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Back reaction of strings in self-consistent string cosmology
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We compute the string energy-momentum tensor and derive the string equation of state from
exact string dynamics in cosmological spacetimes (1. + 1)-, (2 + 1)-, and D-dimensional universes
are treated for any expansion factor R. Strings obey the perfect fiuid relation p = (p —1)p with
three difFerent types of behavior: (i) unstable for R -+ oo with growing energy density p R
negative pressure, and 7 = (D —2)/(D —1); (ii) dual for R ~ 0, with p R, positive pressure
and p = D/(D —1) (as radiation); (iii) stable for R ~ oo with p R, vanishing pressure
and p = 1 (as cold matter). We find the back reaction efFect of these strings on the spacetime
and we take into account the quantum string decay through string splitting. This is achieved by
considering self-consistently the strings as matter sources for the Einstein equations, as well as
for the complete effective string equations. String splitting exponentially suppresses the density
of unstable strings for large R. The self-consistent solution to the Einstein equations for string-
dominated universes exhibits the realistic matter-dominated behavior R (X ) l '~ for large
times and the radiation-dominated behavior R (X ) ~ for early times Ad. e Sitter universe
does not emerge as a solution of the efFective string equations. The etfective string action (whatever
the dilaton, its potential, and the central charge term) is not the appropriate framework in which
to address the question of string-driven in6ation.

PACS number(s): 98.80.Cq, 11.27.+d

I. INTRODUCTION AND RESULTS

Recently, interesting progress in the understanding of
string propagation in cosmological spacetimes has been
made [1—10]. The classical string equations of motion
plus the string constraints were shown to be exactly in-
tegrable in D-dimensional de Sitter spacetime, and equiv-
alent to a Toda-type model with a potential unbounded
&om below. In 2+1 dimensions, the string dynamics in de
Sitter spacetime is exactly described by the sinh-Gordon
equation.

Exact string solutions were systematically found by
soliton methods using the linear system associated to the
problem (the so-called dressing method in soliton the-

ory) [2,3]. In addition, exact circular string solutions
were found in terms of elliptic functions [4]. All these
solutions describe one string, several strings or even an
infinite number of difFerent and independent strings. A
single world sheet simultaneously describes many difer-
ent strings. This is a new feature appearing as a conse-
quence of the interaction of the strings with the space-
time geometry. Here, interaction among the strings (such
as splitting and merging) is neglected; the only interac-
tion is with the curved background. Diferent types of
behavior appear in the multistring solutions. For some
of them the energy and proper size are bounded ("sta-
ble strings"), while for many others the energy and size
blow up for large radius of the universe (R -+ oo ) ("un-
stable strings"). In addition, such stable and unstable

ds = (dX ) —R(X ) ) (dX'),

the string energy-momentum tensor T& (X) (A, B
1, . . . , D) for our string solutions takes the Quid farm, al-
lowing us to de6ne the string pressure p through —b; p =
T;" and the string energy density as p = To. The conti-
nuity equation D T& ——0 takes then the form

p+ (D —1) H(p+ p) = 0, (1.2)

string behaviors is exhibited by the ring solutions found
in Ref. [6] for Friedmann-Robertson-Walker (FR&) uni-
verses and for power-type inQationary backgrounds. In
all these works, strings were considered as test objects
propagating on the given fixed backgrounds.

In the present paper we go further in the investigation
of the physical properties of the string solutions above
mentioned We compute the energy-momentum tensor
of these strings and we use it to 6nd the back reaction
effect on the spacetime. That is, we investigate whether
these classical strings can sustain the corresponding cos-
mological background. This is achieved by considering
self-consistently the strings as matter sources for the Ein-
stein (general relativity) equations (without the dilaton
field), as well as for the string effective equations (P func-
tions) including the dilaton, the dilaton potential, and
the central charge term.

In spatially homogeneous and isotropic universes,
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where H = &x, . We consider (D = 1+1)-, (D = 2+1)-,
and generic D-dimensional »~iverses.

In 1+ 1 cosmological spacetimes we find the general
solution of the string equations of motion and constraints
for an arbitrary expansion factor R . It consists of
two families: one depends on two arbitrary functions
f~(o + 7) and has a constant energy density p and neg-
ative pressure p = —p. That is, a perfect Quid relation
holds:

(1 3)

with p = 0 in D = 1+ 1 dimensions. The other fam-
ily of solutions depends on two arbitrary constants and
describes a massless point particle (the string center of
mass). This second solution has p = p = uR z ) 0 .
This is a perfect-fiuid-type relation with p = 2. These
types of behaviors satisfy the continuity equation (1.2)
inD=2.

In 2+ 1 dimensions and for aay factor R, we find that
circular strings exhibit three dHFerent types of asymptotic
behaviors:

(i) Unstable behavior for R ~ oo (this corresponds to
conformal time g ~ m ro with finite wo and proper
string size 8 R ~ oo), for which the string energyE„R~ oo and the string pressure p„E„/2 m-
—oo is negative.

(ii) Dual to unstable behavior for R ~ 0. This cor-
responds to g (T —Tp)

i -+ +oo for finite 7 ~ ~o,
8 R ~ 0 (except for de Sitter spacetime where
S -+ 1/H ), for which the string energy Eg 1/R ~ oo
and the string pressure pq E/2 -+ +oo is positive.

(iii) Stable for R ~ oo, (corresponding to g -+ oo, 7 -+
oo, S = const), for which the string energy is E, = const
and the string pressure vanishes p, = 0.

Here the indices (u, d, s) stand for unstable, dual, and
stable, respectively. Cases (i) and (ii) are related by the
duality transformation R e+ 1/R, case (ii) being invari-
ant under duality. In the three cases, we find perfect fiuid
relations (1.3) with the values of p:

p„= 1/2, kg=3/2, p, =1. (1.4)

For a perfect gas of strings on a comoving volume R, the
energy density p is proportional to E/R2, which yields
the scaling p„= uR, pg

——dR 3, p, = sR . All
densities and pressures obey the continuity equation (1.2)
as it must be.

The 1 + 1 and 2 + 1 string solutions here described
exist in any spacetime dimension. Embedded in D-
dimensional universes, the 1 + 1 and 2 + 1 solutions
describe straight strings and circular strings, respec-
tively. In D-dimensional spacetime, strings may spread
in D —1 spatial dimensions. Their treatment has been
done asymptotically in Ref. [9]. We have three general
types of asymptotic behavior:

(i) unstable for R m oo with p„= uR2 ~, p„=
—p„/(D —1) & 0;

(ii) dual to unstable for R -+ 0 with p~ = d R ~, pg =
p~/(D —1) ) 0;

(iii) stable for R -+ oo, with p, = s Ri D, p, = 0.

