0,\o); an isometry Py, : N(Ao) —
M()o) between them; and an interval I(A¢) C [0,1],
that is open as a subset of [0,1], containing A¢ and
such that for all A € I(Xg) s(0,A) € N(A¢) and
q(0,)) = Py, (s(0,2)). The construction of ¢’ simi-
larly provides N'(Xo) 3 s(0,X), M'(Xo) > ¢'(0,X0),
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Py, : N'(Xo) = M'(Xo), and I'(Ag) D Ao, with the same
properties. We define N"'(Ag) to be the connected com-
ponent of N(Xg) N N'(A\g) containing s(0, o), and set
I"(Xo) = I(Xo) N I'(Xo). I'"(Ao) is thus an interval con-
taining Ao, open as a subset of [0,1], such that for all
XA € I"(Xo) s(0,A) € N"(Xo), q(0,A) = Px,(s(0,1)),
and ¢'(0,A) = P; (s(0,1)). By assumption and since
N"(0) is connected, P, = P} on N”(0). Since [0,1]
is compact, we can choose a finite set {Az} such that
UeI”(Ax) = [0,1]. Now for each i such that I"(};) in-
tersects I”(0), Px, = P; on N"(};). This is because
N"(};) is connected, and for any A € I"(0) N I"(X;)
Py, (s(0X)) = P5 (s(0,1)) [since

Py, (5(0,X)) = ¢q(0,A) = Po(s(0,1)),
= Py(s(0,1))
=4¢'(0,})
= P§,(5(0,1))]

and P,, induces the same mapping from Ty, to
Tq0,0) = Tqi(0,n) as Py, (since it induces the same map-
ping as Py, which induces the same mapping as Py, which
induces the same mapping as Py ). By the same reason-
ing, for any A; such that I"();) intersects one of these
I"(X;), Py, = P;, on N"(};), and so on until we know
that for all k& Py, = P;, on N”()Ag), which implies that
fcfr all A € [0,1] ¢(0,A) = P»,(s(0,1)) = P;,(s(0,})) =
q'(0,A) for some k, and similarly for the mappings from
To(0,2) t0 Tg0,0) = Ty (0,0

We have thus shown that the surface g¢(r,A) (r €
[0,4+00), A € [0,1]) in Minkowski space, locally iso-
metric to the surface s(r,A), exists and is unique up
to isometries of Minkowski space. The path s(r,0) =
s(r,1)(r € [0,4+00)), being segmentwise flat, is locally
isometric to a set of paths in Minkowski space that are
related to each other by isometries of Minkowski space;
since both ¢(r,0) and g¢(r,1)(r € [0,+00)) are locally
isometric to s(r,0), they are related by an isometry of
Minkowski space. This isometry relates not only the
points ¢(r,0) and ¢(r,1) but also their tangent spaces
Tq(r,O) and Tq(r,l) via Ts(,.,o) = Ts(r,l)- Denote by Lg :
To(ro,0) = Tq(ro,0) and L1 : Ty(rg,0) = Ty(ro.1) the tangent
space mappings defined by the local isometry between
the surface s(r,\) and q(r,A), for some ry € [0,+00).
Parallel transport (along any path) defines a mapping
Ly : Ty(re,0) = Ty(ro,1), and parallel transport along the
CTC s(ro,A) (A € [0,1]) defines the Lorentz transfor-
mation Ay : Ty(rg,0) = Te(ro,0)- The local isometry be-
tween the surfaces s(r, A) and g(r, A) ensures that parallel
transport will give the same result when done on either
surface; that is, A, = Ll“leLo. Now, the homogeneous
component of the Minkowski space isometry P bringing
q(ro, 1) to g(r0,0) is Aq = LpLoLT" : Ty(re,1) = Ty(re,1)-
Thus the PT transformation for any of the CTC’s in the
surface s(r, A) is similar to the homogeneous component
of P: A, = L;lAqu.

