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Nonlinear behaviors of cosmological inhomogeneities are studied in the anti-Newtonian or long-

wavelength approximation. They consist of a standard fiuid aud infiatiouary matter. The latter is

an in8ationary Quid or a scalar Beld. After the initially dominant local anisotropy has decreased,

they become quasi-isotropic. If the density of the standard Suid is dominant at this stage, the

inhomogeneities grow with time, but, as the density of the in8ationary matter increases, it is shown

that the growth is gradually prevented and Snally they decay. After the in8ation they again grow

due to the irregular spatial curvature. The generality of the solutions is also discussed.

PACS uumber(s): 98.80.Cq, 98.80.Hw

I. INTRODUCTION

The evolution of inhomogeneous cosmological models
has so far been studied using approximations appropri-
ate to their various phases, such as the linearized the-
ory of perturbations [1,2], the post-Newtonian theory
[3,4], and the anti-Newtonian theory, also called the long-
wavelength approximation or gradient expansion [5—8].

To derive the higher-order terms of the expansion in
the latter approximation scheme is difficult in practice
if the anisotropies are taken into account (see below for
a precise definition). In the quasi-isotropic stage after
the initial local anisotropies have decreased, however, the
analysis is much simpli6ed. In the case of dust, the solu-
tion can be obtained iteratively to arbitrary order [8] and
was explicitly written down up to sixth order in the gradi-
ents (third iteration, the zeroth being the isotropic Fried-
mann solution) by Parry [9]. Comer et al. [10] worked

out the second iteration in the case of a perfect Quid

with an arbitrary adiabatic index or a scalar Seld. They
showed that the obtained quasi-isotropic solutions can
be regarded as attractors of the generic, anisotropic so-

lutions which were derived by one of the present authors
in [5] and [ll], and that the decay or growth of the in-

homogeneities depended on their equation of state, that
is, whether or not the Quid or scalar 6eld was in8ation-
ary. Finally the homogenization of local inhomogeneities
has been discussed in [ll] in connection with the problem
of the behaviors of local inhomogeneities including black
holes in de Sitter spacetime [12].

Now in more realistic situations there can be two mat-
ter components: a standard Quid and in6ationary matter
(an infiationary fiuid or scalar field). Since it is not self-

evident whether or not inhomogeneities can continue to

II. EXPONENTIAL INFLATION

The spacetime is described in the synchronous condi-
tion with the line element

da = —dt + p;~de'dx', (2.1)

where we use the units t" = 8xG = 1, and the Einstein
equations for two perfect Quids are expressed as

—,'~,*+,'~,'~; = —) (-,'(e + 3p )

+ (' + p )[(u( )) —1]} (2 2)

(2.3)

1
2P,'+ (~p~',.) = .) (2(e +p )u( ).u~(

)

+b!(e- —p-)) (2.4)

where P~ are components of the Ricci tensor in the
three-dimensional space with metric dl = p;~de'dr~,

~,- is de6ned by p~'j~, , an overdot denotes the deriva-
tive with respect to t, p is the determinant ip;si, and
the four velocities u~()(ts = 0 —3) satisfy u( )

grow in the inQationary stage, we shall study in this paper
their behaviors in the long-wavelength iteration scheme
and compare the results to the linear analysis and thus
extend the "cosmic no hair" theorem.
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& = &e + &i) p = P~ +Pi ~

Their equations of state are

p, /e, = 1p, (= I', —1), p;/e; = 1p; (= I', —1), (2.6)

where 1p, and 1p; or I', and I'; are constants satisfying

1 & ~. & -1/3 (2 & r. & 2/3)

and

—1/3 & 1p; & —1 (2/3 & I'; & 0). (2.7)

In this section we are confined to the case 1p; = —1, in
which e; = —p; is a constant corresponding to the cosmo-
logical constant. Following the notation in the previous
paper [ll] we express them also as e; = e~.