We find perfect Huid relations with the factors

D —2 D
D —1 D —1

1 (d i 1

R (1 6)

is qualitatively correct for all R and becomes exact for
R m 0 and R ~ oo. We stress here that we obtained
the string equation of state &om the exact string evolu-
tion in cosmological spacetimes. Inserting the equation
of state (1.6) in the Einstein-Friedmann equations of gen-
eral relativity, we obtain a self-consistent solution for R
as a monotonically increasing function of the cosmic time
Xo [Eq. (3.7)]. This string-dominated universe starts at

x'~oXo = 0 with a radiation-dominated regixne R(X )
CD (Xo)~, then the universe expands for large Xo as

X -+
R(Xo) C& (X ) ~-&, which is faster than (cold)
matter-dominated universes [where R (Xo) &-&]. For
example, at D = 4, R grows linearly with X, while for
matter-dominated universes R (Xo) ~ .

The unstable string solutions are so named since their
energy and invariant length grow as R for large R. How-
ever, it must be clear that as cla8sical string solutions
they never decay. At the quantum level strings decay
through splitting and we take these processes into ac-
count. Unstable strings split with a probability propor-
tional to R as R increases. Long striags often split into
massless strings (radiation) and a long piece [20]; that
is, into a dual string with energy 1/R and a long
string with energy R for large R. Now u and d in
Eqs. (1.6) become functions of the time X which we
find in Eqs. (3.12). String decay changes drastically the
large R behavior since the unstable string density u(Xo)
decreases exponentially. Taking into account string de-
cay, our self-consistent solution R(X ) yields the realistic

Xmatter behavior R(Xo) ~™(Xo) ~-&. Through quan-
t»m string splitting, the»~~table strings do not dom-
inate anymore for large R. The steMe strings (which
behave as cold matter) are those surviving for R m oo.
The "dual" strings are not significantly affected by string

This reproduces the two-dimensional and three-
dimensional results for D = 2 and D = 3, respectively.
The stable regime is absent for D = 2 due to the lack of
striag transverse modes there.

The dual strings behave as radiation (massless parti-
cles) and the stable strings are similar to cold tnatter
The unstable strings correspond to the critical case of
the so called coasting urw ver's'e [11,22]. That is, classical
strings provide a concrete realization of such cosmolog-
ical models. The "unstable" behavior is called "string
stretching" in the cosmic string literature [12,13].

Strings continuously evolve from one type of behavior
to another, as is explicitly shown by our solutions [14].
For intermediate values of R, the striag equation of state
is clearly more complicated but a formula of the type

d
p=

~

uRy —ys
~R y
RD-''
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TABLE L String energy and pressure as obtained from exact string solutions for various expansion factors R(X ).
Equation of state:

D = 1 + 1: two families
of solutions

Energy Pressure

S = (~ —1)p

{i) il+ X = f~(o 6 r)
(ii) il 6 X = const

D = 2+ 1: Ring solutions,

three asymptotic types of
behaviors (u, d, s)

E = —.', Xo(r) R(~)2
~ 'lx ()I[

(i) unstable for R ~ oo

(ii) dual to (i) for R ~ 0
(iii) stable for R ~ oo
D-dimensional spacetimes:
general asymptotic behavior

(i) unstable for R M oo

(ii) dual to (i) for R -+ 0
(iii) stable for R + oo

R-+ooE„uRmoo
Eg d/R m oo
E, = const

R-+ooE„uRmoo
Eg d/R + oo
E, = const

P = —E/2 m —oo

Pg =+E/2 -+ oo
P. =O

P =+ ~-, ~oo
P. =0

= 1/2

pg = 3/2
p, =l

q. = (D —2)/(D —1)

pg = D/(D —1)
p, =l

X'~0 0 2
decay and give again R(X ) CLi (Xo) &, the ra-
diation type behavior. For intermediate R, the three
types of string behaviors (unstable, dual, and stable) are
present. Their cosmological implications as well as those
associated with string decay deserve investigation. For a
thermodynamical gas of strings the temperature T as a
function of R, scales as 1/R for small R (the usual radi-
ation behavior). Without string decay, T grows as R for
large R [Eq. (8.21)]. This strange behavior disappears
when string splitting is taken into account as shown by
Eq. (3.22).

For the sake of completeness we analyze the effective
string equations. These equations have been extensively
treated in the literature [21] and they are not our central
aim.

It must be noted that there is no satisfactory derivation
of inaation in the context of the effective string equations.
This does not mean that string theory is not compatible
with infiation, but that the efFective string action ap-
proach is not enough to describe infiation. The effective
string equations are a low energy field theory approxima-
tion to string theory containing only the massless string
modes. The vacuum energy scales to start in6ation are
typically of the order of the Planck mass where the effec-
tive string action approximation breaks down. One must
also consider the massive string modes (which are absent
from the effective string action) in order to properly get

the cosmological condensate yielding inBation. de Sitter
infiation does not emerge as a solution of the effective
string equations.

We find that a de Sitter spacetime with Lorentzian sig-
nature self-sustained by the strings necessarily requires
a constant imaginary part hier in the dilaton field 4,
telling us that the gravitational constant G e ( 0,
here describes antigravity [see Eqs. (4.21)]. In the Eu-
clidean signature case (+ + + +), we find a constant
curvature solution self-sustained by the strings with a
real dilaton and G e+ & 0, but of anti —de Sitter type.
Both self-consistent solutions, de Sitter and anti —de Sit-
ter are mapped one into another by the transformation
(4.22).

The outline of this paper is as follows. Section II
deals with the string propagation and the string energy-
momentum tensor in cosmological spacetimes. [In Secs.
IIA, IIB, and IIC we treat the (1+ 1)-, (2+ 1)- and
D-dimensional cases, respectively, and derive the cor-
responding string equations of state. ] In Sec. III we

treat self-consistent string cosmology including the string
equations of state and the quantum string decay. [Section
III A deals with general relativity, III8 with the quantum
string decay, and IIIC with the efFective (P functions)
string equations. ]

The main results of this paper are displayed in Tables
I—IV.

