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Formalizing the slow-roll approximation in inflation
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The meaning of the inBationary slow-roll approximation is formalized. Comparisons are made
between an approach based on the Hamilton- Jacobi equations, governing the evolution of the Hubble
parameter, and the usual scenario based on the evolution of the potential energy density. The
vital role of the in8ationary attractor solution is emphasized, and some of its properties described.
We propose a new measure of inSation, based upon contraction of the comoving Hubble length as
opposed to the usual e-foldings of physical expansion, and derive relevant formulas. We introduce an
infinite hierarchy of slow-roll parameters, and show that only a finite number of them are required to
produce results to a given order. The extension of the slow-roll approximation into an analytic slow-

roll expansion, converging on the exact solution, is provided. Its role in calculations of in8ationary
dynamics is discussed. We explore rational approximants as a method of extending the range of
convergence of the slow-roll expansion up to, and beyond, the end of inaation.

PACS number(s): 98.80.Cq

I. INTRODUCTION

InBationary universe models are based upon the possi-
bility of slow evolution of some scalar field P in a potential
V(P) [1,2]. Although some exact solutions of this prob-
lem exist, most detailed studies of iaflation have been
made using numerical integration, or by employing an
approximation scheme. The "slow-roll approximation"
[3—5], which neglects the most slowly changing terms in
the equations of motion, is the most widely used. Al-
though this approximation works well in many cases, we
know that it must eventually fail if infiation is to end.
Moreover, even weak violations of it can result in signif-
icant deviations from the standard predications for ob-
servables such as the spectrum of density perturbations
or the density of gravitational waves in the Universe [6,2].
As observational data sharpen, it is important to derive
a suite of predictions for the observables that are as accu-
rate as possible, and which cover all possible infiationary
models.

In the literature, one finds two different versions of the
slow-roll approximation. The first [3, 5] places restric-
tions on the form of the potential, and requires the evo-
lution of the scalar field to have reached its asymptotic
form. This approach is most appropriate when studying
in6ation in a specific potential. We shall call it the po-
tential slow-roll approximation (PSRA). The other form
of the approximation places conditions on the evolution
of the Hubble parameter during infiation [7]. We call
this the Hubble slow-roll approximation (HSRA). It has
distinct advantages over the PSRA, possessing a clearer
geometrical interpretation and more convenient analytic
properties. These make it best suited for general studies,
where the potential is not specified.

In this paper, we clarify the meaning of the differ-
ent slow-roll approximations that exist in the literature,
which often describe a variety of slightly difFerent approx-
imation schemes applied to dHFerent variables at difFerent
orders. By formalizing the slow-roll approximation in de-

tail, we will show how to use it as the basis of a 8lom-roll
expansion —a sequence of analytic approximations which
converge to the exact solution of the equations of mo-
tion for an in8ationary universe. Such a technique relies
strongly on the notion of the in6ationary attractor, whose
properties we describe. The use of Pade and Canterbury
approximants [8,9) allows us to further improve the range
and rate of convergence of this slow-roll expansion.

II. EQUATIONS OF MOTION
AND THEIR SOLUTION

We shall deal with the equations of motion in two dif-
ferent forms, both appropriate for a homogeneous scalar
field P, evolving in a potential V(P). We assume that
enough inBation has occurred to render the densities of
all other types of matter negligible, and to establish ho-
mogeneity in a patch at least as big as the horizon. The
most familiar form of the equations, in a zero-curvature
Friedmann universe, is

2H =—
mp]

(3)

, [-.'&'+ V(&))
3mp)

P+ 3HQ = —V',

where H = a/a is the Hubble parameter, a is the scale
factor (synchronous rather than conformal), mp~ the
Planck mass, overdots indicate derivatives with respect
to cosmic time t, and primes indicate derivatives with
respect to the scalar field P.

One can derive a very useful alternative form of these
equations by using the scalar field as a time variable [10,
4, ll]. This requires that P not change sign during in-

flation. Without loss of generality, we can choose P ) 0
throughout (this will determine some signs in later equa-
tions). DifFerentiating Eq. (1) with respect to t and using
Eq. (2) gives
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We may divide each side by P to eliminate the time de-
pendence in the Friedmann equation, obtaining

327r2
(4)

(5)

and Eq. (3) implies H & 0. This new set of equations, the
Hamilton- Jacobi equations, is normally more convenient
than Eqs. (1) and (2). They were used by Salopek and
Bond [4] to establish several important results to which
we refer later.

These equations allow one to generate an endless col-
lection of exact infiationary solutions via the following
procedure [12, 11]: Choose a form of H(P), and use
Eq. (4) to Bnd the potential for which the exact solu-
tion applies; now use Eq. (5) to find P, which allows the
P dependences to be converted into time dependences,
to get H(t); if desired, a further integration gives a(t)
(though this last step is seldom required). For example,
this procedure gives a very easy derivation of the exact
solution describing "intermediate" infiation, which corre-
sponds to the choice H(P) oc P with a a positive con-
stant and P ) 0. This exact solution was derived using
the Hami&ton-3acobi equations by Muslimov [10] (and in-
dependently by Barrow [13] using a different technique).
Other fully integrated exact solutions have been found
by Barrow [14, 15].

