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If the large-angular-scale anisotropy in the cosmic microwave background radiation is caused by
the long-wavelength cosmological perturbations of quantum mechanical origin, they are, most likely,
gravitational vraves, rather than density perturbations or rotational perturbations.
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I. INTRODUCTION

The ongoing and planned high-precision measurements
of the anisotropy in the cosmic microwave background
radiation (CMBR) [1] may have serious impact on our
views about the very early Universe. The large-angular-
scale anisotropy in the CMBR is most likely caused by
cosmological perturbations with wavelengths of the order
and longer than the present-day Hubble radius 11'. It is
reasonable to expect that such longer-wavelength per-
turbations are "primordial" and have survived from the
epochs when the Universe was much younger. The wave-
lengths of the perturbations have enormously grown up
since the time of generation but other physical character-
istics of the perturbations can still carry imprints of their
origin. This cannot be said with the same degree of cer-
tainty about the relatively short-wavelength cosmological
perturbations (unless they are gravitational waves) which
could have been distorted and contaminated in the course
of their life by many physical processes occurring in the
Universe.

It is remarkable that the origin of all three possible
types of cosmological perturbations, that is, the ori-
gin of density perturbations, rotational perturbations,
and gravitational waves, may be of purely quantum-
mechanical nature. Cosmological perturbations can be
treated as excitations in a gravitational Beld. In the
case of gravitational waves, they are just excitations in
the gravitational field itself. In the case of density per-
turbations and rotational perturbations, they are exci-
tations in a gravitational field which accompany exci-
tations in matter. In the very distant past, the den-
sity and rotational perturbations were excitations in the
prixneval medi»~ that was filling the Universe at that
time. The quant»m-mechanical generation mechanism of
cosmological perturbations relies only upon the existence
of their zero-point quant»m Buctuations and the nonva-
nishing parametric coupling of the perturbations to the
variable gravitational Geld of the homogeneous isotropic
Universe. The strong variable gravitational field of the
very early Universe played the role of the p»mp field.
It supplied energy to the zero-point quantum Suctua-
tions and amplified them. More precisely, the initial vac-

uum quantum state of each mode of the perturbations
has been transformed, as a result of the quantum me-
chanical Schrodinger evolution, into a multiparticle state
known as a squeezed vacuum quantum state. The gener-
ated perturbations have formed a collection of standing
waves. The gravitational Beld of each of the three types
of quantum mechanically generated perturbations can af-
fect the propagating photons of the CMBR and produce
anisotropy in the CMBR.

It was already emphasized [2] that there is a signif-
icant qualitative ddference between gravitational waves
on one side and density and rotational perturbations on
the other side, with regard to the possibility of their
quantum mechanical generation. Gravitational waves os-
cillate in the absence of external gravitational fields, and
their appropriate parametric coupling to the p»mp Geld
follows directly from the Einstein equations. The para-
metric excitation vanishes only if the cosmological scale
factor obeys the equation a"/a = 0, that is, when there is
no pump field at all, a(rl) = const, or when the coupling
a' is time independent. Up to this exception, one can say
that the quantum mechanical generation of gravitational
waves (relic gravitons) is unavoidable [3]. As for density
and rotational perturbations, they are perturbations in
matter being accompanied by perturbations of gravita-
tional field. The ability to support oscillations of density
and/or rotation and the form of their coupling to the
pump field depend on a particular model of matter and
its energy-momentum tensor. The very possibility of the
quant~~m mechanical generation of these perturbations is
model dependent. Recalling Einstein's definition of two
pillars supporting general relativity, one can say that the
quantum mechanically generated gravitational waves are
associated with the pillar made of marble, while den-
sity and rotational perturbations are associated with the
other one.

A particular sort of matter that has received xnuch at-
tention in the recent cosxnological literature, especially in
the literature on inflation [4], is one or another version of
a scalar field. The scalar fields is a nice theoretical xnodel
that has been used in physics in many diHerent studies.
Whether the global scalar fields do really exist in nature
and, if so, whether they couple to gravity in the way
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we want, is presently unknown. However, we will follow
the modern tradition in theoretical physics which states
that everything that is not forbidden is allowed. One can
at least guarantee that a sort of inflationary expansion
is a typical feature (attracting separatrix) in the space
of homogeneous isotropic solutions to the Einstein equa-
tions with certain scalar fields [5]. Scalar fields cannot
support rotational perturbations but they can support
density perturbations.

Specifically, we will study a scalar field y(t, 2:i,z2, zs)
with the energy-momentum tensor

~i = 'p, ~'p, 9» t 2& 'p, 'p,p+ +(p)] (1)

where V(rp) is an arbitrary scalar field potential and a
comma denotes a partial derivative. This model of the
primeval cosmological medium satisfies both conditions
for the quantum mechanical generation of density pertur-
bations be possible. First, the field can obviously support
kee oscillations in Minkowski space-time. Second, the
explicit form of the energy-momentum tensor (1) refiects
the appropriate (minimal, the same as for gravitational
waves) coupling of the scalar field to gravity which was
chosen by our will. So, on general grounds and by anal-
ogy with gravitational waves, one can expect that some
amount of density perturbations might have been gen-
erated by strong variable gravitational field of the early
Universe. The problem is to quantify this expectation
and to derive the observational predictions, as reliable
and detailed as possible, including the expected varia-
tions in the CMBR.

Scalar fields and scalar field perturbations is a very
popular subject in the framework of infiationary cosmolo-
gies. So popular, that many believe that the infiationary
type of expansion is conditioned by the existence of scalar
fields and that the very possibility to generate pertur-
bations quantum mechanically relies on the existence of
the de Sitter event horizon. This is not so. Infiation,
if understood as a statement about the behavior of the
time-dependent cosmological scale factor, and not about
creating and resolving the particle physics paradoxes, is
a phenomenon more general than one particular realiza-
tion of it with the help of a scalar field. (The attitude
toward the archetype infiationary solution, exponential
expansion, has changed over the years. Astronomers of
the older generation were embarrassed with the de Sitter
solution but tried to apply it for the explanation of the
galaxies' redshifts and statistics of quasars in the most
recent Universe. Cosmologists of our time take the ex-
ponential expansion as something almost proven but ap-
ply it to the very remote stages of evolution, somewhere
near the Planck time. ) And the quantum mechanical
generation of perturbations is a phenomenon more gen-
eral and universal than such concepts as global scalar
fields, event horizons, and infiation. If it turns out that
the iniationary hypothesis contradicts observations, the
quantum mechanical generating mechanism will not die
together with inflation. There is little doubt, for instance,
that the search for relic gravitational waves will continue,
with maybe larger emphasis on relatively short waves
rather than on long waves [6]. And a test of the quantum
mechanical origin of cosmological perturbations will be a

test of their origin, not a test of infiation specifically.
The generation of density perturbations in in6ation-

ary models governed by the scalar field (1) was a subject
of discussion in many research and review articles, and
books. If one consults the most recent literature, one
can find that the current situation is often s»~marized in
the following, or similar, words: "Exponential infiation
predicts a scale-invariant, Gaussian spectr»~ of scalar
iuctuations . . ., and a smaller amount of tensor auctua-
tions. . . . Other infiationary models, for instance power-
law infiation. . ., predict spectra slightly tilted away from
scale invariance. " (See, for example, [7] and references
therein. ) The expected amplitudes of density perturba-
tions are usually quoted in the following, or equivalent,
form (see, for instance, [8] and references therein):