When we neglect the spatial curvature P;~ and the
square of spatial velocities (uI ))3, we obtain, from Ein-

stein equations (2.2) and (2.4),

—(u( )) [1 —Z; 1(u( )) /(u( )) ] = —1. Moreover, the
total energy and pressure as the s»ms of the standard
ones (e„p,) and the infiationary ones (e;,p;) are given
by e and p:

spatial curvature, the above solution is regarded as the
6rst-order solution ~ &p;~, ~ ~e„and & &u~,

~
.. Let us de-

rive the next third-order solution in Comer et al. '3 pro-
cedure [10]:

7~ = Apff3(t)R4~ + 3[g3(t) —f3(t)]Rh~~}) (2.15)

where R;~ = P;z, R~ = h'"R~~, and R = R,', and the
independence of functions R@ and Rh;~ is used for the
derivation of separate equations dependent only on time.
Thus the Einstein equations (2.2) and (2.4) for the metric
p;. =&~~ p;. +& ~ p" lead to

3Apf3+ — f3+ 2Ap = 0
2Ap

(2.16)

g3+ 3(1+1p,) gs+ 3(l + 3ur, )Ap
' = 0.

p

Their solutions are

(2.17)

= —-'(1+ 3 ) dtA '+ ' dt'A~~j p p )

~? = (x/x) p,. + A~x-'/' (2 8) (2.18)

e —p = X/X + 3 (X/X)3, (2.9)
which are of the same form as in Comer et al. [12], though
our Ap is different from theirs. The energy density de-
rived from Eqs. (2.9) and (2.10) is

e+ 3p = —3X/X+ -,'(X/X)' —6I,'/X', (2.10)

as was shown in the previous paper, where X
p = det(p") and A~4 is an arbitrary traceless func-

tion of only spatial variables with (—:A~A'/l2. From
Eqs. (2.9) and (2.10) we obtain

Y+ Ip(l —1p, )$Y(~' )/( '+') —3(1+A ) e Y'=0,

(2.11)

(,) ~

~

e~ = bc~ = — g3 +Ap R.2( Ap )
By using Eq. (2.18), we can rewrite as

(3) 1A
—3(1+tu )/2&a=2 p

p

x t 1 —ApAp A A ~'+'" ~)

(2.19)

(2.20)

where Y = X (+ ')/ = p(+ ~ )/ . The integration
of Eq. (2.11) and the derivation of metric components,
density and velocity components are shown in Ref. [11].

In the quasi-isotropic case A; = 0, which we consider
in the following, the solution Y is expressed as

Y = X4 + ' = Yp(x) sinh(Ht), (2.12)

where H = (1 + 1p,)(4e~)1/3 and the time delay (being
an integration function) is neglected. Then the energy
density and velocity are

The general behaviors of f3 and g3 are found by solv-
ing n»~erically Eq. (2.16) in various initial conditions.
Homogeneous part of solutions fs and g3 show the com-
ponents being constant or decaying with time always,
and the constant terms can be included in h;~ arith the
factors R;~ and Rh;~. This mea»s that the changes in h;z
and R;~ are brought by the dynamical evolution of fiu-
ids. Next we pay attention to the special solutions which
may bring growing components. They are shorn in the
following taro extreme cases Ht (& 1 and Ht )) 1.

(a) Ht « l. As Ap oc t4/( ( +~')), we have

e, = e~/sxnh (Ht), u(, ). ——0,

and the metric components are

Aphid& & Ap 4 ( + ') = si»h(Ht).

(2.13)

(2.14)

f ~ t3(1+3 ~ )/(3(1+ .))

The energy density is

'"~.= b~, o t-')'~'&'+

(2.21)

(2.22)

When are treat higher-order solutions arith respect to the so that the contrast is
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t2(1+3ur ~ )/[3(1+m )]

Therefore the inhomogeneities grow with time.