It is normally impossible to make analytic progress by
first choosing a potential V(P), because Eq. (4) is un-
pleasantly nonlinear. The simplest exception is the ex-
ponential potential, known to drive power-law infiation,
for which the Hamilton-3acobi formalism was used by
Salopek and Bond [4] to find (in parametric form) the
general isotropic solution.

(8)

The word "assumption" is placed in quotes here because,
in general, one is able to test whether Eq. (8) is ap-
proached for a wide range of initial conditions. The in8a-
tionary attractor is of vital importance in the application
of the slow-roll approximation, and we discuss its prop-
erties in Sec. II C.

B. Hubble slow-roll approximation

If H(P) is taken as the primary quantity, then there
is a better choice of slow-roll parameters. We define the
Hubble slow-roll (HSR) parameters e~ and rl~ by [7]

(~)
k

I

(4')
&I

4 EH(&)&
'

m@2, H" (P)""(~)= 4.
"

H(y)
(10)

These possess an extremely useful set of properties which
make them superior choices to ev and tv as descriptors
of infiation.

(i) We have exactly

equation, Eq. (2). Unfortunately, the smallness of the
PSR parameters is a necessary consistency condition, but
not a sufBcient one to guarantee that those terms can be
neglected. The PSR parameters only restrict the form
of the potential, not the properties of dynamic solutions.
The solutions are more general because they possess a
freely specifiable parameter, the value of P, which gov-
erns the size of the kinetic term. The kinetic term could,
therefore, be as large as ~~e wants, regardless of the
smallness, or otherwise, of these PSR parameters.

In general, this PSR formalism requires a further "as-
sumption, " that the scalar Beld evolves to approach an
asymptotic attractor solution, determined by

A. Potential slow-roll approximation

When provided with a potential V(P) from which to
construct an infiationary model, the slow-roll approxima-
tion is normally advertised as requiring the smallness of
two parameters (both functions of P), defined by [5]

4'/2
V+ P'/2

gH =
3HQ

din HI
dlna )

ding dlnH'i
dlna dlna )

(12)

( )
mp2) (V'(P))
16m g V(P) )
m'„V"(4)
8 V(P)

Henceforth, we refer to them as potential-slow-roll (PSR)
parameters. i Their smallness is used to justify the ne-
glect of the kinetic term in the Friedmann equation,
Eq. (1), and the acceleration term in the scalar wave

(ii) e~ && 1 is the condition for neglecting the first
term of Eq. (4) [the kinetic term in Eq. (1)].

(iii) Irk~ I
&& 1 is the condition for neglecting the deriva-

tive of the first term of Eq. (4) [the acceleration term in
Eq. (2)]. As a consequence, all the necessary dynamical
information is encoded in the HSR parameters. They do
not need to be supplemented by any assumptions about
the infiationary attractor, Eq. (8).

(iv) The condition for infiation to occur is precisely

a) 0-::-eH &1. (13)

To preview what is to come, these parameters are suRcient
to obtain results to firs order in slow roll. However, the
general slower-roll expansion requires an inflnite hierarchy of
parameters which wiH be deflned in Sec. IV.

/3 —rlIr l '
~v =ea

I(3 —ea p
(14)

There is an algebraic expression relating e~ to eH and
rl~ [using Eq. (4)]:
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The true end point of infIation, gauged by the HSR pa-
rameters, occurs exactly at eH ——1. When using the PSR
parameters, this condition is approximate; inQation end-

ing at e~ ——1 is only a 6rst-order result.
For g~, the relation to the HSR parameters is differ-

ential rather than algebraic:

~( )
47K 3 —EJI (3 —E~ )

(15)

although a more compact representation in terms of
higher-order parameters will be presented in Sec. IV.
This will show that the first term in Eq. (15) is of
higher order in slow roll, so that to lowest order, one has

gy ——g~ + eH. Note that gH and g~ are not the same
to first order in slow roll, since H2 oc V. We could have
defined q~ to coincide with gv in slow roll, by defining

g~ ——g~ —eH, but we prefer to regard the de6nitions in
Eqs. (9) and (10) as fundamental.

The de6nitions can be used to derive two useful rela-
tions between parameters of the same type:

4H,
bH(P) = bH($;) exp 2,dP

(m2p, ~. Ho )
(19)

Since Ho and dP have, by construction, opposing signs,
the integrand within the exponential term is negative def-
inite, and hence all linear perturbations die away.

If Ho is inflationary, the behavior is particularly dra-
matic because the condition for in8ation bounds the in-

tegrand away f'rom zero. Consequently one obtains

bH(4) ( bH(P;) exp ~—
(6~

mpi
(20)

That is, if there is an in6ationary solution, all linear per-
turbations approach it at least exponentially fast as the
scalar 6eld rolls.

Another way of writing the solution for the perturba-
tion, regardless of whether or not Ho is izdiationary, is in
terms of the amount of expansion which occurs, by using
the number of e-foldings N as de6ned in the following
section [Eq. (22)]. We get the precise result [4]

2
mpl eH

'9H H (16) bH(P) = bH(go) exp( —3~Ã~ —N~) .

2
mpl ev

gy = 26y-
16vr

Note that although, as functions, the parameters of a
given type, either HSR or PSR, are related, their values
at a given P are independent of one another. One imme-

diately sees the diferent "normalization" of the g Rom
Eqs. (16) and (17).