(bp l m~2 H2(y)

( p ) 8z.s~z (H'(p)~

where the quantities on the right-hand side are supposed
to be evaluated "when the scale A crossed the Hubble
radius during infiation. " The denominator of this ex-
pression depends on the derivative of the Hubble param-
eter and goes to zero in the limit of exponential infia-
tion. Apparently, this formula says that the predicted
amplitudes of the scale-invariant spectrum are arbitrar-
ily close to infinity, and the amplitudes of nearby spec-
tra are "slightly tilted away" from infinity. According to
this formula, the amplitudes of density perturbations are
many orders of magnitude larger than the amplitudes of
gravitational waves, if the expansion rate is sufficiently
close to the exponential infiation. The belief that the
amplitudes of density perturbations are larger, or much
larger, than the amplitudes of gravitational waves is con-
sidered to be a strong prediction of infiationary models
based on the scalar field (1). For instance, the author of
Ref. [8] concludes "An observation violating this condi-
tion at any scale would immediately rule out the general
class of models we are considering. " The expected contri-
bution of density perturbations and gravitational waves
to the quadrupole anisotropy of the CMBR was also un-
der study. The authors of Ref. [9) (see also [10] and
references therein) say that "The ratio of gravitational
wave (T) to energy-density perturbations (S) contribu-
tions to the CMB quadrupole anisotropy is predicted to
be T/S = 21(1+p)," where p, in that paper, is the pa-
rameter in the equation of state for matter governing the
in6ationary expansion, p = pp. According to this for-
mula, T/S vanishes in the limit of p = —1, that is in
the limit of strictly exponential (de Sitter) infiation. Ap-
parently, this formula for T/S is based on the author' s
assumption that the efFectiveness of generation of density
perturbations is the higher the closer the expansion law
to the exponential in6ation, and goes to infinity in the
limit of p = —l. Apparently, this is why T/S goes to
zero in this limit. The statements about density pertur-
bations are sometimes characterized as such that have
been widely studied and there is broad agreement re-
garding both methods and results . . ." [11].

I suspect that this paper will not belong to that cate-
gory of studies that enjoyed the "broad agreement"; my



7156 L. P. GRISHCHUK

conclusions are considerably diferent &om what was de-
scribed in the preceding paragraph. I will be arguing
that there is no linear density perturbations at all at the
purely exponential (de Sitter) infiationary stage for mod-
els governed by the scalar Beld (1). Density perturba-
tions can only arise as a result of violation of the purely
exponential expansion and transition to the radiation-
dominated stage. Regardless of how close to zero was
the derivative of the Hubble parameter "when the scale
A crossed the Hubble radius during infiation, " the today' s
amplitudes of density perturbations are Bnite. The axn-

plitudes of gravitational waves are typically a little larger
than the amplitudes of density perturbations, at least
in the long wavelength limit where spectra are smooth
and have the power-law behavior. Correspondingly, the
contribution of density perturbations to the quadrupole
anisotropy is never much larger than the contribution of
gravitational waves. In fact, it is somewhat smaller in
the limit of long waves.

As for the statistical properties of cosmological per-
turbations and, hence, the statistical properties of the
CMBR Huctuations caused by them, it was already em-
phasized [12] that they are determined by the statistics of
quantum states being generated, namely, by the statistics
of squeezed vacuum quanta~~ states.

Since the conclusions of this paper are in disagree-
ment with other publications, we will present detailed
derivations (which could have been omitted otherwise)
in order to make it possible for the interested reader to
compare the present calculations with those of other au-
thors. The structure of the paper is the following. In
Sec. II we present the general equations for density per-
turbations. The equations are applicable for matter with
the energy-momentum tensor of arbitrary form. They
use only the defining property of density perturbations,
namely, that the perturbations are based on the scalar
functions of spatial coordinates. In Sec. III we apply
these equations specifically to the initial stage (i stage)
of cosmological evolution which is assumed to be gov-

erned by the scalar Beld with the energy-momentum ten-
sor (1). No ass»mptions about a particular form of the
scalar field potential V(y) or a particular (for exainple,
infiationary) type of expansion are being made a qadi

oui. The time-dependent coefficients of the differential
equations for the perturbations are expressed in terms of
the scale factor (and its derivatives) only. This refiects
the underlying interaction of the perturbations with the
variable gravitational pn~p Beld. The determination of
all unknown functions describing density perturbations
is reduced to solving a single differential equation which
is very similar to the equation for gravitational waves.
The behavior of solutions during a xnore or less gradual
transition &om the i stage to the radiation-dominated
stage (e stage) is studied in Sec. IV. In order to deal
with simple exact solutions at both stages we will be in-

terested in a sharp tr~~~ition &om the i stage to the e
stage. In Sec. V we apply the perturbation equations to
the perfect auid matter with arbitrary velocity of sound.
%e present solutions to these equations at the e stage
and the matter-dominated stage (m stage) in the form
convenient for matching the solutions at all three stages

(i, e, m). In Sec. VI we join the solutions, Bnd the coef-
Bcients which were undetermined so far, and express the
solution at the m stage entirely in terms of the functions
(and their Brst time derivatives) describing the pertur-
bations at the time of joining the i and e stages. As
a preparation for quantization of the perturbations, we

briefiy discuss the density and rotational perturbations
of matter placed in the Minkowski space-time, that is
neglecting gravitational fields (Sec. VII). The quantiza-
tion of density perturbations is performed in Sec. VIII.
This procedure essentially repeats the steps which have
been previously done for gravitational waves and rota-
tional perturbations [12,2]. The quantum mechanically
generated perturbations are placed in squeezed vacuum
quantum states. Classically, one can think of the pertur-
bations as of a stochastic collection of standing waves.
The justification and necessity of the so-called Sakharov
oscillations in the spectra of density perturbations is dis-
cussed. In order to get the analytic results as detailed as
possible, we specialize the scale factor of the i stage to
the g-time power laws which include infiationary mod-
els. This allows us to derive concrete power-law spectra
of density perturbations at the m stage. In Sec. IX we

derive an exact formula for the angular correlation func-

tion of the CMBR temperature variations bT/T caused

by squeezed density perturbations. The multipole de-

composition of the correlation function begins &om the
monopole term. The contributions to the monopole and
dipole terms produced by individual waves with wave-

lengths exceeding l~ are strongly suppressed, which is in
agreement with previous results [13]. Nevertheless, one
should be aware that not only the entire quadrupole but
also soxne little portions of the measured mean tempera-
ture of the CMBR and its dipole variation may be caused
by perturbations of quantum mechanical origin. For one
and the same cosmological model, the contribution of
density perturbations to the quadrupole anisotropy of
the CMBR is never much larger than the contribution of
gravitational waves, at least for models considered here.