It remains to be shown that the homogeneous compo-
nent of P cannot be a rotation. Though the easiest part
of the proof, it is really the crux of the problem. First
we note that, for all r € [0, +00), g(r,1) — P(q(r,1)) =
q(r,1)—q(r,0) is a timelike vector, since there is a future-
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directed timelike curve g(r,)) (A € [0,1]) joining ¢(r,0)
to g(r,1). Now, assuming that the homogeneous compo-
nent of P is a rotation, there is a Lorentzian coordinate
system in which P(z) = Re(z)+rt. For a point a distance
p from the t axis, the displacement P(z) —z is timelike if
and only if 2psin(0/2) < |7|. Since g(r,1) goes to space-
like or null infinity as r goes to infinity, its distance p
from the t axis goes to infinity in any (Lorentzian) co-
ordinate system, so the displacement under action by P
cannot be timelike for large r, in contradiction with what
we have proven. Q.E.D.

V. CLOSED TIMELIKE CURVES GENERATED
BY COSMIC STRINGS IN 3+1 DIMENSIONS

As noted in the Introduction, one of the principle rea-
sons for investigating gravity in 241 dimensions is that
the results in this arena are directly relevant to un-
derstanding (3+1)-dimensional spacetimes containing in-
finitely long, straight, parallel cosmic strings.

For instance, in the first example of a (2+1)-
dimensional solution to Einstein’s equations described in
Sec. II, the only nonvanishing component of the energy-
momentum tensor is Too = p, implying R = —167p. We
convert this solution to a (3+1)-dimensional solution by
adding a third independent spatial coordinate, and set-
ting g3z = 1 and gu3 = g3, = 0 for u # 3. All the com-
ponents of the connection and the Riemann and Ricci
tensors with any index equal to 3 will then vanish, while
their other components, along with the curvature scalar,
will remain unchanged. From Einstein’s equations it fol-
lows that T33 = (1/167)R, Tus = T3, = 0 for p # 3,
and the remaining components of the energy-momentum
tensor are unchanged. We find that T35 = —p = —Tgo.
Since this is the energy-momentum tensor for the “mat-
ter” that makes up cosmic strings we see that the so-
lution for any number of infinite, straight, parallel, and
stationary strings is equivalent to (2+1)-dimensional so-
lutions of this form [16]. Note that in this system of
units (G = ¢ = 1), mass is dimensionless in 2+1 dimen-
sions but has the same units as length and time in 3+1
dimensions. Hence the mass of a particle in 2+1 dimen-
sions corresponds to the mass per unit length of a cosmic
string in 3+1 dimensions [16].

Similarly, (24+1)-dimensional solutions containing par-
ticles in relative motion can be converted into (3+1)-
dimensional solutions containing moving infinite straight
parallel cosmic strings. In particular Gott’s two-particle
spacetime described in Sec. III can be converted into a
(3+1)-dimensional spacetime containing two parallel infi-
nite strings passing each other at very high speed, indeed,
it was in this form that the solution was originally dis-
covered [3]. Since the particles’ mass M is replaced by
the strings’ mass per unit length u, the criterion for the
existence of CTC’s becomes

B > cosdmp, (19)

where 3 is the speed of the strings.
Although two straight infinite strings must be paral-