It is important to stress that although we have de-

rived self-consistent exact expressions relating the PSR to
the HSR parameters, we cannot invert these expressions
without 6rst assuming that the evolution has reached the
attractor, Eq. (8). As already mentioned, the attractor
constraint is part of the structure of the HSRA, but is
absent Rom the PSRA. So, while the HSRA implies the
PSRA, the converse does not hold without assuming the
attractor constraint.

C. Inflationary attractor

Already in this section we have seen how important
the notion of the inflationary attractor is. The behavior
of this attractor was established by Salopek and Bond

[4], and we now discuss its properties.
Suppose Ho(P) is any solution to the full equation of

motion, Eq. (4), either inflationary or noninfiationary.
Consider, first, a linear perturbation bH(P). We shall
also assume, and discuss further below, that the pertur-
bation does not reverse the sign of P. It therefore obeys
the linearized equation

H'bH' HobH,I 12K

mp~

which has the general solution

For nonlinear perturbations, the problem is more com-

plex; though all the solutions are easily seen to approach
each other, we have not shown that they do so exponen-
tially quickly. The most awkward case is where a pertur-
bation actually reverses the sign of P, as the Hamilton-
Jacobi equations are singular when that happens. Nev-

ertheless, as long as the perturbation is insuHicient to
knock the scalar 6eld over a maximum in the potential,
the perturbed solution will inevitably reverse and subse-

quently pass through the initial value P; again; then it
can be treated as a perturbation with the same sign of P
as the original solution.

The picture that emerges is therefore as follows. Pro-
vided the potential is able to support infiation, the infia-

tionary solutions all rapidly approach one another, with
exponential rapidity once in the linear regime. Even
when ia8ation ends, the ~~niverse continues to expand
and therefore the solutions continue to approach one an-

other. Consequently, even the exit from infiation is in-

dependent of initial conditions. Note that there is no

concept of a single "attractor solution"; all solutions are
attractors for one another and converge asymptotically.
As we shall see, this is a vital requirement if a slow-roll

expansion is to make any sense.
The situation where the in8ationary attractor does not

apply is therefore soon after in6ation begins. Normally
this is in the distant past and of no concern. An excep-
tion, recently noted [16], is hybrid infiation. There, the
slow-roll parameters rise above»~ity, halting in8ation,
and then fall back below unity, reaching very small val-

ues. Nevertheless, it is easy to show that, except for a
tiny window in parameter space, infIation fails to restart
despite the smallness of the PSR parameters, because
there is insuKcient time for the solution to approach the
inflationary attractor. Another similar situation will be
discussed in Sec. VI.
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III. BETTER MEASURE OF INFLATION It can be shown that

An important quantity for making inSationary predic-
tions is the amount of inSation that has taken place. In-
Sation is commonly characterized by the number of e-
foldings of physical expansion that occur, as given by the
natural logarithm of the ratio of the final scale factor to
the initial one. This can be expressed exactly as

aq 4~N=ln —=— dP.
mk S. pea(4)

If one is working in the PSRA then, provided the attrac-
tor solution Eq. (8) is attained, this may be approximated
by

4~ 4'&

N(&' 4's) =—, d4.
ev(4)

(23)

These formulas are needed to make the connection be-
tween horizon-crossing times in calculations of the pro-
duction of scalar and tensor perturbations. A comoving
scale k crosses outside the Hubble radius at a time which
is N(k) e-foldings from the end of infiation, where

k 10 GeV Vq 1 V, qN(k) = 62 —ln —ln- ( +ln
aoHO y'/'

end preh

(24)
The subscript zero indicates present values, the subscript
k specifies the value when the wave number k crosses
the Hubble radius during infiation (k = aH), the sub-
script "end" specifies the value at the end of infiation,
and p„h is the energy density of the Universe after re-
heating to the standard hot big bang evolution. This
calculation assumes that instantaneous transitions occur
between regimes, and that during reheating the Universe
behaves as if matter dominated. Ordinarily, it is taken as
a perfectly good approximation that the comoving scale
presently equal to the Hubble radius crossed outside the
Hubble radius 6Q e-foldings &om the end of inSation,
with all other scales relevant to large-scale structure stud-
ies following within the next few e-foldings.

Something like 70 e-foldings is normally advertised as
the minimum for inSation to solve the various cosmolog-
ical conundrums, such as the Batness and horizon prob-
lems. However, it is well known that this is an approxi-
mation (for example, in the standard big bang model, the
Universe expands by more than a factor e between the
Planck time and the present, without solving the Satness
or horizon problems), based on the assumption of a con-
stant Hubble parameter. A better measure of inSation is
the reduction in the size of the comoving Hubble length
1/aH. First of all, the condition for inflation (a ) 0) is
equivalent to d[(aH) )/dt ( 0. Second, it is the reduc-
tion of 1/aII, not that of 1/a, which solves the fiatness
and horizon problems. And finally, for the generation
of perturbations, it is the relation of the comoving wave
number k to aH that is important. We therefore define

(aII) t (25)
(aH);

'

4n ~~ 1 ~ 1
N(4' 6) =— 1 ——ev (4)

mk p. gev(e

--nv(4) d4.
3

(27)

Equation (26) gives N during an arbitrary infiationary
epoch (not just quasi —de Sitter). It also holds if infiation
is interrupted for a period, while the dynamics are still
dominated by the scalar field. This requires e~ & 1,
causing the integrand in Eq. (26) to change sign over a
range of P. This is unlikely, but it has recently been
noted [17] that it arises in a variant of hybrid inflation
with a quartic potential, where the potential that drives
infiation is of the form V oc (1+A/4). For some values
of A, the potential temporarily steepens sufficiently to
suspend infiation, while 1/aII increases. This must be
compensated by extra inSationary expansion later on.