TABLE II. The string energy density and pressure for a gas of strings can be summarized by
these formulas, which become exact for B~ Q and for R + oo.

Qualitatively correct
formulas for all R and D

Energy density: p = E/R

p = (u R + -' + s) „',
Pressure

(ii "R) Ro-
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TABLE III. The self-consistent cosmological solution of the Einstein equations in general rela-
tivity arith the string gas as source.

Einstein equations
(no dilaton field)

X'~O

Expansion factor
R(X )

D 2d ~ pxoy ~~

2 (D-1)(D—2)

Temperature
T(R)

s(D—1&
1/R

x' -+ oo

(without string decay)

(D 2)u-o 1
(Xo) o~ 02(n-1)

H

(D-2)u
(D—1)8

X' -+ oo

(with string splitting)

1
(D-1)s o 1

(Xo) 01 1
2(D-2) Usual matter-

dominated behavior

II. STRING PROPAGATION IN
COSMOLOC ICAL SPACETIMES

ds = (dX ) —R(X ) ) (dX') (2.1)

In this section we obtain physical string properties
from the exact string solutions in cosmological space-
times.

We consider strings in spatially homogeneous and
isotropic universes with the metric

D-1

v —GT (X)= dods X X —X' X'
2+a' )
x 6( (X —X(o,r)) (2.8)

where the overdot and prime stand for B/B~ and B/Bo,
respectively.

As we will see below, T (X) takes the auid form for
string solutions, allowing us to define the string pressure

p and energy density p:

dXo

R(Xo) '

the metric (2.1) takes the form

D-1

(2.2)

where Xo is the cosmic time. In terms of the conformal
time

( p 0
0 —p . . .

~ ~ ~ ~ ~ ~ ~ ~ ~

o o".
0)
0
0

-p)
Notice that the continuity equation

D T~ ——0

here takes the form

(2.7)

dss = R(ri) (drl) —).(dX') (2.3)

The classical string equations of motion can be written
here as

p+ (D —1)H (p + p) = 0 (2.8)

where H:—1 dR

For an equation of state of the type of a perfect fluid,
that is,

B„RsB"X' = 0

and the constraints are

S &i&D —C,

D—1

B X —R(X ) +, ) (BX') =0, (2.4)

~y(1—D) (2.10)

p=(p —1) p, p= const, (2.9)

Eqs. (2.8) and (2.9) can be easily integrated with the
result

Tgg = (Byx ) —R(X ) (Bgx') = 0. (2.5)

The spacetime string energy-momentum tensor is given

For p = 1 this corresponds to cold matter (p = 0) and
for p = & 1 this describes radiation with p = &

TABLE IV. Asymptotic solution of the string efFective
equations (including the dilaton).

A. (1+1)-dimensional universes

EfFective string
equations

X -+0

R(X ) mO
behavior

(Xo)+1/QD1-R(X ) +oo-
behavior

(Xo)—1/QD 1—Let us start by considering strings in this simpler case.
Here D = 2 and the metric (2.1) takes the form

d" = (dx')' —R(x')' (dx)'.

It js convenient to start by solving the constraints (2.5):
X ~Do (Xo) 1/QD 1--(Xo)+1/QD1-

(Bpxo)2 = R(X ) (Bgx) (2.11)
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They reduce to

|9yX = cg R(X ) 8~X. (2.12)

where C~ is a constant. Then, the string equations of
motion (2.4) become

where &2+ ——1. Using the conformal tiine (2.2), Eq. (2.12)
yields

(9~()7 —e~X) = 0.

0„[R(Ir) 8"rI' = 0. (2.17)

Using Eq. (2.16), we find that the energy-momentum ten-
sor (2.6) is traceless for this string solution:

We find a 6rst family of solutions choosing e~ ——+1.
Then Let us call

TOO T11 that is, p = p. (2.18)

ri+ X = p(cr + ~), rl —X = y(o —7.), (2.13)

o. + 7. m f(o + 7.), cr —7- m g(cr —~)

where c)I) and g are arbitrary functions of one variable. It
is easy now to check that Eq. (2.13) satisfies the string
equations of motion (2.4).

The solution (2.13) is analyzed in detail for de Sitter
spacetime [R(X ) = e x

] in Ref. [1], where the global
topology of the space is taken into account.

Since one can always perform conformal transforma-
tions

V(q) = f B'(z)dh

Then, Eq. (2.17) implies that

( (9' (9' l
i

V(vy) = 0.
(BT c))cr

The general solution g = rI(cr, 7) is implicitly defined by

R (z)dz = A(o —7.) + B(o + r),

with arbitrary functions f and g, the solution (2.13) has
no degrees of freedom other than topological ones.

Let us compute the energy momentum tensor for the
string solution (2.13). We find, from Eqs. (2.6) and
(2.13),

where A(z) and B(z) are arbitrary functions. Upon a
conformal transformation, without loss of generality we
can set

A. (cr —7 ) + B(o + ~)

V' —G T (X)=,J d~dr
~
g —g' ) 6(q —g(~, v))

Hence, g is in general a function solely of 7. with

x b (X —X(cr, 7))
1

2mo. ' J (2.14)

R2(z)dz or

The energy-momentum tensor (2.6) takes, for this solu-
tion, the form

where J =
&I

'"I is the Jacobian. From Eq. (2.13) we

find J = —y'P' and rl2 —ri' = —y'P'. Then, T~ ——
, b(rI yX —Cy) ~

(1 0)

i))'—G T o(X) = 1
2m''

We analogously find X2 —X' = —g' gV. Then

g—C T"(X)= — „T"(X)= O.

That implies

1 1
J =—,J +P=0.

2m.o, ' '
2mo, ' ' (2.15)

p=-p (~ =0) or J =+p (~=2)

The respectives energy densities being

The h'(rI p X —C~) characterizes a localized object prop-
agating on the characteristics at the speed of light. This
solution describes a massless point particle since it has
been possible to gauge out the cr dependence.

In summary, the two-dimensional string solutions in
cosmological spacetimes generically obey perfect Quid

equations of state with either

%e 6nd a constant energy density and a constant neg-
ative pressure. They exactly satisfy the continuity equa-
tion (2.8). These results hold for arbitrary cosmological
spacetimes in 1 + 1 dimensions. That is, for arbitrary
factors R(Xo). In particular they are valid for strings
wound n times around the de Sitter universe [1].

