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We discuss the hypothesis that a large (or even a major) fraction of dark matter in the Universe
consists of primordial black holes (PBH's). PBH's may arise &om adiabatic quantum Suctuations
appearing during inSation. We demonstrate that the inSation potential V(rp) leading to the for-

mation of a great number of PBH's should have a feature of the "plateau"-type in some range

y~ & y g yq of the inaation Beld y. The mass spectrum of PBH's for such a potential is calculated.

PACS number(s): 98.80.Cq, 95.35.+d, 97.60.Lf, 98.70.Vc

I. INTRODUCTION

The nature of dark matter (DM) in the Universe is one
of the greatest puzzles of modern cosmology. The DM
may consist of baryons, weakly interacting massive exotic
particles predicted by grand»nified theory (GUT), pri-
mordial black holes, or some combination of these species.

In this paper we shall consider the hypothesis that the
DM consists mainly of primordial black holes (PBH's).
(The earlier works on PBH's are [1,2] see also [3] and [4].)

Recently the possible discovery of microlensing of stars
in the Large Magellanic Cloud by massive compact halo
objects (MACHO's) with probable masses 0.1 solar
mass was reported [5,6]. It was supposed (among other
possibilities) that such objects might be black holes. We
would like to emphasize that black holes with masses
of the order of 0.1MD can only be of primordial origin.
Thus, this discovery gives additional ar@|~ents for con-
sidering the possibility of the PBH nature of DM.

Let us consider the conditions for PBH formation in
the early Universe. The simple estimates (see, for exam-
ple, [4,7]) show that for the formation of PBH's with a
total mass density close to the critical one (OpsH = 1),
and with a mass MpgH around 0.1MG one needs a
rms amplitude h, ,(0.1Mo) of the Gaussian distribu-
tion of the scalar metric auctuations of the order of
h;" (0.1M~) 0.06. This estimate depends on OpsH and
MpBH only logarit&rnically. For example, h;"~ = 0.04 at
10 g and her't = 0.08 at 10 Mo. On the other hand, the

Cosmic Background Explorer (COBE) measurements of
the anisotropy of the cosmic microwave background ra-
diation and other satellite, balloon, and ground-based
radio telescope measurements, and also deep surveys of
galaxy distributions, strongly indicate that on scales of
galaxies and greater scales (up to the horizon scale) the
amplitude of b,~, was significantly less, probably around
10 -5 x 10

It is worth noting that COBE data are compatible
with a power spectral' of the adiabatic perturbations
P(k) oc k" with n = 1.15+a'ss (see [8]). This means
that a direct extrapolation of the COBE data to smaller
scales even with the maximal possible value n 1.6, can
give b, , great enough for the formation of an essential
nnmber of black holes only for MpsH less than 10 g
[4]. However, such small PBH's would have evaporated a
long time ago and could not contribute to DM [1].~ No-
tice that if we believe that the main part of a PBH has
some specific mass M„ then the spectrum of the primor-
dial fiuctuations must have a decrease or a cutoff from
the side of smaller mass at MpsH M, .

Thus, for the hypothesis of PBH DM one needs the fol-
lowing behaviors of the spectrum of the primordial scalar
metric perturbations. The rms amplitude must be the or-
der of 10 at large scales, must increase by a factor 104
at the scales corresponding to the masses of the PBH,
and must decrease at smaller scales.

Permanent address.

Note that if one supposes that evaporating PBH's leave
stable Planck mass relics, these relics could contribute to DM
and constrain the spectrum [32], but we shall not discuss this
possibility helot.
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In the in6ationary scenario of the early Universe the
spectrum of the primordial perturbations is determined
by the potential V(y) of the scalar field y ("inflaton").
Note that in more complicated theories it can be sev-
eral infiatons (see for example [9—14]). In the most sim-