To make use of the new expressions Eqs. (26) and (27),
we need an N(k) relation to replace Eq. (24). This is
simply

Although this strongly resembles Eq. (24), it is in fact
slightly simpler; the difference between V& and V, g is
now part of the definition of ¹

IV. HIERARCH% OF SLOW-ROLL
PARAMETERS

Vfe now reconsider the intrinsic structure of the slow-
roll approximation. The HSR parameters (e~ and g~ of
Sec. II B), which measure the first and second derivatives
of the Hubble parameter, are all we require to obtain re-
sults to first order in the slow-roll expansion. However,
to go beyond this, we require more derivatives, necessi-
tating further slow-roll par~meters. In general, there will
be an infinite number of these, incorporating derivatives
to all orders; we shall prove that each additional order in
the expansion requires the introduction of one new pa-
rameter. The formal order of the expansion parameter
depends on the n»mber of derivatives it contains, two
derivatives for each order. -

N(P;, Pz) =—, [1 &—~(P))dP.
ea(4)

(26)

Since H always decreases, N & N by definition, with
the difFerence indicating the extra amount of expansion
required by the decrease of H during inSation. In the ex-
treme slow-roll limit (HSR) N and N coincide. This tells
us that the true condition for sufficient inSation should
be that N (not N) exceeds 70.

Again, using the potential, we can only write down an
approximate relation. At lowest order, N and N coin-
cide, while to next order one obtains
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which gives /3H:—e~ and PH:—r)~. However, there
is a superior alternative.

A. HSR hierarchy

We shall work with the set of definitions
1

ulna&'~
PH (30)

which can be expressed as

1

/ (yP)~ H(~+i) ) "
~"-

4 H-7r
(31)

These have elegant properties, which we shall use to re-
cast the HSR approximation as an HSR expansion. Fur-
thermore, as we demonstrate below, only a finite nvmber
of these parameters are needed to obtain results to any
given order.

It is dificult to incorporate eH into this scheme natu-
rally —it must be defined separately. We use the form
given in Eq. (9), but shall refer to e~ as oP~ in later
sections. The first parameter this definition yields is

P~ —= r)~, in accordance with Eq. (10). The next four
HSR expansion parameters are

m2
(H='Pa=

4
'

m2
3p Pl

4'

1H =
m2

4p Pl
4m

(H'H"') *

l(H )'
1

(H)2Hvu) '

1

(H"H(» '

(32)

(33)

(34)

In [18], where second-order results were derived,
the extra parameter was defined as
(m2pl/4m') H'"/H', which is of the same order as the oth-
ers. This definition is rather unfortunate; we mean to be
expanding about a Bat potential, and this parameter is
not guaranteed to tead to zero in that limit because of
the derivative in the denominator. This definition has led
to some confusion (for instance, in [19] where $ was not
treated as an expansion parameter at all). The moral of
this is that the hierarchy of slow-roll parameters should
be carefully defiaed, so as to tend to zero as the poten-
tial approaches fiatness in arbitrary ways. Even with this
restriction, there are difFerent ways one could define the
hierarchy. If a superscript (n) indicates the nth derivative
with respect to P, the simplest definition would appear
to be

( ) 2/n

1LPH — Pl
4~gH)

B. PSR hierarchy

In the spirit of the previous subsection, we introduce a
hierarchy of PSR parameters. As stressed earlier, these
are not as useful in calculations of infiationary dynamics
as the HSR parameters. They only classify the fiatness
of the potential, and so encode no information about ini-
tial conditions. This necessitates adding the additional
attractor constraint, Eq. (8).

As before, we retain the standard definitions of ~~ and
rIv from Eqs. (6) and (7), and encapsulate the definition
of rlv, and all higher-order parameters, in the new set of
quantities

1

mp2i (d ln V ) — d ln V(')

8~ q dP) [:" dP

which reduce to
1

m2 ((v')"-'v("+') l
8

~
V"

(36)

(37)

This allows construction of a set of PSR expansion pa-
rameters

m2
2p Pl

8a

(VIVII

I( V2 )I
1

((Vg)2 Vnv)

((v')' v(') ) '

1

t'(v')' v(') 'I '

2

av= Pv=-3 mp]
87r

4p Plm'
8m

m2
Sp Pl

Sx

(40)

(41)

In Eqs. (14)—(17), we presented some additional prop-
erties of c and g. As one may suspect, these can be
written in terms of the higher-order parameters. An ex-
tensive collection is given in the Appendix; here, we note
the exact relations

ter combiaes 8 and its derivatives, raised as a whole to
some power 1/n, where n C Z+. This has the interesting
consequence that if we wish to convert the Taylor series
of some function of H(P), and its derivatives, into an ex-
pansion in slow-roll parameters, we are guaranteed that
the powers of any specific parameter "PH will be integer
multiples of n. Thus, the lowest-order term we can expect
to find involving this parameter will be ("Plr)". Conse-
quently, if one is interested in expanding this function up
to order m, then at most the Grst m+ 1 parameters can
appear. Thus, despite the potentially infinite number of
slow-roll parameters, we require only a finite selection of
them at any order.