lel in order to be equivalent to (2+1)-dimensional par-
ticles, it should be noted that many two-string space-
times admit a coordinate system in which the strings
are parallel, including all the two-string spacetimes that
contain CTC’s. The set of spacetimes containing two
nonintersecting infinite straight strings moving at con-
stant velocity can be divided into four classes: (1) those
spacetimes that can be reduced by a change of coordi-
nates to two stationary and parallel strings; (2) those
that can be reduced to two stationary but skew strings;
(3) those that can be reduced to two strings arbitrar-
ily close to being parallel and moving arbitrarily slowly
(these spacetimes are on the borderline between the two
previous cases); and (4) those spacetimes that can be
reduced to two moving, parallel strings. All of the CTC-
containing spacetimes are in the fourth class. The four
different classes can be constructed [3] starting with the
two strings at rest, parallel to the z axis in the laboratory
coordinate system, and displaced from each other in the
y direction. The first string is rotated about the y axis
by an angle ¢ and the second string by an angle —¢. This
provides a static spacetime with the strings skewed. The
first string can then be boosted by to a v factor of v in
the z direction, while the second string is boosted to the
same v factor in the opposite direction The four cases
are then (1) vp = cos¢ = 1: strings parallel and at rest;
(2) vfcos¢ < 1: a boost in the z direction with speed
~vrPrtang will make the strings motionless but skew; (3)
~vFcos¢ = 1: there is no frame that minimizes the string
velocities, but as the solution is boosted in the z direction
with arbitrarily high boost parameters the strings move
slower and slower, becoming closer and closer to being
parallel and approaching arbitrarily close to case (1); (4)
~yFcos¢ > 1: in the frame that equalizes and minimizes
the strings’ speeds 3, we have v, = yrcos¢ [3] and the
strings are parallel. For this construction the criterion
for the existence of CTC’s is ypcos¢ sin(4mwu) > 1, which
is satisfied only by the case (4) solutions.

One of the major issues for any CTC-containing solu-
tion is its applicability to time-machine technology. Since
a cosmic string has no ends, it is either infinite or in a
loop. If we are not lucky enough to live in a universe that
contains two infinite cosmic strings that pass each other
at very high speed, the question arises as to whether it is
possible to make a time machine based on the same effect
by manipulating finite lengths of cosmic string. Tipler
[17] and Hawking [18] showed that, under certain condi-
tions including the weak energy condition, CTC forma-
tion cannot originate within a finite singularity-free re-
gion of spacetime if the Cauchy horizon extends to future
null infinity [17] or is compactly generated [18]. Thus,
with the weak energy condition it would seem that a
successful attempt to manufacture CTC’s within a finite
region of space will be accompanied by the creation of
a singularity within that region. This does not imme-
diately imply, however, that with sufficiently advanced
technology one could not make a time machine. There
is no reason to suspect that spacetime singularities could
not in principle be created through deliberate human ac-
tion. Furthermore, there is the possibility of realizing a
solution in which the Tipler-Hawking theorems do not
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apply because the Cauchy horizon is neither compactly
generated nor reaches future null infinity. This possibil-
ity is exemplified by the maximally extended Kerr solu-
tion, which obeys the weak energy condition and contains
CTC'’s, and in which the Cauchy horizon is completely
enclosed by the finite event horizon.

To illustrate this possibility more concretely we will
describe an approximation to the Gott solution created
with a single finite loop of string. Such a loop could
in principle be manufactured by heating a long volume
of space to the grand unified theory (GUT) tempera-
ture, supercooling it, and appropriately manipulating the
Higgs field to nucleate the string loop [19]. Garfinkle
and Vachaspati [20] gave a simple example of cosmic
string loop motion, neglecting gravitational radiation, in
which the loop is in the shape of a rectangle at all times,
and such that the center of the rectangle is fixed. As
a function of the time ¢, the length of the rectangle is
(2L —2t)cosa, while its height is 2¢ sina, where 2L cosa is
the initial length of the loop and 2L sina the final length.
The horizontal sides of the rectangle thus move at a speed
of B = sina, the vertical sides at a speed of B = cosa,
and the corners at the speed light, as kinks in cosmic
strings must do. (This is why they are able to neglect
gravitational radiation. Because the straight segments of
string moving uniformly emit no gravitational radiation,
the only gravitational radiation emitted comes from the
four corners or kinks which move at the speed of light and
accelerate the string segments they pass through. The
kinks thus act like four point sources of gravitational ra-
diation. If the mass per unit length p in the strings is
many orders of magnitude less than one Planck mass per
Planck length, which we expect, then the fractional dy-
namical effects of this radiation will be small, of order
50u [21].)