(In Ref. [28] one can Bnd more details about the origin
of disagreements with the previously published papers. )

II. GENERAL EQUATIONS FOR DENSITY
PERTURBATIONS

The unperturbed spatially Hat FLRW (Friedinann-
Lemaitre-Robertson-Walker) cosmological models are de-

scribed by the metric

(2)

The scale factor u(g) is governed by matter with the un-

perturbed values of energy density 6p, Tp = —6p, and
pressure pp, T; = ppb;:le k.
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where e = SnG/c and a prime is d/diI, d/diI
(a/c)d/dt. The Hubble parameter is H = a/a = ca'/a .

It is convenient to introduce two new functions of the
scale factor:

ds = —a dpi —(b;~ + h;~)dx'dH

= —2
goo — a

& goi —0
&

g;,. = a' (1+hQ)b;, +h&n 'Q;,
(9)

a'
a(g) = —,

a V(n) =1—— (4)

In terms of t time the function p is p(t) = (H—/H2).
Because of Eqs. (3) one has

The function h(il) represents the scalar (proportional to
b,iQ) perturbation of the gravitational Beld while the
function h~(g) represents the longitudinal-longitudinal
(proportional to n~n~Q) perturbation. The general ex-
pression for T„"including perturbations can be written

20!
~(«+po) =

The function p(g) becomes a constant if a(i1) is governed
by matter with the efFective equation of state pp

——q6p,
where q = const. The scale factor a(g) takes on the c-
time power-law behavior

a = 4[&~'~ (6)

(il must be negative for expanding models with 1+p & 0)
where lp and P are constants. The constant lp has the
dimensionality of length. It follows from Eqs. (3) and (4)
that 7 = (2+P)/(1+P), q(P) = (1—P)/3(l+P), where
the parameter P can vary in the interval —oo & P & oo.
In particular, p = 2 at the radiation-dominated stage,
and p = 3/2 at the matter-dominated stage. Note that
p = 0 in case of purely exponential (de Sitter) expansion
for which a(t) e+', H = const, a(g) = long~ i, P = —2.

One can also derive from Eqs. (3) the relationship

Q', +n'Q =0

pp 2 y' 1 2 (= —1+ —p — = ——(ln aa p) .
6p 3 30! f 3ck'

The ratio po/eo becomes a constant for the scale factors
(6) namely pp/ep q(P) . In particular, po/eo goes to
—1 in the limit of P = —2.

The construction of density perturbations [14,15] (see
also [16]) is based on the scalar functions Q(xi, z2, x )
satisfying the equation

0 1 1 ITo = —« ——ei Q T' = —('Q ',0

1&'"= pob,
"+ —(pi + pi) Qb,". + ,n—'piQ; (10)

The form of Eqs. (9) and (10) is based solely on the def-
inition of density perturbations and our choice of syn-
chronous coordinate systems. In all other respects, the
representation (9) and (10) is general. The particular
notations for arbitrary functions describing the pertur-
bations are chosen for later convenience.

The arbitrary functions h(g), hi(g), ei(rl), pi(il), p~(g),
('(il) should satisfy altogether the perturbed Einstein
equations

3ah'+ n h —o,h) ——]c~g,
h'= Q',

—h" —2o.h'= rcpg,

2(hi'+ 2ahI —n h)= epi.

(11)
(12)
(13)
(14)

There are too many unknown functions to be found from
Eqs. (11)—(14). This requires us to specify a model
for matter and its energy-moment»m tensor. We will
consider three consecutive stages of expansion: i stage
governed by the scalar field (1), and the subsequent e
and m stages governed by perfect Quid with the energy-
moment~nn tensor

T„"= (e+ p)u„u" +pb„". (15)

The equation of state at the e and m stages is p = se
and p = 0, respectively.

valid in three-space dl = dx + dz + dz . For each
]2 22 32

wave vector n, one can choose two linearly independent
solutions to Eq. (8) in the form e*n'" and e '"'". From a
given scalar field Q one can construct a vector field Q;
and two tensor Belds b;s Q and Q; i, = n;nsQ. For e—ach
n, the general perturbation of the energy-momentum ten-
sor and the accompanying perturbation of the gravita-
tional field can be written as a sum of products of time-
dependent amplitudes and spatial functions introduced
above.

Without restricting in any way the physical content of
the problem, it is convenient to work in the class of syn-
chronous coordinate systems. (At this point the reader
may have to be ready to exhibit certain resistance to the
pressure &om the proponents of the "gauge-invariant"
formalisms. ) Using the q-time coordinate, one can write
the general expression for the metric tensor including per-
turbations as

III. DENSITY PERTURBATIONS AT THE
INITIAL STAGE OF EXPANSION GOVERNED

BY A SCALAR FIELD

1« =
2 (Fo) + V(y),

1
2 (&o) —V(P)

(16)

(17)

By summing up Eqs. (16) and (17) and comparing the
result with Eq. (5) one can derive the equation

~(rpo)2 = 2cx2p

At the i stage, the evolution of the scale factor a(g) is
determined by the unperturbed homogeneous scalar Beld
rp = yp(g). The unperturbed values «pp are given by
Eq. (1):
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It follows kom this equation that p & 0 for the scale
factors governed by the scalar field (1). The de Sitter
case corresponds to (pp = 0 pp = const and Ep = —pp ——

V(happ) = const.
If yp g 0, one can use the equation

ep = Mcx(Ep + pp)

which is a consequence of Eq. (3), and obtain, with the
help of Eqs. (16) and (17),

Thus, if one knows the function h(g), all other func-
tions describing the density perturbations, namely, h~(g),
pq(g), eq(g), and ('(rl), can be found with the help of
Eqs. (29), (28), (27) [or, equivalently, (11)],and (12). To
derive the equation for h(g) we substitute Eq. (29) into
Eq. (30) and obtain

+ h 3op ——Ili v ~ 'Y' ~

yp'+2o. yp+ a V~ = 0, (19)

where V~ = dV(rp)/dy, the derivative is taken at y = yp.
The further useful relationships following from Eqs. (18)
and (19) are

a' 1 p'
+

2

cx' 1 p'
2a+ —+ ——

A 2

(20)

(21)

The perturbations of the gravitational field are associ-
ated with the perturbations of the scalar field. We will
write the perturbations of the scalar field as

v = v p(n) + v ~(n)& (22)

Having at our disposition the energy-momentum tensor
(1) and the definitions (22), (9), (10) we can directly
calculate the functions eq, $', pq, p~.