A second family of string solutions follows from
Eq. (2.11) by choosing

p = p„(p„=const) for p = 0

or (2.20)

tL

p = (u = const) for p = 2.B2

These types of behavior satisfy the continuity equation
(2.8) for D = 2.(2.16)
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B. (2+1)-dimensional universes

In 2 + 1 dimensions, a large class of exact solutions
describing one string and multistrings has been found in
de Sitter universe [2—5]. For powerlike expansion factors
R(rl) = &Il", (k j—2) only ring solutions are known

[6]. (k = —2 corresponds to de Sitter spacetime. ) Ring
solutions correspond to the ansatz [6]

P - ——+ + O(1/R) -+ —oo
a~~

2 2n'H (2.23)

(here K stands for the Hubble constant). The invariant
string size grows as R/H in this llllstable regime. Notice
that the pressure is negative for the unstable strings and
proportional to the expansion factor R. In this regime
@re also see that

X =X (T),
X = f(T) cos(T,

X = f(r) sinIr.

(2.21)

with E =,& [R(r) + 1]. The regime dual to the unsta-
ble regime appears when the conformal time q tends to
infinity. For the solution q (o, T) of Ref. [2] in de Sitter
universe, g diverges for finite v -+ wp as

The total energy of one string is then given by (recall
gpp T 7Q

+ O(1) -++~.

1 dX'
E(X') = f d -'X4-G T-(X) = —'

a' dv

More generally, the energy-momentum tensor integrated
on a vollllI)e that completely encloses the string, takes
the form [10]

Here

Then,

wp 1
tanh =, rp ——1.246450. ..

2 2'

0" (X) = IITdT) X"X —X'"X'
)2xo, '

xh(x —X (7.))
1

2&n'IX'(T)
I

2'
x dET X X —X'X'

p T=T(XP)

For multistring solutions, one must sam over the diHerent
roots r; of the equation Xp = XP(r), for a given XP.

We find, for the ring ansatz Eq. (2.22),

e"(x) = E(x'),
1

2n'IX0(7-)
Ie"(x) = e"(x) = e"(x) = o .

e"(x) = e"(x)=

That is,

where

pB
(E o 0)

0 —P 0
0 0 P)—

E = —,X (r), P = . [f2 —f2]. (2.22)
1 . 0 R(r)2

2n'IXP(r) I

Let us first consider ring strings in de Sitter universe

[2—4]. There are three different types of asymptotic be-
havior: stable, unstable and its dual. The unstable
regime appears for Il ~ -+ 0. From Eqs. (2.22) and
Ref. [2], we find

1 (1 i 1E() -,
I

—+1I=, [R()+1]~+
~0- 1 R(r)P(r) M —OOq

Hlrl 2nIH

Tp

R(7)
™' (r —rp) W 0+

6
0.5796...

o.'HRE( ) n'H(r —rp)

P(r) ', = E/2 m +oo.
2n'H r —rp

We call this regime dual since it appears related to the
unstable regime (2.23) through the exchange R e+ 1/R.
The invariant string size tends to I in this regime.

In the stable regime, r -+ oo (and the cosmic time
XP & ~ oo), from Eq. (2.22) and Ref. [2], we find

T—+Tp 2
q - r —rp + O(r —rp)

f(r) ' 1 — for k ) 0 and k ( —1TWTp & 7Q

2(k+ 1)

For stable strings in a de Sitter universe, the pressure
is positive and vanishes asymptotically, and the invariant
string size tends to ~

The solution q (o, r) in Ref. [2] describes two ring
strings: A stable string for qp + +oo(r -+ oo) (qp being
the hyperboloid timelike coordinate) and an unstable one
for qp -+ —oo(r -+ Tp). The Pressure P dePends OI1 T;
it is negative for qp ( l and positive for qp & E, where
/ = —1.385145... .

It can be noted that the behavior Eq. (2.23) for the
energy can be interpreted as an unstable piece R/(n'H)
plus a stable one 1/(n'H). The constant term 1/(n'H)
is precisely the energy for the stable solution Eq. (2.24).

Let us now study the energy and pressure for the ring
string solutions in FRW and power-type in8ationary uni-
verses considered in [6]. In terms of the conformal time
Il, we have as expansion factor R2(rl) = All".

Near rl = 0, two types of behavior were found [6]. The
first one is a linear behavior
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and

f(r) ' 1+c (r —rp) for —1 & k & 0.

Equations (2.25) describe a collapsing (expanding) string
for k ) 0 (k & 0) with invariant size (7 —rp)"~ . That
is, in standard FRW universes (k & 0), the string size
goes to zero for g (r —rp) m 0 as the universe radius
R (r —rp) "~ ~ 0. In infiationary universes (k ( 0),
the string size grows indefinitely for g (r —rp) ~ 0 as
the universe radius R (r —7p) "~2 -+ +oo. The growing
of the proper string size for g 7 —7p M 0 is a typical
feature of string instability.

Using Eqs. (2.22) and (2.25), the energy and pressure
take the form

g(7) ~ 7
~ ~~+~ 2/(%+2)

2
f(7 ) r "~~"+ l cos(r + p),k+2 (2.30)

where y is a constant phase and the oscillation amplitude
has been normalized. For large ~, the energy and pressure
of the solution (2.30) behave as

Notice that the pressure is here positive. This second
behavior is related by duality (R ~ 1/R) to the first
behavior described by Eqs. (2.26)—(2.27).

For large ~, the ring strings exhibit a stable behavior
[6]:

P(r) - ' — (7. —rp)" ' = —R/(2a').
20.'

That yields

P = ' —E/2.

(2.26)

(2.27)

P( )

2vA
a'(k + 2)

cos(2r + 2&p) ~ 0.a' k+2 (2.31)

p)
& 1/{Ie+1)

f( ) 'f y( )
I(+) (2.28)

where fp must be set equal to zero for —1 & k & 0. The
invariant string size behaves for 7. —+ 7 p as

S(r) ' vA (7' —rp)'&'+'& for k & 0,

S(r) -"vA (r —r, ) &~+ ~

fork�

&O.

This solution describes a string that collapses for k ) 0
and for k ( —2, that is, both for standard FR& and in-
Bationary cosmologies. Here, the expansion factor tends
to zero as

R(r) -"~A(r —7,) ~~+ & ~O

when k ) 0 and when k ( —1.
That is, in this case, for small radius B m 0 of both

standard FR& and in8ationary cosmologies, strings col-
lapse.