In this solution the vertical segments of the rectangle
collide, but they can be made to avoid each other by
a small distance by introducing additional sides so that
the entire loop no longer remains in one plane [19]. By
making a very small, the vertical segments can be made
to pass each other at very high speed. For instance, if
a = 1073, then the initial (horizontal) segments would
each have a speed of 8 = 107%; as the long loop collapses
these segments will be converted by the motion of the
kinks into short vertical segments each with speed 3 = 1-
5% 107! and a v factor of 10°. If the mass per unit length
of the cosmic string is 107, then the condition for the
existence of CTC’s in the infinite-string solution is satis-
fied. (Gott showed [3] that Hawking’s proof that a circu-
lar loop of string will collapse to form a black hole reveals
that such a loop will also reach a v factor of this order
of magnitude.) While in this case the string is finite,
if the length of the vertical segments is extremely large
compared to their impact parameter, then it might be
natural to suppose that the spacetime near the segments
but far from their endpoints will resemble the infinite-
string solution and that CTC’s might be present there.
Unlike in the Gott solution, however, CTC’s would not
be present infinitely far from the sources; since the pass-
ing strings carry some angular momentum, very far away
the spacetime would resemble an exterior Kerr solution.

Gott showed [3] that in the finite loop case the condi-
tion for the existence of CTC’s is the same as the condi-
tion for the existence of an event horizon under Thorne’s
hoop conjecture. Thus there is the danger that a black
hole could form, possibly either disrupting the CTC’s
or cloaking them behind the event horizon [3]. Alterna-
tively, the Cauchy horizon might end on singularities that
are naked and thus escape out to future null infinity, thus
revealing the CTC’s to the surrounding space; but that
would of course require violating the cosmic censorship
conjecture.

The other main line of attack on time machines is in the
quantum regime [9,10,18,20,22-24]. In particular, Hawk-
ing [18] has argued that instabilities leading to diver-
gences in quantum fields at the Cauchy horizon would
in general prevent the appearance of CTC’s in space-
times that would otherwise classically evolve them. In
the Gott solution, however, it appears [9,10,23] that these
instabilities are mild, particularly compared to those in
the wormhole solutions; unlike the wormhole solutions,
the Gott solution has no closed null geodesic, or foun-
tain, where the instabilities pile up. On the other hand,
in the Gott spacetime stronger instabilities may occur
within the CTC-containing region than on the Cauchy
horizon itself [9,10]. In any case, there is some ques-
tion as to how to do quantum mechanics in regions
containing CTC’s (see for example [24]). Since these
quantum-mechanical divergences appear to become sig-
nificant within a Planck-scale distance from the Cauchy
horizon, solving these problems would appear to necessi-
tate a quantum theory of gravity; indeed, one of the main
motivations for studying CTC-containing spacetimes is
to gain insight into the constraints on a quantum theory
of gravity imposed by such extreme possibilities.

The other principle reason for studying CTC-
containing spacetimes is that they may allow us to get a
physical handle on some of the fascinating philosophical
issues surrounding time travel [25]. What about the con-
cern that time travel incurs “causal paradoxes” [18,26]?
Like all dynamical physical theories (with the possible
exception of the many-worlds interpretation of quantum
mechanics; see [27] for an account of time travel within
this theory), general relativity requires a model of the
world that includes a single history, one spacetime with
world lines in it. Many supposed paradoxes involving
time travel rely upon the possibility of changing history,
a notion that is ruled out a prior: by the conceptual
foundations of general relativity. The principle of self-
consistency that scientists normally use is quite applica-
ble to time travel [28] and requires no special augmenta-
tion. Although in our everyday lives we feel that by our
actions we affect the future course of events, in a very
strict sense we never actually change the future from one
future to another, because there will in the end be only
a single future; similarly, without any special restrictions
on his free will, a time traveler does not actually change
the past, although his actions might well have played an
active role in historical developments. Since no reason-
able concept of free will can include the freedom to do
things that are logically impossible, it would seem that
the philosophical issues surrounding free will are not rele-
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vant one way or the other to the study of CTC-containing
spacetimes.