2E'y= pp(p~ + G pyV&,
I I

PoV'1 )

IJi= VpV ~
—~ V~V+

(23)
(24)

(25)

(28)

I

~~&= —& +&
l
2+2 —+ —

~

~

II 1 A
(27)

We will now assume that pip g 0. The de Sitter case

yo ——0 will be considered separately at the end of this
section. It follows from Eq. (24) that rpq ———('/yp. In-
serting this value of yq into Eqs. (23) and (25) and using
Eqs. (20) and (21), one can express eq, pq, in terms of
h(g):

(
+S' n2 —2~'+ 2&~2 ————

+n noh = 0. (31)

Equation (31) is a third-order differential equation.
There should be no wonder (and no panic) on this oc-
casion. One of the solutions to this equation we know in
advance; this solution is

(32)

where C is an arbitrary constant. We could have ex-
pected the existence of this solution, even before solving
the equation for h(g), because the perturbation of this
form can be generated by a coordinate transformation
which does not violate our choice of synchronous coordi-
nate systems and, hence, does not destroy our initial form

(9) of the perturbed metric. [One can easily check that
the function (32) is indeed a solution to Eq. (31).] Con-
cretely, one can perform a small coordinate transforma-
tion C, ; Cg=g ——Q, z'=z' ——Q" a 'dg

2G 2

In terms of new coordinates g, x' the transformed com-
ponents (9) take on the form

goo = ~ ('9) go' = 0

g;s = a (g) (1+hQ)boa —h&~ 2Q, ', I

(28)

We should now return to the perturbed Einstein equa-
tions (ll)—(14) making use of Eqs. (27) and (28). Equa-
tion (11) can be written as an expression for hI(g) in
terms of h(g):

h, = —h +h
~

a —2———~+n h, (
7) (29)

Equation (12) expresses (' in term:i of h'. Equation (13)
is satisfied identically. Equation (14) reads as

h.,"+2~I', — 'S = 0

h, = h+C —, h) ——h)+Cn a dg

The same try~formation should be applied to the com-
ponents of the energy-xnoxnentnm tensor. Even if the
original h, h~ are zero, the transformed h, h~ are not zero.
After erasing the overb Lrs in the transformed components
of the metric, one returns to Eq. (9). The freedom of
choosing H~Herent &eely falling coordinate systexns and
corresponding spatial slices g = const gets represented in
the form of freedom to choose diferent solutions kom
the family of aIl solutions for the perturbations. AQ

choices of C are equally well "physical. " The integral
in Eq. (33) produces an additional integration constant
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which re8ects the possibility to make a purely spatial
tra»sformation and to shift hY by a constant value, but
we will not actually need this coordinate freedom. It
follows from Eq. (33) that there are two functions (and
many algebraic and deferential combinations constructed
from them) that do not contain C at all:

-=h'+- h

The solution (32) allows one to reduce the third-order
difFerential equation (31) to the second-order differential
equation. To reach this goal we use the function u(g):

u = h'+mph (34)

Obviously, this function vanishes on the solution (32). By
substituting Eq. (34) into Eq. (31) we derive the equation
for u(g):

(
+ ~ 2~p —— + tc A —20.' —A'—

= 0. (35)

Note that the coeKcients of this difFerential equation de-
pend exclusively on the scale factor and its derivatives.
This fact is a manifestation of the underlying interaction
of the perturbations with the cosmological pump BeM.
No special assiImptions about the shape of the poten-
tial V(y) or such things as "nonsimultaneous rolling the
scalar field down the hill" have been made whatsoever.

Our next move is to transform Eq. (35) to the form
similar to the equation for gravitational waves. This will
allow us to use certain results derived previously for grav-
itational waves and rotational perturbations [17,2]. In
order to get rid of u' we introduce the function p(g) ac-
cording to

The efFective potential U(g) can also be written as
U(q) = (a~p)"/a~7 which reduces our basic equation
to the form

(a Y)"P+P— =0 (38)

(The function a~p can be related with the function z
discussed in [18],see also the early papers [27].)

Let us recall [3] that in the case of gravitational waves
the potential U(g) consists only of the Up(g) term, so
that the basic equation is

II
II a

p, +p, n ——=0
a (39)

p(g) = (ng) Aq J&+i (ng) + A2J &p+xl(ng) . (40)

Having two linearly independent solutions to Eq. (38)
one can construct h(g) and, hence, find the rest of func-
tions describing density perturbations. It follows from
Eqs. (34) and (36) that

The gravitational wave potential Uo depends only on the
first and second time derivatives of the logarithm of the
scale factor: (ln a)', (ln a)". The potential U(g) for den-
sity perturbations is more complicated and includes also
(ln H)', (ln H)", and (ln H)'". We note, however, that
the potentials are exactly the same, and, therefore, the
basic equations and solutions for density perturbations
and gravitational waves are exactly the same, if p is con-
stant, that is for the scale factors (6). For this class of
p»mp fields, the general solution to Eq. (39) can be writ-
ten in the form (for non-half-integer P)

(36)

and

hl
a

(41)

&" + ~[n' —U(~)] = 0,

where

2
1 (

U(g) = a
4 ~7)

= Up(@) + U {g),
II

Up(g) = n2 + a' =—
a '

U~(9) = —~'Y'Y ——'Y + —'Y'Y
1, 1,2 1

4 2

+ 'i~)

It follows from Eq. (18) that the function p(g) is non-
negative if the scale factor is governed by the scalar field

(1) which we study here. However, Eq. (35) is formally
applicable to negative p as well. It may happen (as the
author thinks) that Eq. (35) has a wider domain of va-
lidity and can be used, for other models of matter, with
negative p too. If this is the case, one is free to modify
Eq. (36) by using /~7~ instead of ~p. Anyway, with the
help of Eq. (36) one derives the equation

Ck Ck

h(g) = — p~p dg + —C;,a a (42)

1 1
rP g (g) = —P —v 'Y h (43)

where gp is some initial time where the initial conditions
are to be imposed. The constant C entering Eq. (32)
is denoted C; at the i stage and will have the labels e
and m at the e and m stages. All (complex) solutions to
our perturbation problem for a given wave vector n are
completely determined by three arbitrary and indepen-
dent (complex) constants. Two of them define a solution
to Eq. (38) [these constants are Az, A2 when Eq. (40) is
applicable]. The third constant, C;, describes the remain-
ing freedom in our choice of coordinates. This remaining
&eedom is not a misfortune of the theory. On the con-
trary, it will later allow us to join our coordinate system
right to the comoving synchronous coordinate system at
the m stage.