From Eq. (2.22) we find that

That is,

A

2(k+ 1)a'R
A

(k+ l)a'R

P ' E/2. (2.29)

Notice that Eq. (2.27) holds both for R ~ oo in powerlike
infiationary universes (k & 0) and for R ~ 0 in standard
FRW universes (k & 0).

Equation (2.27) is also valid in de Sitter universe for
unstable strings [Eq. (2.23)]. In all these cases strings
exhibit negative pressure.

The second behavior present near g = 0 is [6]

This is the analog of the stable behavior (2.24) in de
Sitter universe for r ~ oo. Notice that Eqs. (2.31) hold
both for standard FRW (k ) 0) and infiationary space-
times (k ( 0).

For powerlike inQationary universes with k & —1 a
special exact ring solution exists [6] with

vg
= C exp! —k —1)

C (
!f(7)= .exp!g—k (g—k —1) (2.32)

where C is an arbitrary constant. For k = —2 (de Sitter
universe) this is the solution q(Pl(a', r) in Ref. [2] which
has constant string size.

For this solution we 6nd

1 A r(k+ 2)
exp—k —1

(1 1)P= —
!

—+ —
! E,

(2 k)
where E is a constant.

This is a Huidlike equation of state with p =
2

—&.
Notice that 2 ( p ( 2. For this solution, the energy
grows with R as R to a power 1+2/k where, since k & —1,

2—1 &1+ —(. 1.
k

(E and P of this solution are constants in de Sitter space-
time [k = —2].) This means that these special strings are
subdominant both for R -+ oo and for R —+ 0, where
the unstable strings (E R) and their dual (E R )
dominate, respectively.

In summary, three asymptotic behaviors are exhibited
by ring solutions.

(i) Unstable for R + oo: E = (const) R -+ +oo, P =
E/2 m —oo, S = R m oo. —
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C. D-dimensional universes

The solutions investigated in Secs. IIA and IIB can
exist for any dimensionality of the spacetime. Embedded
in D-dimensional universes, the 1 + 1 solutions of Sec.
IIA describe straight strings, the 2+ 1 solutions of Sec.
IIB are circular rings. In D-dimensional spacetime, one
expects string solutions spread in D —1 spatial dimen-
sions. Their treatment has been done asymptotically in
Ref. [9]. One finds, for g 7 —70 M 0, R M oo,

1 D —2P„=— p„, p„= for unstable strings.
D —1"' " D —1

(2.34)

This relation coincides with Eq. (2.15) for D = 2 and
with Eqs. (2.23) and (2.27) for D = 3.

The energy density scales with R as

p„=uB, B-+ oo (2.35)

(where u is a constant) in accordance with Eq. (2.20) for
D = 2 and with Eq. (2.33) for D = 3.

For the dual regime, B ~ 0, we have

1 D
d —+D 1 Pdy Pd—

with pg = d R, R m 0 (2.36)

(where d is a constant). Equation (2.36) reduces to
Eq. (2.18) for D = 2 and to Eqs. (2.24) and (2.29) for
D = 3. In this dual regime strings have the same equa-

(ii) Dual to nonstable for R ~ 0:E = (const) R i -+
+oo, P = +E/2 -+ +oo, S R -+ 0 (except for de Sitter
where 8 -+ ~).

(iii) Stable for R ~ oo: E = const, P = 0, S =
const.

In addition we have the special behavior (2.33) for k (
—1. Notice that the three cases (i)—(iii) appear for all
expansion factors R(q). The cases (i) and (ii) are related
by the duality transformation R ~ 1/R, the case (iii)
being invariant under duality. In the three cases we find
perfect Huid equations [see Eq. (2.9)] with difFerent p:

p„=1/2, kg=3/2, p, =1,
where the indices u, d, and s stand for unstable, dual, and
stable, respectively. Assuming a perfect gas of strings on
a volume B2, the energy density p will be proportional
to E/R2. This yields the following scaling with the ex-
pansion factor using the energies from (i)—(iii):

p„= const B, pd ——const B, p, = const R

(2.33)

All three densities and pressures obey the continuity
equation (2.8), as it must be.

The factor 1/2 in the relation between P and E for
cases (i) and (ii) is purely geometric. Notice that this
factor was 1 in 1+ 1 dimensions [Eq. (2.19)].

tion of state as massless radiation.
Finally, for the stable regime we have

P, =O, p, =1 withp, =sB (2.37)

III. SELF-CONSISTENT STRING COSMOLOGY

In the previous section we investigated the propagation
of test strings in cosmological spacetimes. Let us now in-
vestigate how the Einstein equations in general relativity
and the effective equations of string theory (P functions)
can be veri6ed self-consistently with our string solutions
as sources.

We shall assume a gas of classical strings neglecting in-
teractions as string splitting and coalescing. We will look
for cosmological solutions described by metrics of the
type (2.1). It is natural to assume that the background
will have the same symmetry as the sources. That is, we
assume that the string gas is homogeneous, described by
a density energy p = p(XO) and a pressure p = p(X ).
In the effective equations of string theory we consider a
space-independent dilaton 6eld. Antisymmetric tensor
6elds will be ignored.

A. String dominated universes in general relativity
(no dilaton Seld)

The Einstein equations for the geometry (2.1) take the
form

(where s is a constant). This regime is absent in D = 2
and appears for D = 3 solutions in Eqs. (2.24) and (2.31).
The lack of string transverse modes in D = 2 explains the
absence of the stable regime there. The equation of state
for stable strings coincides with the one for cold matter.

In conclusion, an ideal gas of classical strings in cosmo-
logical universes exhibits three diferent thermodynami-
cal behaviors, all of perfect Buid type.

(1) Unstable strings: negative pressure gas with p„=
D—2
D—z'

(2) Dual behavior: positive pressure gas similar to ra-
diation Q =

(3) Stable strings: positive pressure gas similar to cold
matter, p, = 1.

The unstable string behavior corresponds to the crit-
ical case of the so-called coasting universe [ll], [22]. In
other words, classical strings provide a concrete matter
realization of such cosmological model. Until now, no
form of matter was known to describe coasting imiverses

[»]
Finally, notice that strings continuously evolve from

one type of behavior to the other two. This is explic-
itly seen from the string solutions in Refs. [2—4]. For
example the string described by q (o, r) for r ) 0
shows unstable behavior for 7 -+ 0, dual behavior for
'T M Tp = 1.246450. .., and stable behavior for w -+ oo.