ple theory with smooth, featureless V(y) the spectr»m
very slightly depends on scale [15—20] and cannot produce
PBH's in a large amount. The requirement that the spec-
trum increases with a decrease of scale as a power leads
to special "trigonometric" potentials [4] and also cannot
explain the large PBH production (see above and [4]).
The introduction of two or more infiatons or taking the
potential to have one break [21] may produce the bump
in the spectrum, but such a type of spectrum possesses
additional power at large scales [10,21]. Thus normal-
ized at COBE data, spectra of this type seem not to
produce a large amount of PBH's. From this discussion
it follows that the most natural way for large PBH pro-
duction to occur is to introduce the specially engineering
local feature to the infiation potential at PBH scales. Al-
though the known particle physics may not support such
features, the possible discovery of PBH's may turn the
problem around and demand the existence of such fea-
tures in any realistic particle physics. The purpose of our
paper is the following. We shall demonstrate that an in-
fiation potential V(y) leading to the formation of a great
number of PBH's must have a feature of the "plateau"-
type in some range yq & y & y2, and we shall calculate
the mass spectrum of PBH's for such a V(y).

Qualitatively the conclusion about the plateau in V(y)
follows from a well-known estimate for the spectrum of
primordial metric fiuctuations in the model of chaotic
infiation ass~+ning the friction-dominated and slow-roll
conditions, (y( « H~y( and y && V(y), respectively.
Here the overdot denotes differentiation with respect to
time, and H is the expansion rate. The power spectrum
P(k) in this case can be written as [9]

V3
P(k) k

k=aH(~)

0'
0

FIG. l. Schematic representation of the potential V(y) of
the scalar field y (infiaton). The potential has a plateau in
the range y~ ( y & yq and is of the power-law type outside
of this range. The breaks of the potential are smoothed out
in small ranges Ayq &( yq and Ayq &( yq around p~ and y2
correspondingly.

sky [21] (for a potential with one break), and Demiansky,
Ivanov, and Novikov [22] for any number of breaks. Sec.
III is devoted to the analysis of the mass spectrum of the
PBH's. In Sec. IV we discuss the possible role of the
"gas" of PBH's in the origin of the large-scale structure
of the Universe, and summarize the main conclusions.

II. SPECTRUM OF SCALAR METRIC
PERTURBATIONS IN THE INFLATIONARY

SCENARIO W'ITH A "PLATEAU" IN THE
POTENTIAL V(y)

The simple approach to the in6aton based on one
scalar field y is to specify the physics by choosing an
appropriate form for V(y) and assuming the friction-
dominated and slow-roll conditions [9]:

Iyl «»lyl, (y)'«2V(y),

where H(y) is the value of the Hubble parameter at the
moment when the Universe has the value p of the in-
fiaton field and a is the scale factor. If the potential
V(y) has a plateau in the range yq & y & y2, V(y) =
const and BV/By ~ 0, then the spectral amplitude P(k)
is strongly increased [see the formula (1)]. Outside the
range yq & y & y2, V(y) has a standard (for example
a power law) shape. In the range k « k2 and k )) kq,
where k; = a(y;)H(y;), the corresponding P(k) has also
a standard shape [for example it can be the Harrison-
Zeldovich spectr»~ P(k) = A2k, with A = 5 x 10 s].

The structure of the paper is the following. In Sec. II
the mo+Rcation of the in8aton scenario with the plateau-
type peculiarity in V(y) is discussed, and we calculate the
distortion of the spectr»m of the primordial metric Buc-
tuations due to this peculiarity. For simplicity we shall
use the simple approximation with two breaks for poten-
tial form (see Fig. 1). The spectrum of adiabatic pertur-
bations in such type theories was calculated by Starobin-

where H = a/a; a(t) is the scale factor. In this regime
Fourier components of the scalar metric perturbations
are b-correlated random values with a Gaussian distribu-
tion.

Our task is to increase the spectral amplitude in some
range k2 ( k ( kq, where k is a wave number, without
changing the standard spectrum of perturbations outside
this range. We propose to introduce the potential V(y) of
the inaaton p, which is depicted in Fig. 1. This potential
has a plateau in the range yq & y ( y2 and is a power-
law type outside of this range.

There are two breaks of the potential at p = yq and

y = y2. We suppose that these breaks are smoothed out
in small ranges Ayg &( pg and Ap2 (& (p2 around yg and

y2 correspondingly (see Fig. 1).
The conditions (2) are violated in these ranges.