(2.23)

(
1 eHt )

4 /[ 3(1 +ur )] [1

)
e-'H'+ O(e 4H')], we have

—4Ht/ f3(x+~, )] (2.24)

(3) g
—(2+4/[3(i+co, )]lHt (2.25)

where it is noted that the density in the special solution
decays more rapidly than that (oc e 2H') in the homo-

geneous solution, because of the factor (1 —ApAp/Ap)
in Eq. (2.20). Since e is constant at this stage, the
density contrast is proportional to (3)e„and so the
inhomogeneities including a standard fluid decay with
time. The case when Ap is exactly exponential, i.e.,
Ap ——(2eH')4/[ ( + ')], was treated by Starobinskii [13],
in which the above special solution vanishes and we have
only the homogeneous solution.

The third-order velocity (3)u; is derived using Eq. (2.3),
where the third-order components of ie~ consist of terms
R~ and Rh~ Because of the identity R~. . = R~, the

7

left-hand side of Eq. (2.3) vanishes, so that we obtain
( )u(, ). ——Q. It should be noted that (2"+1)u(,

) do not
vanish for n ) 1 in general, if lp, g 0. A numerical
example of time evolution of ( ) e, /e is shown in Fig. 1.

For higher-order terms, additional separate equations,
dependent only on time, are derived similarly. %e re-
fer the reader to the Appendix in Comer et al. [10]
for the details of the calculation. It is found that
the (2n + l)th metric components are in proportion

+ ~ ~/f ~ +~ ~~ or p ~~~/f ~~+~ ~~ for Hg (( or
Ht )& 1, respectively. In the intermediate case Ht 1,
the analysis is rather complicated.

From the above two cases, we can conclude that the in-
homogeneities can grow at an early stage such as Ht & 1,
the growth is prevented gradually at Ht 1, and de-
cay finally, when the exponential inflation becomes dom-
inant. Accordingly gravitational collapse can occur only
at the stage Ht ( 1. The black holes which appeared at
the stage Ht & 1 can no longer collide due to gravita-
tion at the stage Ht ) 1, consistent with the analysis of
Nakao et al. [12].

III. POWER-LAW INFLATION

Next we consider the case when the in6ationary Quid
has the equation of state —1 & lp, & —1/3 (or 0 & I'; &
2/3), and assnlne that both Suids are adiabatic, because
we know no realistic interactions between them. Then
the energy densities are

( ) X—3(1+m, )/2 / ) X—3(1+m, )/2
pKX

(3.1)

which are derived from the relation of conservation, and
from Eqs. (2.9) and (2.10) we obtain an equation for X:

1.2

I I I I

J

I I I I

J

I I I I

J
I I I I

J
I I I !

(X/X) = 43(e, + e;). (3.2)

The solution is expressed in the two limits as

X [(-e,p)'/ (1+is,)t] /[ ('+ ')] for X « X, (3.3)

X [(-e. ) (1+is )t] [ + ' for X )) X (3.4)

where X, = (e;p/e, p) /[ ( ' ')] and we neglect the time
delay being an integration function. The Universe has the
power-law in6ation for large X. The Grst-order metric is

~ ~P;. = Mph;, (3.5)

where Ap(t) = X(x = 0) and A.p, ——X,(x = 0) for a
representative point x = 0.

For the third-order metric (2.15), the Einstein equa-
tions lead to

(1+3',)be, + (1+31u;)be, = R! g2+ g2 l) (3.6)
Ap.
Ap )'

I I ! I J ! I I I 1 l I I I J I I I I J I I I I

0 .5 1 1.5 2
Ht

FIG. l. Behavior of e/e in the ease w, = 0 and
e/e oc t / for Ht « 1. The ordinate scale is arbitrary.