One can show by using Eqs. (24), (12), and (41) (and
ass»ming happ g 0) that
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One can also find with the help of Eqs. (11), (13), and
(41) that

IV. LATE TIME EVOLUTION OF THE
PERTURBATXGNS AT THE INITIAL STA.CE

P1

(, , l (
p+y, 2 —+2~ —a~p a+2 —+~ h')

p' —y,
l
4a+ 2~ +3a~pah

(44)

The quantity c&, where cr jc = pr/er, plays the role of
the velocity of sound for the high-frequency scalar field
oscillations (see also Sec. VII).

Similarly to what is true for gravitational waves, so-
lutions to Eq. (38) are different for the high-frequency
and low-f'requency regimes. In the former case, n ))
lU(g)l and p, e+'"". In the latter case, n2 « lU(g)l
and two independent solutions are pr a~p, p2

a~p f dg/(a~p) . The functions pr, p2 generalize the
corresponding solutions for gravitational waves by replac-
ing a with a~p. Specifically for the scale factors (6), the
solutions p,1, p,2 are p1 g + and p, 2 g, in agree-
ment with Eq. (40).

In the high-frequency regime, the term y,
' dominates

the other terms in Eq. (44). As one could expect, in
this regime, the velocity of sound is equal to the velocity
of light, c&2

——c . In the low-&equency regime, that is
when a given mode enters the underbarrier region, the
dominant solution is pr (for a review, see [19]).Using this
solution in Eq. (44) one can show that, in this regime,
pr/er q(P), that is the "velocity of sound" is the same
as the one defined by po/eo. In particular, pr/er goes to
—1 for the low-&equency scalar Geld solutions at the de
Sitter stage, P = —2.

Equations (31), (35), and (38) have been derived un-
der the condition yo g 0. However, the final formula (42)
gives the correct result h(q) = C;/lp ——const in the de
Sitter limit p = 0, yo = 0. One can analyze this case sep-
arately, referring to the starting Eqs. (23)—(26). One can
see that Eqs. (24) and (12) give (' = 0, h = const. Equa-
tions (13), (25), and (23) give pr ——0, V~ = 0, er ——0.
Finally, Eq. (11) requires h[ ———gn2h = —gn2C;/lo. But
this solution for h, h& is precisely solution (33) which can
be eliminated by a coordinate transformation. In the
de Sitter case governed by the scalar field (1) there is
no density perturbations at all. Note that the function
&pr(g), Eq. (22), remains arbitrary and the wavelengths
of these Suctuations are growing in the course of expan-
sion. . If one wishes, one can attach to y1 such words
as "in6ation is pushing the waves beyond the de Sitter
horizon. " Nevertheless, the result will be zero, as long
as y1 is not accompanied by perturbations of the grav-
itational field. This is an instructive example in order
to realize that to "stretch the waves outside the causal
horizon" is not all we need for generation of density per-
turbations (likewise, it is not sufficient to simply stretch
the electromagnetic waves "beyond the horizon" in order
to generate photons).

The main uncertainties about the evolution of the very
early Universe refer to the times that preceded the epoch
of the primordial nucleosynthesis. Whatever was the ini-
tial stage, it supposedly went over by that epoch into the
radiation dominated stage governed by the scale factor
a(g) = loa, (g —g, ). The constants a„g, are to be de-
termined from the continuous joining of a(g) and a'(g)
at the time g = qr of transition &om the i stage to the e
stage. If the i stage is described by the scale factors (6),
one derives

4+3P P
p(g) = + tanh[e(g —gr)] (45)

For large negative values of g the function (45) goes to
(2+ P)/(1+ P), and for large positive values of g it goes
to 2. We may surround the transition time g = g1 by a
thin "sandwich" with boundaries at g1 —o and g1 + r.
The asymptotic values of p(g) are already reached with
arbitrary accuracy at the boundaries, if e is sufficiently
large, e )) 1/0.

The function (45) can be integrated, see Eq. (4), to
produce the function a(g):

q p
a(g) 1+P 2(1+P)

~(~ —~1) + &
—~(&—~1)

+—ln
2

(46)

Again, for sni6ciently large e, the function a(g) quickly
approximates (1+P)/g to the left of the transition point,
and 1/(g —g, ) to the right of the transition point. These
are the values of n(g) that are appropriate for the i stage
(6) and the e stage, respectively.

The divergent functions p', p'2, and p" participate in
the potential Ur (g) [Eq. (37)]. The function p' grows as
~ at the point g = g1. The function p" is equal to zero at
q = g1, but it grows as e2 slightly to the left of this point,
and it grows as —e2 slightly to the right of this point. We

a. = —(1+P)lnrl~ 1+p
In further applications, we intend to use simple solu-

tions (40), (42) and to make their appropriate joining
with perturbations at the e stage. However, the function
p(g), being equal to the constant p = (2+P)/(1+P)
at the i stage, and to the constant p = 2 at the e
stage, experiences a finite jump at the transition point

This presented no problem for gravitational
waves, since p'(g) did not enter the gravitational wave
potential Uo(g). But this becomes important for den-
sity perturbations, since the Ur(g) part of the potential
acquires increasingly growing values at the end of the i
stage for steeper and steeper transitions.

To deal with the problem, we introduce a parametrized
set of smooth functions p(q) that approximate the step
function in the limit of the parameter e going to infinity:
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(
V = p —p, o;+ —— (~'r'

47
E ~&)

the basic equation (38) takes on the form

(a'v)' = n2a~plJ—, (48)

The integration of this equation over the thin "sand-
wich" shows that v~v —g +p —v~p —g p ~ In other words,

I
the function p,

' —p(a + 2 ~) taken right at the begin-
ning of the e stage is equal to the value of this function
taken right at the end of the i stage (6) times the fac-

tor ~ y+&~. In addition to the conditions p g g1 0 ——

'7~v —polyp
= 2) IJ[p p~ p = p~p ——p~+p 'this estab-2+P

lishes the rules for going through the "sandwich. "

ass»~e that the transition to the e stage has completed at
ri = rii+0', and we let o to go to zero. The function Ui (i1)
compresses and stretches to the arbitrarily large positive
and negative values when cr goes to zero and e goes to
infinity. Examining Eq. (38), one can expect that the
value of p, '(g) at ri = rii+o' will be difFerent from the value
of y,'(ri) at ri = qi —0. The integration of p" in the limits
&om g1 —a to gq + 0. gives a jump in p,

' which depends
on the value of the integral &om the divergent part of the
potential Ui(rI). Fortunately, it is not p'(g) itself, but a
particular combination (~p/a)[la' —p,(a+ p'/2p)] that
we will need to know in our further calculations. This
simplifies the analysis. Because of Eqs. (29) and (41) this
combination is precisely the function v(ri) introduced in
Sec. III.