Starobinsky has pointed out [10] that this violation re-
sults is a nonmonotonic spectrum of perturbations. In
the vicinities of breaks of the potential V(y), but outside
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of Eyi and A@2, the potential can be described by

V(V 'p;) = V(mp;) + v(x;),

adiabatic perturbations [18,23] is governed by the equa-
tion [18]

(3) vI,
' + [k —(2/g ) + V~a ]vs = 0, (io)

A, x; if [x;i»~;,x; &o,

wherex; = y —y;, i = 1,2, y2 ) yi, oritcanbe
rewritten as

V(p y;) = V((p;)+A,. z;+ (A, —A, )e(z;)z;, (4)

where e(x) is the Heaviside function. Notice, that in the
general case the shape of the potential at pi & y & yq
can be complicated enough. However, for our purpose it
is enough to choose V(y) =const at pi & y & y2. In
this model Ai, .A2+ g 0; A&

——A+i = 0. Evolution of the
scalar field |p is governed by the equation [9]

where A is the amplitude of the spectrnm (it can be nor-
malized at COBE data),

D(k) = ia —P[ (12)

is the modulation function [when D(k) = 1, we have the
standard fiat Harrison-Zeldovich spectr»m], and a, P are
the coefficients of the decomposition of vs on the "stan-
dard" vacunm solution vs, of Eq. (10) with a potential
without breaks:

where a prime denotes B/B(. Using this equation it is
possible to get the spectr»~ in a form

P(k) = A kD(k),

y+ 3Hy =—
vi, = a(k)vs,.+ P(k)vq (i3)

3H = 8m [js + V((p)],
where

where jr = dy/dt. In the case of the evolution of y when

tp ) ps, from (5) we have (2k)
(14)

We suppose that iA2 —A2 i
) H b,p2 and A2 bp2 «

V(y2). In this case for the dynamics of y one can neglect
v(x2) in (3) compared with V(ys), and the regime a(t) oc

exp(Ht) goes on after the field p passes the break of the
potential at Ip2.

After this passage the field evolves along the plateau,
and the solution of the equations (5) can be written as

The decomposition is made after P passes the feature
area, . Using the linearity and invariance under complex
conjugate of Eq. (10), we can get a and P in the form

2io+ P2Pi,

P = csPi+ Ps&i

where az and Pi are the coefficients of the decomposi-
tion of (13) in the case of one break only. They were
calculated by Starobinsky in 1992:

x+
p= — e

—3H(t —e&)

3H (7) 3$
n; = 1 ——C,.y, '(1+y, ),

where ts is the moment of time, when y(t2) = y2. At
the moment when y comes to the point &pi

——y(ti), its
"velocity" is

A+ (k, i'
v (8)

where k; = a(t;)H(t;), i = 1, 2. Using (6) and (8) we have
the following expression for B2V/By2, which determines
the dynamics of the generation of adiabatic perturbations
in the vicinity of the break of the potential [21]:

B2V 3H 3

k2

where ( = J(dt/a), and (i and (2 correspond to ti and
t2 (see [15—17,22]).

Let us consider the origin of adiabatic metric perturba-
tions at the epoch of the in6ation. The evolution of the
gauge-invariant scales quantity ep, which describes the

3i
P~ = —Ci exp(2iyi)y. (1+iy ),

D(k) = DiD2 + D; t,

D,. =1+ ' 1 ——,3C, (
yj I y)

9+—C.—1+—
Iy. ( y j

2——sin2y&
y~

2
sin2y~ + —cos2y~

1+ 2+ 1 —
2 ICOS2y2

y')

(17)

yz
——Rik, Ri is the wavelength of perturbation entering

the horizon at the moment when P = Pi", Cs ——1; Ci ——

—(Ai /A2 )(ki/k2); j = 1,2. Taking into account (12),
(15), and (16), we get the explicit form for D(k):
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DinC 4(ai dl)[(ai —di)(b2 + a2d2)

-(1—bi) (d2 —a2b2)]

az ——Im(a~), b~ = Re(Igz), d~ = Im(P~), j = 1, 2,

where D& is the modulation function in the theory with
one break, D;„t is the interference term.

Asymptotic behaviors of D(k) are

D(O) = +, D(oo) = 1.

The function D(k) is depicted in Fig. 2. Notice the oscil-
lations in the spectrum related to each break in the po-
tential V(y). These oscillations were discussed in [22,24].