(1 —lp, )be, + (1 —lp;) he;

(.=&
i
g2- f2

l

'+-(g2--~~» ('»
2 )Ap 3
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f2+ — f2+ 2Ap = 0.3 Ao

2 Ao
(3.8) (1/2) 2P,' + (v ~~,') = p[l u'u~ + b,'(1 —I,/2)]

The last equation is the saxne as the first one in
Eq. (2.i6).

Here we ass»me for simplicity that the perturbations of
the in6ationary Buid are negligibly small and tend to de-

cay, because of their decaying property which was shown

by Comer et al. [12] in the single Suid case. Then we
can neglect )be;) and )bu(;&. [, comparing with )be, (

and

~bu(, &.[. From two equations (3.6) and (3.7) we obtain

+(8;$8*/+ Vbf), (4.3)

where V(P) is the potential for P.
In the first-order of the long-wavelength iteration

scheme, one ignores P', u'u~ and 8;$8'P in Eqs. (4.1)—
(4.3). The quasi-isotropic solution of the traceless part
of Eq. (4.3) then is p;~ = A(t)h, ~, where A = p~~s and
where the integration "constants" h;~ (2:) can be seen as a
"seed" metric. Equation (4.1) and the trace of Eq. (4.3)
then yield

g2+ ~~(1+ur, ) g2+ 2(1+3m, )Ap' =0,
0

(3.9) 2H+ j' = -rp, (4.4)

y oc oc be /e oc t'~'+' &~~'&'+ (3.10)

which is equal to the second one in Eq. (2.16)~ Their
solutions are therefore expressed as in Eqs. (2.17) and
(2.18). When we put H—:(1+ w, )[4e,(0)] ~ [e,(0)/
e;(0)]l +~'&~~ &~* ~'&~, their behaviors of main special
components are as follows.

(a) For Ap « Ap, or Ht « 1,

3H —(zP +V) = p, (4 5)

where H =— (1/2)A/A. Assuming that the scalar Beld
and the Suid do not interact, that is, that their stress-
energy tensors are separately conserved, we obtain the
additional equation

All of them (f2, g2 and be, /e) grow with time.
(b) For Ap » Ap, or Ht » 1,

p+-I'p —=0 or p= pA
A SF/2
A

(4.6)

f2 oc g2 oc be. /e oc t'&'+'~'&~~'&'+ '&j (3.11)

IV. STANDARD FLUID PLUS A SCALAR FIELD

So far we have considered the case when inBationary
matter is a Suid. Next let us treat a case when it is a
scalar field O'. Then the Einstein equations in the syn-
chronous gauge (2.1)—(2.4) are replaced by

,'Ic,;: +,'~? Ic; = p(i ——3r/2—ru, u") + (-j' + V),

(4.i)

(1/2)(m~. ; —H. ) = pi'u, (1+ugu") ~ —$8;P, (4.2)

All of them f2, gs and be e() decay with time. Though
be~/e~(oc t + ~ &~~ & +~' ~) increases with time, this
does not mean any physical growth. The third-order ve-
locities &s&u; vanish in the same way as in the preceding
section, and the behavior of & &e, /e = be/e is also similar
to that in Fig. 1~

The (2n+ 1)th higher-order terms are found to be in
proportion to t2~( + toi)/I ( +~ )] or t ~( +3~s)/[3(~+~')l

for IIt && 1 or &) 1, respectively, due to the iterative
derivation of higher-order terms. This means that the
behaviors of third-order terms in the expansion are com-
mon with the full nonlinear behaviors, as long as the
expansion analysis is valid. As for gravitational collapse
and the collision of black holes the situation is similar to
the case m; = —1.

where p(z) is an integration "constant. " The conserva-
tion of T„„(P)yields the Klein-Gordon equation which
is redundant, being a consequence of (4.4)—(4.6) through
the Bianchi identities.