In terms of the function v(g), where

V. DENSITY' PERTURBATIONS IN THE
PERFECT FLUID MATTER

We will now consider Eqs. (11)—(14) at the perfect
Quid stages governed by the energy-moment»~ tensor
(15). Similarly to the scalar field case, the longitudinal-
longitudinal part of stresses vanishes, pl = 0. For the
easier handling of arbitrary ~q, pq one can introduce the
following notations: pi/ei = cl /c and pp/ep = c+/c
see Eq. (7). These definitions are convenient but, gen-
erally speaking, they have only formal meaning, since
both pi/ei and pi/ep can be negative. However, in cer-
tain regimes, the quantity cl is a genuine longitudinal
velocity of sound (see Sec. VII). Our first intention is to
derive the equation for h(ri), analogous to Eq. (31) and
valid for arbitrary nonzero pi/ei. Specific cases cl ——sc
and cl ——0 will be considered separately.

In order to derive the equation for h(g) one can es-
sentially repeat the steps that have lead to Eq. (31).
Find h'i(q) from Eq. (11) and plug it into Eq. (14). Use
Eq. (13), the first derivative of this equation, and the def-
inition of cl2/c2. As a result, one arrives at the equation

2 2 I
h +6 3o, + op+3a ——III 1/ (cl )

C Ci

2 2 I 2
+h, n —+4a +6a ——2o,2 l 2 2 l ( l) 2 Cl+ hn op-

C2 C2 C2
i

C2

= 0. (49)

Now, introduce the function u(g) according to Eq. (34)
and use it in Eq. (49). Equation (49) can be reduced to

II I Cl2 Ci2
I

2 Ci2 Ot
I

Ci2
u +u 3o, +3+—— +u n —+' o. + — 3a——

c ci c a c

I ~l/ ~I'+ —+2
cl j a (o!)

c2 c2 C2 c2 ' c2 '
+h 3n2~ —', 3a~ —', ——', — ', + ', =0. (50)

C C C Ci C~

The last term in this equation vanishes if

c2 c2 ' c2
3A —— = 3Ck ——

C C Ci

(c!)'
C2 (51)

which integrates to

c2 const
c aa2p

1s
An assumption which is usually made for perfect Buids

Note that Eq. (52) is certainly true for matter with the
equation of state p = qe, where q is a constant, but
Eq (52) is .not true in general, and it is not true for
the scalar field matter (1) [unless one considers the un-
derbarrier region where Eq. (52) is true approximately,
see Sec. III].Because of Eq. (51) the last term in Eq. (50)
cancels out. [If we have not assumed (51), the func-
tion h(iI) = C(a/a) would not have been a solution to
Eq. (49).]

We can now introduce the function v(rI) according to
[compare with Eq. (36)]

c2 = c2
e (52) (53)
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2
v" + v n ——W(g) = 0

c2

II II

W(q) =-
a 0!

(~z
+2

(as~pc, )"
n2~pc,

c,)'

In terms of v(rI), Eq. (50) takes on the form

(54)

C, Bg
h(q) = —,'+ + B2+.", (60)

and time as they should do for sound waves. However,
if one considers these oscillations at intervals of time
shorter than their period, they may appear as consist-
ing of growing" and "decaying" solutions. In particu-
lar, this happens if one considers relatively long waves,

~(gi —g, ) = yi (( 1, at their first oscillation since~3
the beginning of the e stage, that is while the condition

~(g —g, ) (( 1 is satisfied. Under this condition, the

function h(g), Eq. (58), can be approximated as

The potential W(g) depends exclusively on the scale fac-
tor and its derivatives. Having a solution v(g) to this
equation and using Eqs. (53) and (34), one can con-
struct the function h(rI) and the rest of perturbations
Similarly to the scalar field case, all solutions for per-
turbations with a given n are defined by three constants
one of which describes the remaining coordinate freedom.
These constants are expressible in terms of the constants
given at the preceding i stage through the joining of the
perturbations at the transition time g = gq &om the i
stage to the perfect fiuid stage.

We will now consider Eq. (54) specifically at the
radiation-dominated stage p = 3e. We have c& ——c, =
(1/3)cz, p = 2, and the scale factor

a(rj) = lpga, (g —il, ),
where the constants a„q, are to be determined from
the continuous joining of a(g) and a'(rI) at the transition
time g = qi. The potential W(rI) vanishes. Equation (54)
simplifies to the familiar equation

where
Bg+ B2n= ~(n —n.),

—in(Bi —B2)
B2 ——

2i/34a.

C, = C+ Bi~1 —e '"'
~3lpa n

-&~
~l

~ - ~'"'
I I)

The common practice [15] is to use the coordinate
keedom for elimination of the "most divergent" term in
Eq. (60), which is also the "most decaying" term, if one
goes forward in time. This is achieved by such a choice
of C, that C, = 0, and the first term in Eq. (60) van-
ishes. Then, the energy density perturbation be/ep [use
the definition

v +3% P=O (56) be/ep —— Q

which describes the time-dependent part of sound wave
oscillations in the radiation-dominated fiuid. In what fol-
lows, we will be using the general solution to this equa-
tion written in the form

—a ~ (g —g, ) + B c ~ (g —g, ) (57)

A
h(g) = — vs+ —C,

a a (58)

All other functions are expressible in terms of h(g). In
particular,

h', = —[3h" + 9ah'+ n'h]/ 1
(59)

The general solution (57) is always oscillatory in g
time. The perturbed energy density, pressure, and the
associated gravitational field h(g), hi (rI) oscillate in space

where Bi, Bz are arbitrary and independent (complex)
nnmbers for each individual wave vector n.

The function h(q) is determined by a known solution
for u(g) and a coordinate solution with arbitrary constant
C,:

and calculate ~ei according to Eq. (11)]can be approxi-
mated as

-n'B, il + -n'B2g'+ Q
Ep (9 2

(61)

The part of Eqs. (60) and (61) which depends on the coef-
ficient Bq is usually called the "decaying" solution, while
the part with the coeKcient B2 is called the "growing"
solution.

