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Stability ef the black hale herizan and the Landau ghost
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The stability of the black hole horizon is demanded by both cosmic censorship and the generalized
second law of thermodynamics. Vfe test the consistency of these principles by attempting to exceed
the black hole extremality condition in various processes in which a U(1) charge is added to a
nearly extreme Reissner-Nordstrom black hole charged with a different type of U(1) charge. For an
infalling spherical charged shell the attempt is foiled by the self-Coulomb repulsion of the sheQ. For
an infalling classical charge it fails because the required classical charge radius exceeds the size of the
black hole. For a quantum charge the horizon is saved because, in order to avoid the Landau ghost,
the efFective coupling constant cannot be large enough to accomplish the removal of the horizon.

PACS number(s): 04.20.Dw, 04.70.Bw, 11.10.Jj, 12.20.Ds

I. INTRODUCTION

Notwithstanding various possible exceptions, the prin-
ciple of cosmic censorship is a popular tenet of belief in
black hole physics. This principle rules that the black
hole event horizon cannot be removed because that would
expose naked singularities to distant observers. Likewise,
the disappearance of the event horizon would violate the
generalized second law of thermodynamics inasmuch as
the horizon area is associated with entropy which would
thereby disappear without any obvious way to compen-
sate for its loss. For these reasons processes which seem
to have a chance of eliminating the event horizon must be
unphysical. Devising candidate processes and finding out
how they fail turns out to be a source of physical insight
into black holes, and even into more mundane physics.

In this paper we inquire into the physics that defends
the horizon &om attempts to transcend the extremality
condition for a Reissner-Nordstrom black hole. As is well
known, for such a black hole the charge must not exceed
the mass (in units with G = c = li = 1); otherwise the
Reissner-Nordstrom solution contains no horizon. At-
tempts to violate this condition by adding to a nearly
extreme Reissner-Nordstrom black hole a particle with
charge of the same sign as the hole's and with charge-to-
mass ratio larger than unity are known to be defeated by
Coulomb repulsion. In fact, the energy required to get
the particle to surmount the potential barrier surround-
ing the black hole is found to be enough to make the mass
of the hole grow more than its charge, so that the hole
becomes further removed &om extremality.

But suppose there exist two types of local charge, type-
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s E U(1) and type-q 6 U'(1), e.g. , electric and magnetic
charges, which always reside in different particles. The
black hole is assumed to contain a total U(1) charge s
which is close to its mass M, but no U'(1) charge to start
with, so that it is not endowed with a U'(1) gauge field.
Thus an infalling q-type charge encounters no repulsive
electrostatic potential barrier and, on first sight, is not
hindered &om crossing the horizon. Now, for two charge
types the condition for the Reissner-Nordstrom horizon
to continue to exist after the assimilation is

2+q2 (M2

What physics prevents the added charge q from violating
this condition? We shall study two distinct gedartken
experiments. In the first a U'(1) charge Q is allowed
to fall on the black hole as a spherical shell concentric
with the black hole. The calculation can be carried out
exactly, and shows that, in fact, if the shell's charge is
large enough to lead to a violation of Eq. (1), the shell's
own self-repulsion prevents it from reaching the black
hole. This is an extension of the usual mechanism that
safeguards the horizon with one kind of charge present.

In our second gedanken experiment we consider an in-
falling pointlike q-type charge of mass p. Again, it meets
no repulsion &om the hole's field, but neither does self-
repulsion play any visible role in preventing its assirui&a-
tion by the black hole. In fact, we find that the condi-
tion for transcending Eq. (1) is precisely that the classical
charge radius r, = q2/p of the charge be bigger than the
black hole. Thus if the particle is classical, it cannot get
into the black hole, and the attempt fails. If the particle
is an elementary quant»m charge, its size is set by the
Compton length 1/p, . The condition for removal of the
horizon then translates into q2 & 2, mee~ing that the
U(1) gauge theory must be strongly coupled.

As is well known, the vacu»m polarization required by
/ED or its analogue makes the charge associated with
a particle significantly dependent on the length scale at
which it is looked at: at large distances most of the charge
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is screened. The condition that, on the scale of the black
hole horizon, q ) 2 means that the Landau ghost would
show up at measurable scales, an intolerable situation.
Thus if we require that the U(1) gauge theory in question
be described by a consistent efFective theory, the condi-
tions for removal of the black hole horizon by addition of
q-type charge cannot be satisfied. The event horizon is
truly stable.