A detailed analysis of the evolution of A(t), P(t) and
p(t) requires a numerical integration of Eqs. (4.4)—(4.6) ~

The qualitative behavior of the solution however is easily
obtained. Indeed the scalar Beld [for, say, V oc qP] be-
haves first like a stiff Suid (I"+ = 2) near the big bang,
then like a cosmological constant (I"' = 0) during the
infiationary period, and then Bnally like dust (I" = 1)
at the end of infiation (see, e.g., Refs. [14,15]). Its energy
density therefore evolves in the form (4.6) with an index
I"~ = 2, 0 or 1, depending on the period considered. The
energy of the standard Suid, on the other hand, is given
by Eq. (4.6) with a fixed index 2/3 & I' & 2. Therefore
we can have the following scenario for the evolution of the
scale factor: first the scalar field dominates (I ' = 2) and
A(t) oc tm~s; then the standard Suid (2/3 & I' & 2) dom-
inates, so that A(t) oc t4~sr; then comes the inflationary
stage (I"+ = 0) and A(t) oc e~~; Bnally, at the end of
in6ation, either the scalar field dominates A t oc t4/3

or the perfect Suid dominates [A(t) oc t ~ ], depending
on whether or not I' ( 1.

Let us now look at the third-order solution of Ein-
stein's equations (4.1)—(4.3) (flrst iteration). The metric,
the Quid density, its three-velocity, and the scalar field are
of the form p;~ = A(t) [h;~ + a2(t)Rh;~ + b2(t)R;~], p =
pp(t)+ p2(t)R, u; = us(t)V~R, and P = Pp(t)+$2(t)R,
where A(t), pp(t), gp(t) are the solutions of equations
(4.4)—(4.6) previously described, where R;~ is the Ricci
tensor of the seed metric hz, V the corresponding co-
variant derivative, and where 2, b2a, us, and $2 satisfy
the differential equations (see Ref. [10] for details):
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bz + 3Hb, + 2/A = 0, (4.7)

az + H(6az + bz) = pz (2 —I') + 2$2Vo, (4.S)

—,'bs+ az = pol'us —4o42, (4.10)

3a2 + b2 + 2H(3az + bz) = pz(2 —31 )

+2(—2P,P, + y, v,'), (4.9)

perfect Buid, we can extend the results of the preceding
section to infer, qualitatively, what happens. The effec-
tive adiabatic index will evolve from 2 (stiff fluid), to I",
(standard fluid), then to I', (inflationary matter), and
finally to 1 or I', (standard fluid again). The inhomo-
geneities will therefore grow according to Eq. (3.10) be-
fore the inBationary stage, then will be wiped out during
inflation following Eq. (3.11), and finally will grow again
according to Eq. (3.10) after inflation. The inclusion of
higher-order terms will not change the conclusion, which
thus extends the cosmic no hair theorem to the nonlinear
regime.

~. +3H~. + —,(3'. + b.)4o+ ~.Vo" = 0, (4.11)

where V' = dV/dP, V" = dzV/diaz. Equations (4.7) and
(4.8) come from the traceless and trace parts of Eq. (4.3),
Eqs. (4.9) and (4.10) come from Eqs. (4.1) and (4.2),
respectively, and Eq. (4.11) is the third-order part of the
Klein-Gordon equation for P.

A detailed analysis of the evolution of this inhomo-
geneous approximate solution of Einstein's equations re-
quires a numerical integration of Eqs. (4.7)—(4.11). How-
ever, since in the first-order the scalar field behaves like a

V. COMPARISON WITH GAUGE-INVARIANT
LINEARIZED PERTURBATIONS

If the inhomogeneities are regarded as small perturba-
tions to the Friedmann universe, they can be analyzed
as the linear perturbations. According to the gauge-
invariant linearized perturbation theory [2], the density
contrast for the total density, b, (= b„+b„) is described
by the second-order differential equation