Despite the possibility of identifying (quite artificially)
the "growing" and "decaying" solutions, density pertur-
bations at the e-stage form a collection of traveling sound
waves with arbitrary amplitudes and arbitrary phases,
as long as constants Bq, B2 are arbitrary and indepen-
dent. One should not think that simply because the
sound waves have spent some time "beyond the horizon, "
ng && I, they would transform into standing waves at
later times of their history after they came "inside the
horizon, " ng » 1. To illustrate this point, let us take
into account the spatial part of the perturbations and
consider the contribution h (g, x) of a given mode n to
the total field h(g, x) = g„h (q, x). This contribution
can be written as
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(rl «) Q e
' + Q e sn'x

(
B —~1lt7 B stjt7

[ + ]
B t7 B — p

= 2/Bzn/ cos(nrem —n. x —pzn) —2[B2nf cos(np+ n x+ p2n), (62)

where Bqn ——~Bqn[e'~', Bqn ——(B2n[e*~'". The last line
in Eq. (62) shows explicitly that, in general, one is dealing
with waves traveling in opposite directions with arbitrary
amplitudes and arbitrary phases. A standing wave can
only be "generated by hand, " by assuming that the con-
stants Bq, Bz are strictly related. This happens if one
declares that he/she is only interested in the "growing"
solution and puts Bq ——0. Then, the complex ampli-
tudes Bqn, B2 become related: (B2n) = (—1)"+ )Bqn),
p2n = yqn —kz', (k = 0, 1,2, . . .), and the last line in
Eq. (62) can be transformed to

hn(q, x) 4iBi~i cos ng cos(n x+ pin)

which is a standing wave indeed.
Standing sound waves at the e stage are responsible

for the so-called Sakharov oscillations [20] in the power
spectr»m of density perturbations in the present Uni-
verse, at the m stage. As we have shown, standing
sound waves cannot originate somehow automatically at
the e stage, simply because of the transition &om the
"growing"/"decaying" regime to the oscillating regime
(see also [21]). If one works with classical density per-
turbations at the e stage and makes no additional as-
sumptions, one can say nothing about the necessity of
standing waves, except of postulating this. The point
of this discussion is that the quantum-mechanical gen-
erating mechanism, which we are considering in this pa-
per, does reaDy create standing waves. Standing waves
arise for gravitational waves, rotational perturbations,
and density perturbations. The physical reason for this
is that the waves (particles) are generated in correlated
pairs with equal and oppositely directed momenta (the
two-mode squeezed vacuum quantum states). This is
true for waves of any wavelength, as soon as conditions
for their generation are satisfied. Technically, as we will
see later, the second term in Eq. (60) taken at the begin-
ning of the e stage turns out to be much smaller than the
third term in Eq. (60), that is Bq + B2 0 for yz (& 1.

We should now discuss a great difFerence between
sound waves and gravitational waves with regard to their
evolution in time. The velocity of sound waves at the
e stage is only ~$ times smaller than the velocity of
gravitational waves, but their amplitudes behave dras-
tically difFerent. The amplitude of a gravitational wave
decays as a ~ in course of time. The amplitude of a
sound wave, as one can see from Eq. (58), decays as a
since n a . This leads to a difFerence in solutions
even for relatively long waves which did not complete
even one cycle of oscillations during the entire e stage
&om q = qq to g = g2. As an illustration, let us consider
sound waves which barely reached the osciDating regime
by the end of the e stage. Their wave numbers satisfy
the condition ~(g2 —g,)—:—" = yz 1. These are thenc
waves whose wavelength was of the order of the Hubble

a(g) = lpa (g —g ) (68)

The scale factor and its 6rst time derivative are continu-
ous at the time g = q2 of transition &om the e stage to the
m stage. Therefore, a = a, /4(g2 —g, ), q~ = —g2+2@,.
It follows from Eqs. (1$) and (14) that the general solu-
tion for h(g), h~(g) has the form

t

radius at the time of transition &om the e stage to the
matter dominated m stage. Ass»ming that the present-
day Hubble radius is l~ 6 x 10 Mpc and that the
present-day scale factor u(g~) is a(g~) 10 a(g2), their
wavelength today A, = 2za(gR)/n, is about 220 Mpc.
The usual practice, in addition to eliminating C„ is to
concentrate on the "growing" solution, that is to assume
that at the beginning of the e stage the second term in
Eq. (60) is smaller, or at least not larger, than the third
term. Under these conditions, the final numerical value
of the function h(g) is of the same order of magnitude
as the initial value, h(qz) h(gq), for the wavelengths of
our interest. In other words, if the preceding i stage pro-
duced h(g) with some initial numerical value h(gq), this
number will efFectively be transmitted to the beginning
of the m stage.

However, in the very same coordinate system where
the "most decaying" term in Eq. (60) was eliminated,
the time derivative h'(g) was left large. The final value
of h'(g) for the waves of our interest is h'(q2) nh(g2).
According to Eq. (12), the function h'(g) describes veloc-
ity of matter. This velocity will be inherited by matter at
the matter-dominated stage. But this is not velocity of
the fiuid elements with respect to each other, this is not
velocity describing deformations of the medium, and the
functions h'(g), hl(q) are not the ones that we may use
for our later calculation of the variations in the CMBR.
The function h'(g) describes velocity of matter with re-
spect to the coordinate system that we have chosen for
our convenience of eliminating the "most decaying" term.
At the m stage, however, we are more interested in the
comoving coordinate system. We are interested in the
density contrasts and deformations of the fiuid itself, we
are interested in the components of the accompanying
gravitational field that we may use for calculations of
bT/T. We need a coordinate system which provides van-
ishing of h'(g) by the end of the e stage. This requires a
difFerent choice of 0,. Under this new choice of C„ the
first term in Eq. (60) survives, and numerically the same,
as in the previous example, initial value h(gq) transforms
into a small number h(g2) y&2h(gq) by the beginmng of
the m stage. This is what we need to keep in mind when
we will compare the amplitudes of density perturbations
and gravitational waves.

Finally, let us consider density perturbations at the m
stage, p = 0. At this stage, one has c& ——c, = 0, p = 2,
and the scale factor
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The energy-density and velocity perturbations can be
found from Eqs. (11) and (12). Similarly to the pre-
ceding i and e stages, the perturbations are completely
determined by three constants Cq, C2, C one of which,
C, re8ects the remaining coordinate freedom.

The constant C is entirely responsible for a possible
relative velocity of our fiuid with respect to a chosen syn-
chronous coordinate system, see Eqs. (12) and (10). A
given coordinate system is not comoving, Ts g 0, as long
as C P 0, h' .f 0. But we know that for a dustlike fiuid
without rotation one can always introduce a coordinate
system which is both synchronous and comoving. This is
refiected in our ability to remove the C term from h(g)
and h~(g) by a coordinate transformation (33). Thus,
the choice C = 0 in Eq. (64) is not a restriction of the
physical content of the problem, it is an allowed choice
of the coordinate system.