1

4n. Hse= Ir= (35)

The strength of these definitions is that each parame-

(3 —rlIr ) 2

«=~Jr I

( 3 —E~ )
(42)
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3e+ + 3'g+
(43)

3 —EH

The latter demonstrates that spy = e~+g~ in the lowest-
order HSRA, as stated earlier.

V. FROM SLOW-ROLL APPROXIMATION
TO SLOW-ROLL EXPANSION

A procedure for generating analytic approximations
to in8ationary solutions, &om a slow-roQ approximation,
has a broad spectrum of applications. More useful still
is a slow-roll expansion, &om which solutions could be
generated analytically to any required order in the slow-

roll approximation. An indication of how to go about
this was given by Salopek and Bond [4]. We now show
how this may be achieved within the &amework of the
slow-roll parameters.

Let us first emphasize the importance of the attractor
behavior for this procedure. The general isotropic solu-
tion for a given potential possesses one &ee parameter,
corresponding to the &eedom to specify JI (or equiva-

lently P) at some initial time. However, the traditional
slow-roll solution, and its order-by-order corrections that
we shall describe, generates only a single solution. Un-

less an attractor exists and has been attained, there is no
need for this single solution to represent in any way the
true solution for that potential. However, if the attrac-
tor has indeed been reached, then any particular solu-
tion provides an excellent approximation to those arising
&om a wide range of initial conditions. This is partic-
ularly important when infiation approaches its end, and
the slow-roll parameters become large, because one might
naively assnme that the one-parameter &eedom could be
important there. If the attractor solution exists, then
solutions for a wide range of initial conditions will con-
verge, and subsequently all exit infiation in the same
way. Hence, an expansion approximating one particu-
lar solution serves as an excellent approximation to them
all, provided the initial condition for that solution is not
pathological (which is prevented by the assumption that
energies are less than the Planck energy).

We note that there is a formal problem in attempting
to prove "no-hair" theorems; if inBation is to end, there
is no formal asymptotic regime [14]. However, our re-
quirement is just that enough inQation occurs to ensure

I

that the range of values of P needed to encompass the
entire fame&y of solutions is sufficiently small to validate
the Eq. (8). In typical models so much infiation occurs
that this situation is easily achieved.

A. Traditional Taylor-series approach

We start with a potential V(P) for which a solution
is desired. Typically, we cannot solve exactly for H(P);
instead, we aim to find an approximate solution, in terms
of V(P) and a multivariate Taylor expansion in the PSR
parameters, all of which can be computed analytically
given an analytic V(P). First recast Eq. (4) as

&'(4') = V(&) I
1 ——~(&) l

(44)
8~ (

3m pi ( 3 )
Then seek an approximate solution for IIs(P) of the form

H (P) =
2 V(g)(1+ «v + &gv + c&v + «vgv

3mpl

+«v+ f(v + ) (45)

where a, b, . . . are constants to be determined. [In fact,
Eq. (14) already guarantees that 5 = e = f = 0, by forc-
ing every term in e~ to contain at least one power of ev.]
Note also that, for reasons discussed in Sec. IV A, Ic&2 is
the lowest-order term involving (~ to appear in Eq. (45),
and that no further PSR parameters appear at second or
der. Thus, we require an expansion of (1 —e~/3) in
PSR parameters of ascending order. This is most readily
achieved by assuming general expressions for the HSR
parameters, in terms of PSR parameters, with a simi-
lar form to Eq. (45). Starting with general first-order
forms, these may be substituted into Eq. (14), which
is then solved for the ~mknown constants by comparing
coeKcients. s After first-order results have been obtained,
this procedure may be repeated iteratively order by or-
der. It is a straightforward (albeit tedious) matter to
invert the expansion of (1 —e~/3) using the binomial
theorem, and hence obtain the corresponding series for
H2(p).

We have done this to fourth order, although the re-
sults may be truncated at lower order to obtain more
manageable expressions, as desired. We find

(46)

4 2 2 32 3 5 2 10 2 2 2 44 4 530 3e~ = ev' ——ev + —ev g~ + ev + —eve ———evgv + eVg — ev—+ —ev gv'
3 3 9 9 3 9 3 27

62 2 2 14 3 16 2 2 2 2 2 3
9 27 9 3ev gv +——ev'f/~ — eve~ + ——ev'gv(v + —ev 0'v + Os .

27
The second-order truncation concurs with the result derived in [19].

Hence, we find the approximate solution

8m 1 12 2 253 5 ~ 262
H (P) =

2 V(4) 1+ —ev ev+ —&vs + —&v+ —evQv ——&v~
3m'�) 3 3 9 27 27 27

2 2 327 4 460 3 172 2 2 14 3 44 2 2 2 2 2 3+ ev'(v — ev + tv 7/y' — ev gv + ev'gv Ev(v + e+ 'flvfy + e~o'v + O's . (47)
27 81 81 81 81 81 9 81

Although the slow-roll functiona are all interdependent, as all are based on derivatives of V(P), their values at a given P are
independent. Consequently, one should imagine that this procedure is being carried out separately at each yk The results are
then used to construct a function of P.
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FIG. 1. A comparison of diferent ana-
lytic approximations with the exact, numeri-
cally generated, solution H(P) for a potential
V(P) oc P, near the end of inflation. The
normalization of H is arbitrary. The slow-roll
approximation and its 6rst and second-order
corrected versions are shown, together with
the [1/1] rational approximant introduced in
Sec. V B, which is also a second-order correc-
tion. The rational approximant performs the
best, as is more clearly seen in Fig. 2.

and hence

mp, mp, t'mp, 't2 2 4

4xQ2 6xps p4 (48)

pi&
144m 44 q 4P )

+0

(49)

Results accurate to one order less, as given in Ref. [4],
can be obtained by removing the last term from both

Thus, we have generated an analytic solution for in6ation
in the potential V(P) that is accurate up to fourth order
in the slow-roll parameters, rather than the usual lowest
order.