The equation of state for strings in four-dimensional
Hat Minkowski spacetime is discussed in Ref. [17]. One
finds the values 4/3, 2/3, and 1 for p by choosing appro-
priate values of the average string velocity in Chap. 7 of
Ref. [17].
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—(D —1)(D —2) II = p,
1 2=
2

(D —2)H+ p+ p = 0 (3.1)

where H = &&, /R. We know p and p as functions of
R in asymptotic cases. For large R, the unstable strings
dominate [Eq. (2.35)] and we have

p=uR, p= — for R+ oo.
D —1

(3.2)

For small R, the dual regime dominates with

p=dR, p=+ for Rm0.
D —1

(3.3)

We also know that stable solutions may be present with
a contribution R to p and with zero pressure. For
intermediate values of R the form of p is clearly more
complicated but a formula of the type

( d l 1p=
i
uR+ —+s

iR &
Ri'-' (3.4)

with u, d, and s being positive constants, is qualitatively
correct for all R and becomes exact for R ~ 0 and R ~
oo.

The pressure associated to the energy density (3.4)
takes then the form

(3.5)

Inserting Eq. (3.5) into the Einstein-Friedmann equa-
tions [Eq. (3.1)] we find

We see that R is a monotonic function of the cosmic
time Xs. Equation (3.6) yields

(D —1)(D —2) R~~2

2 0 Qu R2+ d+ s R

(3.7)

where we set R(0) = 0.
It is easy to derive the behavior of R for X ~ 0

and for Xo -+ oo. For X -+ 0, R m 0, the term d/R
dominates in Eq. (3.6) and

(X') ~ . (3.8)

For X —+ oo, R —+ oo and the term uB dominates in
Eq. (3.6). Hence,

1

R(X ) (X' )2(D —1)
(3.9)

For intermediate values of X, R(X ) is a continuous

1 (dRI ( d i 1

2 gdX') q R y
R~

—(D —l)(D —2) i i

=
i
uR+ —+s

i

(3.6)

and mon. otonically increasing function of X .
In s»mmary, the universe starts at X = 0 with a

singularity of the type dominated by radiation. (The
string behavior for R ~ 0 is like usual radiation. ) Then,
the universe expands monotonically growing for large X
as R [Xo]~-&. This is faster than (cold) matter-

2
dominated n~iverses where R [X ]~-&. For example,
for D = 4, R grows linearly with X whereas for matter
dominated universes R [Xo]2~ .

As is clear already in Eq (3. .6), for large R, unstable
strings (u R) dominate over the stable strings (s). These
stable strings behave as cold matter. It must be noticed
that the qualitative form of the solution R(XO) does not
depend on the particular positive values of u, d, and s.

We want to stress that we achieve a self-consistent so-
lution of the Einstein equations with string sources since
the behavior of the string pressure and density given by
Eqs. (3.4)—(3.5) precisely holds in universes with power
like R(X ). Since we find positive exponents K in the
solution (3.9) both for small and large R, we can consis-
tently ignore the solutions (2.32) which appear for It,' ( 0.
It can be noticed that a linear growing behavior but for
al/ D follows from the effective string equations (includ-
ing the dilaton) without the string sources [15]. Notice
that for string dominated universes, R Xo appears
only in D = 4. On the other hand, the behavior R X
in D = 4 also appears, but for Xo -+ 0 [23], in the context
of the semiclassical Einstein equations using as source
the four-dimensional trace anomaly contribution to the
energy-momentum tensor of quantum matter (point par-
ticle) fields.

B. String decay

The unstable string solutions are so named since their
energy and invariant length grow as R for large R. How-

ever, it must be clear that as classical string solutions
they never decay. The situation changes at the quan-
tum level where strings may split and coalesce. Quan-
tum string splitting calculations in Minkowski spacetime
show that the splitting probability is proportional to the
string length [19,20]. This result holds at the critical di-
mension (D = 26) but it should be true more generally
in absence of conformal anomalies (critical strings).

Since unstable strings are of invariant size proportional
to R, this suggests that they will split with a growing
probability as R increases. Through splitting, two or
more shorter strings will be produced which grow as B if
their size is R. However, long strings often split into
massless strings (radiation) and a long piece [20]; that is,
into a dual string with energy 1/R and a long string
with energy R for large R. This type of process is
important because it reduces the number (u) of unstable
strings per comoving volume.

We can incorporate string decay in the string gas model
of Sec. III A by considering u and d as functions of time
(X ) in Eqs. (3.4)—(3.5). From the above discussion the
time derivative of u must be proportional to the unstable
string length R and to u itself:
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, =-cR(x') (x'), Equations (3.10) and (3.11) can be easily integrated:
3.10

where C is a positive constant of the order of the string
coupling constant squared ( e2~). The n11mber (d)
of dual strings (massless quanta) per comoving vob1me
increases as R~(—&~, ), since an 1mstable string with en-

ergy R yields R quanta with energy 1/R each. That
1sq

x'
u(X ) = u(0) exp —C dt R(t)

0
~e

XO

d(XO) = d(0) + C dt R(t)s u(t) .
0

(3.12)

d(X ) = C R(X ) u(X ). (3.11)
From Eqs. (3.4), (3.5), and (3.12), we find for the total
string density and pressure the expressions

T XO XO

p = R(X ) e(0) R(X ) exp —C f dt R(t) + d(0) + C f dt R(t) e(t) + e t,1

0 0

XO x'
R(X')'- ~, d(0) + C Ct R(t)' u(t) —u(O) R(X') exp —C Ct R(t)D —1 jRXO 0 0

(s.is)

1

R(X ) (X )D-1.
2(D —2)

(3.15)

The unstable strings provide subdominant exponentially
small corrections:

O((x ) D-' exp[—A(X ) D-1))

t'D —11
with A = C (s/2) D-'

~
~

. (3 16)
),D —2)

Taking into account the string decay, the stable strings
(which behave as cold matter) are those which remain for
R ~ oo, and yield the realistic large R behavior (3.15).
The dual strings for R + 0 are not substantially aBected
by the string decay. For X -+ O, R m 0 and we have
again the radiation type behavior (3.8).

A dramatic change happens for large expansion factors
R(xe) since u(X0) decreases exponentially.

Notice that the pressure and energy density from
Eqs. (3.13) obey the continuity equation (2.8).