II. INFALL OF CHARCED SHELL

The Reissner-Nordstrom metric [1] must be the exte-
rior metric of a spherical distribution with two different
U(1) charges Q and e [2]:

If 7 denotes the charge's proper time, the conservation
of the specific energy E of a particle at the edge is written
as [1]

( 2M' e' + Q' ) dt (q/p) Q+, I

—+ = const = E . (4)r2 ) dr r

This equation may be used to eliminate dt/dr in the nor-
malization of the velocity

2M' "+Q') (dt )
'

)kd)
(dr/dr)'
2M' ~2+@2+

The result is

)(
r

(dr& '
2 ( Q')

M+mE( 1—
m')

dr2+, , +r (d8 +sin &dP ) .2M + ~~+@~ (2) +—~ +Q ~1—, (
r2

=E'-1)0. (6)m2 )
It displays an event horizon only if condition (1) holds.
The electric potential of the q-type charge is [1]

4 = Q/r.

Let us start with a black hole of mass M and e-type
charge e, but with vanishing q-type charge, and consider
the radial infall into it of a thick spherical shell concen-
tric with it. The shell is made up of identical particles,
each bearing a q-type charge with a specific charge q/p.
The total q-type charge of the shell is Q and its total rest
mass m. The initial conditions are that the shell starts
off at very large distance r from the hole, and with each
of its constituents having the same given inward veloc-
ity. Consequently, the specific energy at infinity is a fixed
quantity E ) 1 for all particles. We neglect pressure in
the shell; i.e., we assume random velocities remain neg-
ligible. This means that the shell has conserved energy
mE in the field of the black hole.

The equation of motion of a particle at the outer edge
of the shell is that of a point charge with a specific charge
q/p moving in the metric (2) with mass M' = M + mE,
the mass of the hole plus shell, and in the potential 4(r)
of the shell itself. We shall assume that the same parti-
cles stay at the edge of the shell throughout its motion.
This assumption can be violated if there is shell crossing,
i.e., if a shell of charged particles gets inside an initially
smaller shell in the course of the notion. Such shell cross-
ing is rampant in the collapse of thick shells of uncharged
dust. Pressure militates against it since in general shell
crossing would result in an unbounded rise in the local
pressure. By analogy we expect that for "charged dust, "
the subject of our inquiry, the rising Coulomb potential
when two charged shells approach each other should mit-
igate shell crossing. It will actually be sufficient for all
that follows if for the outer edge particles shell cross-
ing does not take place. Then the edge of our shell can
be treated as a charge radially moving in the Reissner-
Nordstrom geometry and field, as explained above.

where we have replaced q/y, -+ Q/m, as well as M' ~
M + mE. This first quadrature for the problem has the
form of an energy conservation equation. We refer to the
terms following (dr/dr)2 as the potential.

With the first quadrature for the shell edge's motion on
hand, we now examine the most interesting possibility:
the shell falls whole into the black hole and the result-
ing configuration transcends Eq. (1), thus signaling the
destruction of the horizon. Of course other cases also
leading to the same outcome are possible. For example,
part of the shell may be repulsed, while the other part
falls in and removes the horizon. Rather than consid-
ering all such possibilities, we concentrate on the first
one mentioned. Not only is it the simplest, but if any of
the others should be able to lead to the removal of the
horizon, it is difficult to see how the whole shell's infall
should fail to do so too.

If the whole shell falls into the black hole, the potential
barrier should not be able to turn r(r) back at any time.
Since the black hole existed to start with, e & M. The
horizon is assumed to cease to be af'ter the assimilation
of the shell; thus (M+mE)2 & &2+ Q2. Combining these
inequalities tells us that

(Q/m) ) E + 2EM/m .

Thus the specific charge Q/m = q/p, must be large. It
also follows from Hq. (7) that

M+ mE(1 —Q'/m') & M(1 —2E') & 0

and

~' + Q'(1 —Q'/m') & M'(1 —4E') & 0 .

Thus the quantities in the square brackets in Eq.(6) are
both negative if the shell is capable of removing the hori-
zon. This means that the potential has a hump which
could well block the sheH &om continuing on its way into
the black hole.
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A simple calculation shows that the peak of the poten-
tial term is

[mE(Q2/m2 —1) —M]
Q (Q2/m2 1 ) e2

and lies at

It now follows &om inequalities (7) and (8) that rz,~ &
2M so that the shell will certainly reach the potential bar-
rier before reachi»g the original horizon. Thus in order
for the ishole shell (with parameters capable of leading
to a removal of the horizon) to actually fall into the hole,
it is necessary for E 1 & Vpe~.