We illustrate this with the specific example of the po-
tential V(P) = m2$2/2. To second order in the HSR
parameters, one finds

expressions. The behavior of H(P) is indicated in Fig.
1, where for comparison, the exact numerical solution is
also shown.

For this particular potential, it is necessary to include
both first- and second-order corrections in order to main-
tain, as a sensible definition of the end of ia6ation, the
condition e~(P) = 1 [here, we refer to the precise e~(P)
derived &om the approximate solution H(P), and not to
e~(P) truncating to the same order]. To lowest order,
this is guaranteed because the potential has a minimum
where V(P) = 0; but, because corrections become large
near the end of inflation, they may spoil this. In fact,
for a P potential, if one includes only the first-order cor-
rections, they conspire so that e~(P) fails to reach umty
for any P, despite the solutions being closer to the exact
numerical solution than the lowest-order results for the
bulk of the evolution. Including the second-order cor-
rections removes this problem for the $2 potential. The
exact behavior of eH(P) is shown in Fig. 2 in each case.

I I I I1I.
~ I ~

I

FIG. 2. The same comparison as Fig. 1,
but this time showing the exact ~(Pe) cor-
responding to each of the solutions. Recall
that the end of in6ation is at ~H ——1. The
pathological behavior of the 6rst-order cor-
rected solution, for which inflation never ends
in this potential, is clear; all other solutions
have a satisfactory end to iu8ation, with the
rational approximant providing the best over-
all approximation to the exact solution.

-1.5 -0.5
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For potentials with P behavior with a & 4, the end of
inBation is well defined even at first order.

B.Rational-ayproximant approach

Canter bu~ ayyreaimant

The Canterbury approximant [8] supplements a Pade
quotient approximant in many variables with a mini-
mal Taylor series, where minimal means containing as
few terms as possible. So, for a function of r variables
f(&q, &2, . . . , z ) expanded to nth order, we postulate an
approximant of the form

+) ).'''~. e ~ *"- (50)
pa =O pa=O p„=0

In the chaotic in6ationary example presented above, it
was seen how, as the field rolls toward the minimum of
the potential, the Taylor-series expansion becomes pro-
gressively less accurate due to the dependence of the slow-
roll parameters on inverse powers of P. It is not true, in
general, that e~(P) will be the first parameter to become
large in this manner. Hence, it is not guaranteed that
the approximation will describe the evolution through,
or even up to, the end of infiation. At P = 0, where

V(P) = 0, the Taylor expansion diverges, although infia-
tion necessarily finishes before this.

In cases such as this, rational-approximant techniques

[8,9] can be effective. For the single-variable case, instead
of using a single Taylor polynomial, we approximate us-

ing the Pade approximant, a quotient of boo polynomials,
in the hope of achieving a better range and rate of con-
vergence. A particular application of this technique to
infiation was made in Ref. [20]. Unfortunately, Pade ap-
proximants can only be directly applied to single-variable
expansions, and we require the extension of this theory
to multiple-variable problems.

+ ) . ) ''' ) eros -"s, (*9&) ' (51)
po —O pl —O i—0

where the "Pv are the general PSR parameters defined
in Eq. (36); recall, also, that we have P& = ez.

This complicated formalism is clarified by showing it
at work to a given order. We present a [2/2] Canterbury
approximant to (1 —e~/3), and indicate how this may
be used to construct the approximant to Hs(P). For
(1 —egg/3), we obtain

where A(zg, 2:s, . . . ) x„) and B(zg) zs, . . . , 2:„) are
multiple-variable polynomials of order L and M, respec-
tively, the e„,~, ...~. are constants, and p; are the powers
of x;, ranging between 0 and n. The orders of the ap-
proximants, I and M, are constr~@ed by the relation
L + M = n, and the polynomial B(zq, z2, . . . , 2:,) con-
tains no zeroth-order term. The undetermined constants
in the approximant are fixed by expanding [L/M]y to
nth-order, and matching it with the nth-order expansion
of f(x) S.uch an approximant often yields faster con-
vergence because the quotient contains better estimates
of the higher-order terms than a truncated Taylor series.
Reference [8] provides a useful introduction to approxi-
mant techniques.

This approximant is not »»ique. Any attempt to ne-
glect the Taylor terms in Eq. (50) and solve for the re-
maining constants fails in general, as»»&ortunately there
will be an insufficient n»aber of free constants to do
this. The choice of which values we assign to the con-
stants in the Pade term (and hence the form of the
corrective Taylor series) is in fact completely arbitrary,
demonstrating the now»iqueness of Eq (50.). We find,
however, that keeping the Taylor-correction terms purely
nth-order simplifies the analysis somewhat, and also en-
sures that they are small in slow roll.