For the hypothesis of PBH DM, the case + & 1 is
A~+

especially interesting. Under this condition, at k/k2 ) 4,
D(k) can be described with accuracy better than 570 by
the 6tting formula

2 2

p )) l. (19)
A:g

k2'

10'0— I I I I I I I I ! ~ I I 1

I

108

One can see in Fig. 2 that in the case p )& 1 at k2 &
k & k~ there is a great increase of the spectral amplitude
by a factor D ~ (k) (Ai/A2)p . The two lowest curves
in Fig 2 show the character of approach of D(k) to its
asymptotic value at k m 0. One can see that between the
long-wavelength asymptotic of D(k) and the range of the
strong increase of the spectral amplitude there is a range
where the amplitude is suppressed.

III. MASS SPECTRUM OF PBH's

In our approach to the calculation of the mass spec-
tr»m of PBH's we focus on the peaks of the Gaussian
random ield of the primordial adiabatic metric pertur-
bations [2].2

A PBH can arise when the space scale of the peak
scalar metric perturbations of the order of 1 becomes
smaller than a particle horizon AH —t but still is greater
than the Jeans' radius Ag ——A~/~3. The masses of
PBH's, MnH, are proportional to the moment tnH of their
formation MnH oc tnH. The shapes of the peaks of the
Buctuations play an important role in the formation of
PBH's [26,27]. Some shapes can result in the dissipation
of the peaks due to pressure gradients.

Zabotin and Naselsky [27] have pointed out that in the
case of the Harrison-Zeldovich spectrum of the primordial
Buctuations (and spectra, which are close to them) the
most probable distribution of the matter inside the peak
is favorable for the formation of PBH's. Moreover, one
can calculate the mass spectr»m of PBH's in the frame-
work of the model of the homogeneous collapse proposed
in the work [28].

Note that the process of PBH formation is certainly
nonlocal because it includes a volume of the radius R In.
order to take into account this nonlocality, one needs to
use the characteristics averaged over the sphere with a
Gaussian filtering function [29].

In addition, it is necessary to take into account that
for the perturbations with a wavelength of more than the
particle horizon evolution of the density contrast b(r, t)
can be written in the form b(r, t) = b'(r)C (t), where b(r)
is determined by the spectrum of the initial metric per-
turbations, and 4(t) corresponds to the growing mode of
gravitational instability. Because of this factorization it
is enough to analyze the statistical behavior of the peaks
of the function b(r).

Following the work [29], let us introduce a new Beld
F(r, R), which is the result of Gaussian smoothing of the
random field b(r) on the scale R,

106
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and consider the correlation function

OO

C(R, z) = dk k P(k)exp( —k R )2K 0 kz

2
where we = P (wr

—er ) . In Ihe nofnffon of

x&, the upper indices a = 1,2, 3 label coordinates, and
the lower ones / = 1,2 label points in space.

In order to make further calculations the dispersion
Co(R)—:C(R, O) is required. For the analytic estimates
we assume p )) 1, Bq « R & R2 and we shall use ex-

FIG. 2. Result of the computations of D(x), x = kBq. The
dashed, dashed-dotted, dashed-triple-dotted, and solid lines
correspond to p = 20, p = 10, p = 5, and p = 2, respectively.

For an alternative approach to the mechanism for PBH for-

mation, see the work by Dolgov and Silk [25].
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pression (19) for the spectr»m. In such an approximation
we get

10
OO

C(O, R) = dkk P(k)e
2K 0
A2ps s „* sin(2Rz/R)y

1+6gFg
~

3) 2) R—z ~
(21)

10 10

10

where & Fq(a, b, z) is the degenerated hypergeometric
function and A is the amplitude of the Harrison-
Zeldovich spectr»m on large scales (it can be normalized
to COBE data).