Let us introduce the variables a and P by

Q2(Q2/m2 1) &2

mE(Q2/m2 —1) —M

Q2 MQ 2

+ rnE
mE mE(Q2/m2 —1) —M

Q = m E +2EmM+m a, e = (1 —P)M . (12)

Trivially 0 & P & 1, while inequality (7) guarantees that
a ) 0 in our case where the shell's parameters are ap-
propriate for removing the horizon. Using Eq. (10) we

write

(Ezp —E2 —p)M2 —(Ezm2 —m2+ am2+ 2EmM)a
"m2 —Q4+ m2Q2

(13)

A look at inequality (9) shows that the denominator here
is negative. In view of the ranges of a and p and the fact
that E & 1, the numerator is also negative, making the
whole expression positive. Thus by Eq. (6) the outer
edge of the shell must reach a turning point before it
reaches the maxim»m of the potential. This means that,
contrary to ass»mption, part of the shell must be turned
back.

Thus if the change in black hole parameters that would
have resulted &om assimilation of the shell sufficed to re-
move the horizon, that whole shell cannot reach the black
hole. The contrapositive of this is thus true: if the shell's
parameters are contrived so that all of it can reach the
black hole, it cannot remove the horizon. Thus the clas-
sical process envisaged respects the horizon's existence,
cosmic censorship, and the generalized second law.

III. INFAI L OF POINT CHARGE

(dr/dr)' —2M/r+ "/r' = E' —i & 0. (14)

The particle mill move inward until it bumps into the
rising potential (e /r term). The turning point is

1+ (E2 —1)(1—p) —1
~turn M E~ —x

It is easy to see that rt. & M/2 for any choice of E
since 0 & P & 1. Hence the distortion of spacetime due

Nom let a pointlike q-type charge of mass p and charge
q fall radially into a Reissner-Nordstrom hole of mass M
and c-type charge e satisfying the second of Eqs. (12). If
we treat the charge as a classical test particle (y, (& M
and q &( e), its motion ft(r), r (r)) will again be described
by Eqs. (4) and (S), but with Q = 0 and M' = M since
the black hole bears no q-type charge and the particle's
in6uence on the background is being neglected. Combin-
ing the equations as in Sec. I, we find the first quadrature,

q ) 2M@. (i6)

What physics prevents a particle with q2 & 2M@ from
accreting onto the black hole? Let us consider some op-
tions.

As a charge is lowered towards a black hole, it polarizes
the hole in such a way that from far away the source
of its field looks more spread out around the hole than
the particle [3]. Could this effective spreading stop the
"dangerous" particle &om falling in? No. One can view
the spreading as resulting &om image charges induced on
the black hole's surface by the approaching charge. Just
under the charge the image charges are of opposite sign.
Around the hole they are of the same sign. Obviously,
the effect of the image charges should be to pull in the
charge even more strongly than gravity alone. Thus this
phenomenon cannot help to prevent assimilation of the
charge q by the black hole.

The black hole might discharge its e-type charge in
the manner of Schminger sufBciently rapidly to ofF-

set the push beyond extremality by the added charge.
Schminger-type charge emission mould depend on the @-

type electric field of the black hole, which is of order
e/M2 = 1/M near the black hole. This field can tear the
virtual pairs in the e vacu»m if the work done by it on
an elementary s-type charge e over its Compton length
1/m amounts to at least the mass of a pair 2m. Thus
Schminger discharge will be exponentially suppressed un-
less e/m & 2mM. Now suppose that there exist in nature
e-type elementary charges with e/m = 1. We can then
make a black hole by collapsing a large number of these
u~~ixed with other stuK In spherical collapse there is no

to the black hole charge e cannot prevent the particle
with charge q &om fahhng into it.

After the infall the black hole mass is M + pE. The
condition for removal of the horizon is &2 + q2 = M2(1. —
p)+q ) (M+pE) . Since E & 1, q & 2Mp+IJ, 2+Mzp.
Since we can make p arbitrarily small, and p « M, to
remove the horizon we need at least that
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energy loss to waves, so that e/M = e/m 1, and we can
indeed form a nearly extreme black hole. If the charges,
whose Compton length is 1/m, are to Bt into the black
hole of size M, we must demand mM ) 1. But then it
is impossible to satisfy the condition for Schwinger emis-

sion. Thus one can imagine black holes that cannot be
saved from destruction by Schwinger-type discharge.

Hawking thermal emission preferentially carries
charges of the same sign as e; it might thus drive the black
hole below extremality before the added charge drove the
hole over it. But since the black hole is assumed near ex-

treme, its Hawking temperature is very small so that the
emission is unimportant. For precisely the same reason,
radiation pressure in the "photons" of the U'(1) gauge
Geld can be regarded as weak compared to gravity, and
is powerless to prevent infall of the charge q.