We are now in a position to recast the PSRA in the
form of Eq. (50). In terms of PSR parameters, during
slow-rolling infiation, an arbitrary function f(H(P)) may
be approximated by

L
[L,/M]—f 1 + B(ev rt MPv)

[2/2]~, ,„~» = 1 + ~4e+ ps'' ~~eQgQ + Iev + 'gv' sg' 2

1 + —ev —-~ —-ev )7v + —e + q —-$ 8167 7 7 352222VV
12 3 2 9 V V 9 V

1 3 35 2 2 13 2 2 1
162 324 162 27

Diagonal Canterbury approximants (i.e., the [L/L]
cases) share many of the useful properties of standard
Pade approximants (duality, homographic in»ariance,
unitarity, etc.), and substantially simplify the applica-
tion of the Canterbury tech»ique [8]. Use of diagonal
approximants, where possible, is thus recoxnmended. In
particular, the duality property may be exploited to save
considerable effort when calculating the corresponding
expression for Hs(4) from Eq. (52). The duality prop-

(53)

Sx —1
)2/2]» (g)

= 3, )'(&) ()2/2)(x — /s) ) (54)

erty is as follows: If f (x) = [g(x)] and g(0) $0, then

K//'lr) )
= (K'//'I ).) )

We may thus obtain a [2/2)~*&~1 from Eq. (52), via
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Sitnplgked Canterbary approaimonts

The Canterbury approxixnant provides a powerful tech-
nique for calculations of inBationary dynamics. However,
in its full higher-order glory, it can be quite cumbersoxne
and unwieldy. It is therefore useful to 6nd circ»mstances
in which the corrective Taylor series is not required. The
simplest way to bring this about is to take the [0/n] ap-
proximant which never needs correcting. However, it may
also be true that at low orders there is sufficient freedom
in the diagonal approximants, due to the vanishing of
some of the terms in the original Taylor series.

In fact, the [1/1] approximant has this property. As-
suming a general form for the [1/l]i,0~s approximant,
and matching to the Taylor expansion for (1—art/3) from
Eq. (46) to second order, yields

[1/1]
G + b'av + cvv E~ 4

( — /3)

2
+3/v + O2 ~

Comparing coefBcients, we arrive at the result

1+ev —3@v
[1/11(i-,.gs) =, 41 + 3@V —3/V

(56)

which, by construction, agrees with the Taylor series
to second order. The corresponding H(P) is easily ob-
tained. For the (b potential, examined earlier, this does
indeed ixnprove on the second-order Taylor series given
in Eq. (49), as shown in Figs. 1 and 2.

As a 6nal observation, note that if the slow-roll param-
eters all have the same functional forxn, perxnitting us to
write

where C; are constants and f (P) is an arbitrary function
of (b (which is small in the PSRA), then we can always
circumvent the need for a corrective Taylor series by ex-
panding in powers of f(P), thus reducing the problem to
the unmodified Pade case.

VI. CONCLUSIONS

By defining a suitable hierarchy of parameters, we have
extended the slow-roll approxixnation to a slow-roll ex-
pansion, allowing progressively more accurate analytic
approximations to be constructed via an order-by-order
decoxnposition in terms of slow-roll parameters. The use
of rational approximants pushes the range of validity of
the slow-roll expansion up to, and in xnany instances
beyond, the end of inBation. With the accurate ob-
servational information becoming available, this allows
an assessment of the accuracy of calculations within the
slow-roll approximation, and is especially important with
the present considerable emphasis focused on inBation-

ary models which make predictions far &om the standard
(zeroth-order) case.

We have used these parameters to de6ne an improved
measure of the amount of inBation. However, present
uncertainties regarding the physics of reheating make it
useful only in rather extreme circumstances such as a
temporary suspension of inBation, during which the Uni-
verse remains scalar 6eld dominated, as in the hybrid
inflation model of Ref. [17].

I et us caution the reader regarding the necessity of the
attractor condition for the slow-roll expansion to make
sense. By incorporating order-by-order corrections, we
can only generate one solution H(P) out of the one-
parameter family of actual solutions allowed by the &ee-
dom of H, or equivalently P, permitted by the initial
conditions. If the attractor hypothesis is not satis6ed,
then the solution generated, while conceivably an accu-
rate particular solution of the equations of motion, need
have no relation to the actual dynaxnical solutions which
might be attained. A case in point is the exact "interme-
diate" inflation solution [10,13,21]. For small P, this so-
lution corresponds to the rather unnatural (and noninfia-
tionary) behavior of the field moving up the potential and
over a maximum, beyond which inBation starts. If one
attempts to use our procedure to describe this entrance
to inBation, the solutions generated bear no particular
resemblance to the exact solution until well into the in-
Bationary regime. This serves as a cautionary note, that
known exact solutions are typically only late-time attrac-
tors, and unless a signi6cant period of inBation occurs
before the time of interest, so that the attractor solution
is reached, they are of little relevance.

Importantly, with regard to the exit &om inBation, we
are on much safer ground. It is assumed that enough time
has passed for the attractor to be reached, and hence all
solutions exit &om inBation in the same way. Therefore,
when our expansion procedure supplies a particular so-
lution, it provides an excellent description of the way in
which the entire one-parameter family of initial condi-
tions will exit inBation. Without this vital point, the
generation of solutions via the slow-roll expansion would
be &uitless.