The Einstein-Friedmann equations [Eqs. (3.6)] now be-
come

2

—,(D-1)(D-2)
i „X, I

x'
u(0)R(X ) exp —C dt R(t)

0
pe

1 X
d(0)+C dt R(t) u(t) +s R(X )R () J

(s.i4)

We see that R(X ) is always a monotonic function of Xo.
It is easy to derive from Eq. (3.14) the behavior of R(xe)
for small and for large X0.

For X ~ oo, R ~ oo and we find a matter dominated
regime:

C. Thermodynamics of strings in cosmological
spacetimes

Let us consider a comoving volume R+ 61led by a
gas of strings. The entropy change for this system is
given by

TdS = d(p R ) + p d(RD i).

The continuity equation (2.8) and (3.18) implies that
dS/dt vanishes. That is, the entropy per comoving vol-
ume stays constant in time. Using now the thermody-
namic relation [16]

it follows [17] that

&J J+~
dT T (s.ig)

Ra
S = (p+ p) + const. (3.20)

Let us Grst ignore the possibility of string decay. Then,
Eq. (3.20) together with Eqs. (3.4) and (3.5) yields the
temperature as a function of the expansion factor R.
That is,

1 1 DdT= — s+ +(D —2) uR (3.2i)

For very small splitting rate C, unstable strings will
decay very slowly and they can dominate p for a while.
Assuming this is the case, we can neglect the stable and
dual pieces in Eq. (3.13) and we find that R(X ) ap-
proaches a constant value Rq. Namely,

R(X ) =R —A

for X & 1/[CR&], u(0) R~ &», (3.17)

where A and Rq are constant depending on the initial
conditions. In other words, R(X ) reaches some plateau
and then it grows again following the matter dominated
behavior (3.15).
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where 8 stands for the (constant) value of the entropy.
Equation (3.21) shows that for small R, T scales as

1/R whereas for large R it scales as R. The small R
behavior of T is the usual exhibited by radiation. On
the contrary, for large R the temperature grows propor-
tional to R. This strange behavior is actually absent
when string splitting is considered.

Let us consider string decay. Inserting Eq. (3.13) into
Eq. (3.20) yields

D t'
s+

D R d(0) +& dt R(t)s u(t)D —1 R ( 0 )
( xo

+(D —2) u(0) Rexp —C dt R(t) . (3.22)

For small R, T scales here as 1/R. For large R, stable
strings (s) dominates and one must take into account the
temperature dependence of s [17], in order to determine
T as a function of R.

IV. EFFECTIVE STRING EQUATIONS WITH
THE STRING SOURCES INCLUDED

let us consider now the cosmological equations ob-
tained &om the low energy string effective action includ-

ing the string matter as a classical source. In D spacetime
dimensions, this action can be written as

S= Sg+S2,
1

Si ——— d zQ —Ge R+G~~B 48+@
2

+2 U(G, 4) —c

) f durde Gxa(X) 8~X 8"X~ )4 1).
strings

Here A, B = 0, . . . , D —1. This action is written in the
so called "Brans-Dicke frame" (BD) or "string frame, "
in which matter couples to the metric tensor in the stan-
dard way. The BD kame metric coincides with the sigma
model metric to which test strings are coupled.

Equation (4.1) includes the dilaton field (C) with a
potential U(G, 4) depending on the dilaton and gravi-
ton backgrounds; c stands for the central charge deficit
or cosmological constant term. The antisymmetric ten-
sor field was not included, in fact it is irrelevant for the
results obtained here. Extremizing the action (4.1) with
respect to GAB and 4 yields the equations of motion

DUR~a+ &~aC'+ 2
~GAB

R+2V' 4 —()74)) —c+2U = e~ T~~

R+ 2 V'O —(VC)' —c+ 2U — = 0,
BC

(4.2)

which can be more simply combined as yields, as it must, the conservation equation

aU aU
RAB+&AB@+2

~G
—GAB ~

= & &AB,
AB

R+ 2 O'C —(VC)' —c+ 2 U — = 0.
C

(4.3)

+AB
RAB R = TAB + TAB)

2
(4 4)

where vAB is the dilaton energy-momentum tensor:

Here TAB stands for the energy momentum tensor of the
strings as deBned by Eq. (2.6). It is also convenient to
write these equations as

(TAB + 7AB) —0 (4.5)

It must be noted that Eqs. (4.3) do not reduce to the
Einstein equations of general relativity even when 4 =
U = 0. Equations (4.3) yield, in that case, the Einstein
equations p/us the condition R = 0.

A. Effective string equations in cosmological
universes

For the homogeneous isotropic spacetime geometries
described by Eq. (2.1) we have

GAB OU
~AB ———V'AB4 + 2 —R

2 84

The Bianchi identity

2

R() —— (D —1)(H+ H ),—

R," = —h,". [H + (D —1)H'],

R = (D —1)(2 H+ —DH )

1 dRwhere 0 = & &«.
The equations of motion (4.3) read

(4 6)
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4 —(D —1)(H + H')—
B4

BU R BUH+(D —1)H' —HC+ +
B

=ee p,

2 4 + 2(D —1) H O —O —(D —1)(2 H + D H ) —2 —c + 2 U = 0,84 (4.7)

where the overdot stands for &x, , and

0
p —To )

gh zk (4.8)

p+ (D —1) H (p+ p) = 0 (4.9)

By defining

The conservation equation takes the form of Eq. (2.8):

for R ~ oo and R -+ 0 assuming that the potential U can
be ignored. It is easy to see that a power behavior Ansatz
both for R and for e+ as functions ofX is consistent with
these equations. It turns out that the string sources do
not contribute to the leading behavior here, and we find,
for R-+0,

R~ ——Cg(X )+ «m0
@ = 4 —ln g—1 = 4 —(D —1) ln R
p=e p p=e p (4.10)

eee=Ce(Xe) ' -+Io (4.15)

Eqs. (4.7) can be expressed in a more compact form as

4 —(D —1)H'—

H —Hi+ R BU
D —1 R @

where Cq and Cz are constants. Here the branches (—)
and (+) correspond to Xo ~ 0 and to Xs -+ oo, respec-
tively. In both regimes R+ ~ 0 and e@+ -+ 0.