Formula (21) is correct for the range Rq & R & R2. For
the range R « Rq and R » Rz, the dispersion Co(R)
is negligible compared with the dispersion in the range

Rq & R & Rz, and we can put Co(R) 0 at R « Rq

and R && R2.
Thus the spectrum of Gaussian random matter den-

sity perturbations smoothed by the Gaussian Biter on
the scale R can be given by the simple formula

4

Ce(R) = s2
i i

F(Rz/R), (22)

where sz = (Az/4z'z) (ps/Rz) is a measure of the spectral
amplitude at R = Rq and

3 Rzz)
F(R2/R) = 1 + 6 i+i

I
3, —,—

g
'2' Rz]

During its forxnation each PBH absorbs mass &om the re-

gion with the comoving scale R oc MpnH. Since F(Rz/R)
varies in the limits of order 1, one can use the following

approximate estimate of the fraction of the total matter

p(R) collapsing into PBH's with mass MpnH.

- 1/2

P(R) s F
i&R). exp

1

18szF(Rz/R)

F(MaH) oc [P(MaH)MnH ], MnH oc R .
BH BH

Thus, varying the main parameters of the model one can
vary the possible values for PBH masses in very broad
limits.

We performed numerical computations of P(R) using
Eqs. (10) and (11) and estimated for calculation P(R)
given by [4]. The results of these computations are pre-
sented on Fig. 3 for p = 16.5, 18, and 20. As seen &om
Fig. 3, the asymptotic rough analytic formula (21) is valid
at Rq/R & R2 only. N»merical computations show two
maxima that correspond to two scales, R~ and R2, of the
initial spectr»m P(k) of perturbations. The mass spec-
trum of PBH's is determined by the function P(MnH):

10

10 25

0.1 1.0
R/R,

10.0 100.0

FIG. 3. Function P(y), y = R/Rq The so.lid, dashed, and
dashed-dotted lines correspond to p = 20, p = 18, and

p = 16.5 respectively. Straight lines, vrhich are tangential
to P(y) of difFerent models, correspond to the conditions

AppH = 1 for the modern Universe. The tangent points
determine the corresponding MpgH. MppH 10 Mg at

p = 20.0, MpgH 10'Mo at7 =18.0, andMpgH -10 'Mo
at p = 16.5.

IV. ASTRONOMICAL CONSEQUENCES
OF THE HYPOTHESIS ABOUT PBH DM

AND CONCLUDING REMARKS

We have demonstrated that under some conditions on
the inflation potential V(y) (see Sec. III) the matter
density of PBH's could be great enough to make up a
considerable or even major part of DM in the modern
Universe. This imposes a lower limit on the possible
parameter Rq of the model. Indeed, PBH's could not
have masses MnH & 10 g. Such PBH's must evapo-
rate due to Hawking's process, and this gives a strong
observational constraint on their density OnH & 10
see [3]. For MnH & 10 g and up to scales of the clus-
ters of galaxies, constraints come only from the inequality
OnH & 1 in the modern Universe [3].

One can consider models with Oq t ——1 and with DM
consisting mainly of PBH's, which implies OpBH 1, or
more complicated models with Opia ( 1 and with a A
term or some hot dark matter (HDM); see [30].

In Fig. 3 we show straight lines corresponding to the
conditions OpgH = 1 for the modern Universe and which
are tangential to the spectr»m P(R) of different models.
The tangent points determine the corresponding e6'ective
masses MpBH of the xnodels. As may be seen &om Fig. 3,
for all interesting ranges of MpgH, the paraxneter p is

15—20. The parameter p determines the distribution
of masses of PBH's, and thus it could be a possible test
of the nature of DM.

In this paper we do not analyze special behaviors of the
formation of the large scale structure (LSS) of the Uni-
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verse in the framework of the PBH DM model. We note
only the following. The main properties of the LSS in
this model probably are the same as in difFerent versions
of the standard cold dark matter (CDM) model due to
the fact that the masses of PBH's are much smaller than
the masses of the LSS. On the other hand, the absence
of PBH's in the Universe may constrain the plateau-type
features in potentials on a wide range of scales.

We want to point out that the condition OpBH 1 for
PBH's with small masses can be satis6ed only by a very
"delicate" adjustment of the parameters of the theory
Indeed, in order that the total mass contained in PBH's
be close to the critical value, it is necessary that the frac-
tioa of the total mass contained in them be sufficiently
small (but have some well-defined value) at the period of
PBH formation [1,31]. Perhaps the explanation of this

"fine-tuning" of the parameters could be related to the
anthropic principle.
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