We have concentrated on the dynamics of inBation,
rather than on the perturbation spectra produced &om
them. However, the slow-roll expansion can also be
brought into play there; as an example, we quote the
results for the spectral indices n for the density pertur-
bations and nT for the gravitational waves (see [2] for
precise definitions). These have long been taken as ap-
proximately 1 and 0, respectively; results to first order
were given by Liddle and Lyth [5] and to second order by
Stewart and Lyth [6]. With our definitions, these read,
in the HSRA and PSRA, respectively

By contrast, the "intermediate solution" can also be em-

ployed as the slow-roll solution in the simple potential V (x

(with P and P both positive), where the attractor hy-
pothesis can be applied, though the solution to which the
expansion process tends would have to be found numerically
again.
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1 1 2
1 —n = 4m~ —2g~ + 2(l + c)P~ + —(3 —5c)&~ri~ ——(3 —c)fa + '

2 2
1 2 ~ 1

3 6
= 6&v —2~ ——(44 —18c)ev (4c —14)evgv ——gv ——(13—3c)fv +

'Ag = 2—EIr —(3 + C)eH + (1 + C)t~gH +
1 2 1

2e—v ——(8+ 6c)e& + —(1+3c)ezpv +
3 3

(60)

(61)

25
ep [1—+ 2c (ep —g~) + ]2

25 i 1i1+2
i

c ——
i

(2&v —gv) +

(62)

where c = 4(ln 2+ p) with p being Euler's constant. No-
tice the factors in 1 —n change even at first order, due to
the difFerent definitions of g which have been used. Sim-
ilarly, we reproduce the second-order result for the ratio
8 of tensor and scalar amplitudes [6],
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though it should be noted that this is not a direct observ-
able [20]. Unlike the relatively simple dynamics which we
have emphasised in this paper, no way of extending these
expressions analytically to arbitrary order is known.

Note added. As we were completing this paper we re-
ceived a paper by Lidsey and Waga [22] which also dis-
cusses the slow-roll approximation, although with a con-
siderably difFerent emphasis.

APPENDIX

We provide here a list of expressions, deemed too cum-
bersome and obtrusive to be imposed upon the main
body of text, but which could prove useful in certain ap-
plications. The first four are exact extensions of Eq.

'

(14)
to higher-order parameters:

'9V = [3 eH] (3eH + 3'gH 'g~ —g~) &

&"I& + ~H 9 Ir4 12"1&EH 3+H + 3"IH(H + W+H) &

o'v = [3 egg] (81eHg& + 108eH$& + 27o'Ir —54e~g& —72e~g~(& —54ri~g&
—27$H —9rH + 96~'gff + 12ez'9zpjr + 18&@(~+ 27&zo'z + 6&zrsr —3vp~p~ —4&zo'z —prr 7~) &

wv = [3 —ea] (810errgz(~ + 405&~a rr + 81'~ —810err riff~ —405e~g~o~
—270@o~ —216rIH7~ —27(& + 270'+'g~(& + 135e~ri&os' + 270@~(&o&
+162@v~+27'~(~ —30 ~g~(~ — &g~ ~ —Xg~g~ ~ —48ri

9gsr g' + 10~1~IH ~+~ + 5 gyes +~ + g~ (yg ) '

(A1)

(A2)

(A3)

(A4)

It is also possible to express any parameter we choose as
a first-order differential relation in terms of lower-order
parameters. This was done in Eqs. (16) and (17) for g;
we do this here for ( and o".

m2
0'~ = @ (2eH —'f/H) — y eH4H$~

m2
ov =(v (4ev —qv) — 'gev(v(v.

(A7)

(A8)

2
2 mp] g

(Ir —&H gH
4m

geH'g~ &

2
2 mp~

(v = 2evgv — QEvgv &

4m

(A5)

(A6)

These compressions allow us to express any PSR param-
eter of order n as a first-order deferential relation involv-
ing HSR parameters of order not exceeding n, as was
done in Eq. (15) for gv. We present the case for $v,
although such a result may be derived for any of the
higher-order parameters,

m2
g = [9 —EH] (9&EHHH + 9(iE —1&E&H/EE —9EHHH + 9HH(H + &HH

—9) (H (H (2EH —
HH)&

— EEEH(iE

(A9)
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Equations (Al) —(A9) are all exact. We now give some approximate formulas, inverting some of the above relations
to yield expressions for HSR parameters in terms of PSR parameters. If necessary, these can be fitted to Pade or
Canterbury approximants, using the methods outlined in Sec. V B. We have already stated the result for ~H [Eq. (46));
here we give the higher-order parameters,

8 q 1 q 8 1 ~ 3 2
g~ gv &v + &v + gv &vTlv + ~v 12ev + —rlv + 16evrlv

3 3 3 3 9
46 ~ 17 ~ 2 q 1——eV f/V

'— EV—(V + —'gV(V + —O'V + 04,9 9 3 9

(Ii ——(V —3eV'gV + 3sV —20eV + 26eV'gV 7eV'l7V EV(V + 'gV/V + O'V + 04 &

2 — 2 2 3 2 2 13 2 2 3

3 3 3
~sr = o'v 3&vrlv + 18evrlv —15ev 4&v(v + +4.

(A10)

(A11)

(A12)

Note that these inversions are only valid when the attractor condition, Eq. (8), holds. The second-order truncation
of Eq. (A10) is compatible with the result presented in [19].
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