Our persistent failure to find a mechanism that pre-
vents ingestion by the black hole of a "dangerous" charge
leads us to the conclusion that there must be some basic
physical reason why condition (16) cannot be satisfied for
a charge that is able to fall into the black hole. For a
classical charge q the reason is not far to seek. We note
that its classical charge radius (analogous to the classical
electron radius) is r, = q /p, , and condition (16) simply
says that r, & 2M. A classical particle which does not
contain a negative energy density region somewhere in
it must be larger than r, since the electrostatic energy
residing outside r, would already account for all of the
rest mass p, . Thus if the charge is capable of Btting in the
black hole (r, & M), it cannot satisfy (16), and cannot
be used to remove the horizon.

However, for an elementary charge, e.g. , an electron,
r, is not the measure of particle size. In fact, for U(1)
charges found free in nature (weak coupling constant
qz « 1), r, is far smaller than the Compton length

1/p, the true quanta~ measure of particle size. Thus the
charge can fall into the black hole only if r, & 1/p & M.
But then condition (16) cannot be satisfied, and we re-
cover our previous conclusion that the horizon cannot be
removed.

To satisfy condition (16) together with the requirement
that the particle fit in the black hole, M & 1/y„means
that we must consider strongly coupled /ED-type the-
ory (q2 & 1). An elementary charge in such theory has

r, & 1/p, , and we cannot rule out condition (16) from the
requirement that the particle can Bt into the black hole,

1/p & M. We thus look more carefully at what strongly
coupled U{l) gauge theories are like.

The very notion of charge of a point particle in such
a theory is dependent on the length scale on which it is
measured. In a /ED like theory, the relation between the
charge of a point particle at two difFerent scales 8 and L,
with I pp S, is given by the result from renormalization
improved perturbation theory [4]:

1 1 2

The physics behind this relation is that at long scales (say
macroscopic) the charge is weaker because of vacunm po-
larization shielding of the charge at small (microscopic)

scales. Evidently for q(L) g 0 there exists a sufficiently
short scale Ii, at which q(t'L) m oo; this is the Landau
ghost. Of course, this behavior is unacceptable. One
possible resolution [5] is that /ED and siinilar U(l) the-
ories are trivial, i.e., q = 0. The Landau ghost does not
then appear. This is what happens for A/4 theories [6].
Another possibility [7] is that as q(E) grows, the theory
makes a transition to a new phase so that the Landau
ghost never shows up. The new phase is characterized
by massive four-fermion interactions and seems to lack
a long range force. Since q(L)2 g 0 in the real world,
and electrons interact via photon exchange, we can con-
sider /ED as an effective theory valid above some short
scale cutofF. Both alternatives are consistent with all
experimental facts because the Landau ghost occurs at
extremely short scales in /ED {shorter than the Planck
scale).

If a U(1) gauge theory undergoes a phase transition at
strong coupling comparable to that implied by condition

(16), we cannot obviously talk about simple charged par-
ticles with their attendant Coulomb interaction. Though
we are unable to work out the details of the protection
mechanism, the horizon will probably be safe. If the the-

ory is trivial, it is certainly safe. We are left with the
possibility that the U(1) theory is an effective theory de-

fined over some finite range of scales. Can a charge in
such theory remove the horizon' ?

In order for us to consider the charge as a quantum
particle subject to the effective field theory, that theory
must be applicable at scales below the particle's Comp-
ton length, i.e. , E = 1/((p, ) with ( & l. On the other
hand, the charge relevant for the motion of the charge
in the black hole's background must be defined on scales
larger than M; hence we need I = (M with ( & 1. Fi-
nally, for the effective theory to be self—consistent, the
Landau ghost must not appear; i.e., the right hand side
of Eq. (17) must be positive. We must thus put an upper
bound on q((M)z:

Sz /2
q((M)

However, this constraint is in the opposite sense as condi-
tion (16) for the removal of the horizon. In fact, they can
be compatible only if 2M@in(((Mp) = 2My, ln(Mp, ) +
2My, ln((() & 3z'/2. However, since (( must be a few

times unity, this last inequality can be satisfied only if
the Compton length 1/y, is almost as large as M, the
black hole's radius. Needless to say, the infall of a parti-
cle of this size cannot be treated classically; its evolution
in the black hole background is in all cases quant~~m me-

chanical. Thus we cannot draw the conclusion that the
horizon can be removed by a particle obeying condition

(16).
Our discussion has been qualitative because the analy-

sis of strongly coupled U(1) Beld theory is not yet feasible.
It is clear, however, that the physics of strongly coupled

U(l) is just what is needed to protect cosinic censor-

ship and the second law. We find it significant that a
classical black hole requires the help of a quantum efFect
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(vacuum polarization) to preserve its integrity while ab-
sorbing charges. Perhaps this was to be expected &om
the quant»m nature of black hole entropy which enters
into the second law of thermodynamics for black holes.

It would obviously be interesting to explore further
the question with lattice simulations of strongly coupled
/ED to see if the effective long range charge is indeed
kept small enough to comply with considerations raised
by our discussion.
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