The potential U(e') is hence negligible in these regimes.
In terms of the conformal time rl, the behaviors (4.15)
result:

—(D —1) H —2 p —2 U + c = 0, (4.11) QD —1 ooe + =Cz(rf) (4.16)

The conservation equation reads

j—4 p+ (D —1) H Ip = 0. (4.12)

As is known, under the duality transformation R
R ~, the dilaton transforms as 4:41 + (D —1) ln R.
The shifted dilaton 1II de6ned by Eq. (4.10) is invariant
under duality.

The transformation

(4.13)

implies

4' = 4, H' = —H, p = —p, p' = p, (4.14)

provided u = d, that is, a duality invariant string
source. This is the duality invariance transformation of
Eqs. (4.11).

Solutions to the eHective string equations have been
extensively treated in the literature [21] and they are
not our main purpose. For the sake of completeness, we
brie6y analyze the limiting behavior of these equations
for R~ oo and R-+0.

It is difficult to make a complete analysis of the eKec-
tive string equations (4.11)since the knowledge about the
potential U is rather incomplete. For weak coupling (e
small) the supersymmetry breaking produces an effective
potential that decreases very fast (as the exponential of
an exponential of 4) for 4 ~ —oo.

Let us analyze the asymptotic behavior of Eqs. (4.11)

where Cz and C2 are constants. The branch (—) would
describe an expanding noninflationary behavior near the
initial singularity X = 0, while the branch (+) describes
a "big crunch" situation and is rather unphysical.

Similarly, for R ~ oo and e@ ~ oo, we and

De (Xe)—e -e ( (4.17)

where D~ and D2 are constants. Here again, the branches
(—) and (+) correspond to Xs -+ 0 and to Xs m oo,
respectively, but now in both regimes R+ -+ oo and
e@+ ~ oo. (In this limit, one is not guaranteed that U
can be consistently neglected. ) In terms of the conformal
time, Eqs. (4.17) read

R+ —Dz ((7)+aD-1+1 ~ oo

(4.18)

The branch (+) describes a noninflationary expanding
behavior for X -+ oo faster than the standard matter
dominated expansion, while the branch (—) describes a
super-in8ationary behavior q, since 0 & o. & 1, for all
D.

The behaviors (4.15) for R+ -+ 0 and (4.17) for R+ -+
oo are related by duality R ++ 1/R.
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B. String driven inflation?

Let us consider now the question of whether de Sit-
ter spacetime may be a self-consistent solution. of the
efFective string equations (4.7) with the string sources
included. The strings in cosmological universes such as
de Sitter spacetime have the equation of state (3.4), (3.5).
Since e+ = e+ R~

(D —1) H'—OU

dC B OU
+

fdic
+ (D —1) H' —2 P —2 U+ c = 0, (4.24)(dXs)

dp=e
i
uR+ —+s i,R

e~ fd
Sl =

i

——uR
iD —1gR )

(4.19)

(4.20)

with the solution

HXR=e, 8=const&0
e —2 U = D H = const,

(D —1) H'
4~ ——yHX +ln

R=e, H =const) 0,

2U —c=DH =const,

D —1 H2
4'~ = pHX' +i~+ ln

p+

p =—d. (4.21)

The branch 4+ describes the solution for R -+ oo
(X ~ +oo), while the branch 4 corresponds to R m 0
(X i —oo). de Sitter spacetime with Lorentzian sig-
nature self-sustained by the strings necessarily requires a
constant imaginary piece kiz in the dilaton field. This
makes e+ & 0, telling us that the gravitational constant
G e+ & 0 here describes antigravity.

It is interesting to note that in the euclidean signa-
ture case, i.e., (+ + + + +), the ansatz H = 0,
2U —c =const, yields a constant curvature geometry with
a real dilaton, but which is of anti —de Sitter type. This
solution is obtained from Eqs. (4.20) and (4.21) through
the transformation

(4.22)

which maps the Lorentzian de Sitter metric into the pos-
itive de6nite one

ds = (dX ) +e (dX) . (4.23)

The equations of motion (4.11) within the constant cur-

vature Ansatz (H = @ = 0) are mapped onto the equa-
tions

In the absence of dilaton potential and cosmological
constant term, the string sources do not generate de Sit-
ter spacetime as discussed in Sec. IIIA. We see that for
U = c = 0, and R =e, Eqs. (4.11) yield to a contra-
diction (unless D = 0 ) for the value of @, required to be
—HXo+ const.

A self-consistent solution describing asymptotically de
Sitter spacetime self-sustained by the string equation of
state (4.19), (4.20) is given by

p+ =Q, p =d. (4.25)

Both solutions (4.25) and (4.21) are mapped one into
another through the transformation (4.22).

It could be recalled that in the context of (point par-
ticle) field theory, de Sitter spacetime (as well as anti —de
Sitter) emerges as an exact self-consistent solution of the
semiclassical Einstein equations with the back reaction
included [24], [25]. [Semiclassical in this context, means
that matter fields including the graviton are quantized to
the one-loop level and coupled to the (c-number) gravity
background through the expectation value of the energy-
momentum tensor T&. This expectation value is given
by the trace anomaly: (T&+) = p R2.] On the other
hand, the a' expansion of the effective string action ad-
mits anti —de Sitter spacetime (but not de Sitter) as a so-
lution when the quadratic curvature corrections (in terms
of the Gauss-Bonnet term) to the Einstein action are in-
cluded [26]. It appears that the corrections to the anti —de
Sitter constant curvature are qualitatively similar in the
both cases, with n' playing the role of the trace anomaly
parameter p [25].

The fact that de Sitter infiation with true gravity
G e ) 0 does not emerge as a solution of the ef-
fective string equations does not mean that string theory
excludes infIation. What it means is that the efFective
string equations are not enough to get inflation. The
efFective string action is a low energy 6eld theory ap-
proximation to string theory containing only the massLess
string modes (massless background fields).

The vacuum energy scales to start inflation (physical
or true vacuum) are typically of the order of the Planck
mass [17], [18] where the efFective string action approx-
imation breaks down. One must consider the massive
string modes (which are absent &om the efFective string
action) in order to properly get the cosmological con-
densate yielding de Sitter in6ation. We do not have at
present the solution to such a problem.

The Laboratoire de Physique Theorique et Hautes En-
ergies is Laboratoire Associe au CNRS URA280, and the
Observ3. toire de Paris, DEMIRM, is I aboratoire Associe
au CNRS URA336, Observatoire de Paris et Ecole Nor-
male Superieure.
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