Finally, we would like to point out that, with any
general-relativistic time machine, events prior to the con-
struction of the time machine, i.e., prior to the Cauchy
horizon, will be inaccessible to time travelers. Since we
have constructed no time machine yet, “the fact that we
have not been invaded by hordes of tourists from the fu-
ture” [18] does not constitute evidence for or against the
possibility of future time-machine technology.
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FIG. 1. Part of a (2+1)-dimensional spacetime containing
a single transcendent tachyon of total pressure P = 0.03; the
thick solid line is the world line of the tachyon. The verti-
cal coordinate represents time and the horizontal ones space.
Outside of the tachyon the metric is the Lorentz metric. The
two half planes are identified with each other and the space
between them is not part of the spacetime. Also shown is a
loop encircling the tachyon (dashed line) and the axis of the
PT transformation for that loop; note that it is parallel with
the tachyon’s world line.



FIG. 2. Diagrammatic representation, in which the time
coordinate has been suppressed, of a (2+1)-dimensional
spacetime containing three masses in relative motion. The
masses are represented by the large dots; the shaded areas
are not part of the spacetime, and the two rays bounding each
shaded area are identified with each other. Different nonin-
tersecting loops in this spacetime, with the same base point
marked by the cross, are shown in (a) and (b). As explained
in the text, the PT transformations for these two loops are
different, although both loops satisfy the condition of being
the edge of a surface that the world lines of all the masses
cross through.



FIG. 3. Part of the Penrose diagram of (2+1)-dimensional
universal anti-de Sitter space, representing the Lie group
SO(2,1). 8 is the time coordinate, ranging from —oco to +co;
¢’ is the radial coordinate, ranging from 0 to m. The an-
gular coordinate is suppressed. The dashed line ¢’ = 0 is
the coordinate singularity at the origin of polar coordinates.
The heavy solid line (' = 7 represents spacelike and null in-
finity. The identity of SO(2,1) is represented by the point
6 = ¢' = 0. Three geodesics through the origin, two timelike
and one spacelike, are shown. The shaded regions are points
not reachable by geadesics through the origin, i.e., points with
no inverse images under the exponential map. The solid lines
separating the different labeled regions represent null surfaces.



FIG. 4. A Gott two-particle spacetime. The view is from
above, that is, from the future looking toward the past.
Again, the vertical direction represents the time coordinate
and the horizontal directions the space coordinates. The
thick solid lines represent the world lines of the particles.
The two half-planes coming off of each world line are iden-
tified with each other. Thus the two large dots shown on the
two half-planes coming off of each world line represent the
same point in the spacetime. The two wedges between these
half-planes do not represent parts of the spacetime. Outside
the particles, the spacetime is flat, and the metric in the co-
ordinate system shown is the Lorentz metric. The two line
segments shown are both timelike and together form a CTC.
The arrow represents the axis of the PT transformation for
this CTC with base point at the base of the arrow; it is space-
like.



FIG. 5. A (2+1)-dimensional spacetime in which two
masses A and B bounce elastically. Again, time is repre-
sented by the vertical dimension and the spacetime is locally
flat with a Lorentz metric outside of the sources. The planes
divide the space of the figure into three disjoint regions. Of
these, only the near and far regions are part of the actual
spacetime, while the region sandwiched between them is ex-
cised. At any time, except the time of the collision, the posi-
tion of particle A is represented by two identified points, and
similarly for particle B; hence each particle has two world
lines in this representation.



FIG. 6. A Kabat four-particle spacetime. A CTC is shown,
along with the axis of the PT transformation for the CTC
at three different base points. (One of these axes is mostly
obscured by a wedge.) These axes agree when parallel trans-
ported along the CTC. As one can see from the picture, they
are spacelike. Again, large dots represent points where the
CTC crosses the wedges.