6, +2(a/a) 1+ s2i e——q b. + dq)——
2 (a/a) 1 + 2q —3q —6e— b, = 0,

.&) ' de)
(5 1)

where a is the scale factor, z » 1 and —1 ( io, ( —1/3, we obtain

~s&s + uii&i coo + uiizq:—p e=
e, +e; 1+@ (5 2)

z = e,/e„and n is the wave number.
From the definition we have

e—= (m, —m;)zz/([1+ m, + (1+ui, )z](l+ z)). (5.3)
E

For z &( 1, Eq. (5.1) for b, ( b„) reduces to the equa-
tion for the density contrast b„ in a standard fluid and
gives a growing solution as one of two independent solu-
tions, when we exclude the term with (n/a)z, which can
be neglected in our superhorizon situation. The density
contrast in this growing solution is equal to be ~ /e [Eqs.
(2.23) and (3.10)] in case (a) in Secs. II and III.

For z » 1, we obtain, in the case m, = —1,

b, + (S+3'.)H[1+ O(l/z)]E

+3(5+3~.)H'[1+ O(1/z)]a = 0 (5.4)

with a oc e+i and H—:2H/[3(l+ tu, )], and the solutions
are

2 1+2m —3m
[1+O(1/*)]b, = 0, (5.6)

and their solutions are

/ —g2(~+3~*)/I3(~+~')1 g
—(~—~')/(a+~, )

The Grst solution is consistent with a special solution
[Eq. (3.11)) in case (b), Sec. III.

Thus there is a consistency between special solutions
for the third-order inhomogeneities and those for the
gauge-invariant density perturbations. This can be ex-
plained as coming kom the consistency of their delni-
tions in the sense that the comoving condition is com-
monly used in both of them (cf. ~sou; = 0 described
earlier). Of course all their solutions are not equivalent
because of the use of the synchronous coordinate condi-
tion in the former treatment.

—(2+4/[3(1+~, )])Ht —2Ht/(1+ms) (5 5) VI. CONCLUSION AND DISCUSSIONS

The 6rst solution of these two is equal to a special solu-
tion [Eq. (2.25)] in case (b), Sec. II. In the same way, for

After the Universe starts with general anisotropic and
inhomogeneous states, it gradually approaches the quasi-



50 NONLINEAR BEHAVIORS OF COSMOLOGICAL. . . 7221

isotropic state through an in8ationary stage and on the
one hand the local inhomogeneities evolve further dynam-
ically further, depending on the equations of state in con-
stituent matter. In this paper ere studied the behaviors of
inhomogeneities consisting of a standard Huid and iaBa-
tionary matter in the anti-Newtonian or long-wavelength
approximation, and showed that the local dominance of
the standard Suid causes their growth, but 6nally they al-
ways decay during the stage when the inflationary matter
is dominant. However, the spatial curvature P associated
with the metric h;z remains spatially irregular. After the
inflation and reheating, the inhomogeneities are caused,
and they grow again due to local spatial curvature.

In Sec. III we derive the velocity components by use
of Eq. (2.3), ass»ming that the perturbations in the in-
aationary Huid are negligibly small compared with those
in the standard fluid. In general, however, we must use
not only Eq. (2.3) but also the energy-momentum con-
servation law' T"" = V" to determine each velocity("-),- = ("-)

component, where VP) is the term due to the energy-

moment»~ transfer satisfying VP) + V&",.
&

——0 and we

have V&,)
——V(",.)

——0 for the adiabatic state.
As long as the inhomogeneities satisfy our present ap-

proximation, this conclusion is general and has the at-
tractor property, because of the generality of the initial
condition. The n»mber of arbitrary functions of spatial
variables was examined by Comer et al. [10].

Finally, we emphasize superior points of the theories
in the anti-Newtonian or long-wavelength approximation,
by noting that they can treat the nonlinear perturbations
to arbitrary orders, in contrast with the linear perturba-
tion theory, and that their applications to various physi-
cal problems have been exploited also by employing the
Hamilton-Jacobi method begi»ning with an action prin-
ciple [8].
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