It is here that we will eventually restrict our coordinate
freedom; we will put

C =0 (65)

The constants C, and C, will not be arbitrary any longer,
they will be determined from the continuous joining of
solutions. We need the comoving coordinate system for
simple and appropriate formulation of the bT/T prob-
lem. We are interested in the temperature of the CMBR
and its anisotropy seen by a comoving observer, that is
by an observer whose world line is one of the matter's
world lines. One of these idealized comoving observers
is an observer on Earth (up to accuracy of some nonzero
peculiar velocity, local rotation, etc.). We are much less
interested in the feelings of an observer who wanders in
the Universe with an arbitrary time-dependent velocity.
In the comoving coordinate system, the world line of a
comoving observer is described by the simple equation
x' = const.

Upon the choice of C = 0, the perturbations reduce
to

h(q) = Cg,

hi(g) = —Cgn (g —g ) ——C2
1 z 2 1 (g2 —g )s

3 (g —g )s (66)

From Eqs. (66) and (ll) one can derive the familiar ex-
pression [15]

—= —C, (~-& ) —-C, (nz —g~)
eo 20 6 (g —g )s

(One may wish to correct a misprint in Eq. (115.21.) of
Ref. [15]: the decaying solution behaves as g s, not as
the printed g z.) As long as the constants Cq, Cz are ar-
bitrary, the power spectr»~ of the density perturbations
is arbitrary. In particular, there are no Sakharov oscilla-

3 0!h=C, + —C, I'=--—C
G 2 G

h, = —Cn (g —g )+ n—C +C, , (64)
1 2 1 2 (g2 —g )
5 '9 'g~

tions, a priori, and they do not arise simply because of
the transition from the e stage to the m stage. For in-
stance, one can start from a perfectly smooth spectrum
at g = g2 and extrapolate these data back in time up to
the beginning of the e stage.

For the further calculations of hT/T we will need the
first time derivatives of the gravitational Geld perturba-
tions at the m stage in the comoving coordinates. Since
for the scalar component of the perturbations one has
h' = 0, it is only the longitudinal-longitudinal compo-
nent hl that is effective.

VI. JOINING THE PERTURBATIONS AT THE
THREE STAGES

We are now in the position to start our operation of
joining the solutions at i, e, and m stages. We want
to derive from the first principles the expected density
perturbations at the m stage. Of course, the result will
depend on the unknown behavior of a(g) at the i stage.
But this is precisely why we are doing this study: we

try to learn something about the evolution of the very
early Universe by deriving the expected variations in the
CMBR and comparing them with the observations.

The general rule for joining solutions to Einstein's
equations is to match from the both sides the intrin-
sic and extrinsic curvatures of the transition hypersur-
face [22]. For our solutions written in the class of syn-
chronous coordinate systems, this translates into the con-
tinuity of the spatial metric and its first time derivative.
Since we have already assumed that a(g) and a'(g) join
continuously, it is the continuous joining of h(g), h~(g),
h'(g), and hI(g) that should be ensured. In fact, it is suf-

ficient to follow h(q), h'(g), and hI(q) as h~(g) is deriv
able from hI(g) at all three stages up to the integration
constant which can be removed by the remaining inte-
gration constant in Eq. (33) anyway. It is convenient to
write 6& at the i and e stages, respectively, in the form
[use Eqs. (29), (59) and (42), (58)]

(
h', = —h+ p' —p, ~ + ——

cx a I 2p~

(68)

We will denote a(g), a(g) at g = qq and g = gq by aq, aq
and a2, o;q, respectively. It is also convenient to introduce
the parameter y = ~(g —q, ) and its values yq, y2 at the

transition points.
Vfe will Grst make the joining of solutions in general

form, without adopting any particular coordinate system,
any particular behavior at the i stage, and. any particular
wavelength of the perturbations.

Let us start &om the i-e transition. Whatever was the
i stage and its late time behavior, it produced certain

p(gq), p, '(gq) and ended at g = gq with some values of
the scale factor and its derivatives. For generahty, we do
not assume, for the time being, that p(gq) is exactly 2

and p'(gq) is exactly zero
From the continuous joining of h(g), h'(g), and hI(q)
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one derives
g1

C, = P~7d(7+C;
'QQ

Bg e '"' + B2 e'~'

(69)

4 y2 C B —yyy —id(

+2y2 —6iy2) + iy2

+Be e'"' e' (—y i-yye + yiye) —iye (74)

QI

= ~%@+a(2—P) P~Vd)7+C;, (70)
QQ

Bq e '"'(1+ iyq) + B2e'"'(1 —iyq)

(
= —-a ~1 p' —p a+ —— (71)

All functions in these equations are taken at g = g~ so
that, for instance, p means p(gq), p,

' means p'((7q), p'
means p'(rjq), etc. For a more compact record we will

also use the notations

where d = y2 —yz ——~()72 —qz), s = 2i+ (y2 —2i)e
Everything at the m stage is known as soon as the coeffi-
cients Cq, C2, and C are known. They are expressed in
terms of the coefBcients Bq, B2, and C, attributed to the
e stage. Since these members, in turn, are known implic-
itly in terms of the coefficients attributed to the i stage,
we have linked the very begin~~ng with the very end.

Our next step is to impose the requirement (65) and to
choose the comoving coordinate system at the m stage.
From Eqs. (72) and (69) one can find

C;D = 2yzaq s 3uq(1 —iyq) + vy
2n2

—e Bee(1+eye) + ve ),
u~ = —'

V'&(&~) &(n~)
ay

(
v'(n~) —p(n~) ~x + ——(n~)

where

2 2
D = 2y, + i s'(1+ iyq) —s(1 —iyq)

= 2y~ + (2 —p) 2 —(2+ yqy2) cos d

—(y2 —2yg) sin d . (76)
91

C; = C;+ @~pe
gp

I
Bi e '"' s + B2 e'"' s'

~
i3n(

1 B,e-' '(s + 3y, e-'")
3a2 6a2y2 .

+B2e'"'(s'+ 3y2e' ),

(72)

(73)

Equations (69)—(71) allow us to express the constants Bq,
B2, and C, describing the perturbations at the e stage
entirely in terms of the output values of the functions
defined at the i stage.

Let us now turn to the e-m transition. Again, &om
the joining of h(g), h'(g), and hI(g) one derives

Qy
By e = —(6yl(1 —iyy)uy

6D o.g
—[(2 —&)s' —2yg]vg ),

ay
B2 e'"' = — —(6yg(l + iyg)ug

6D ng

-[(2 —~)s —2y~]v~) . (78)

Substituting these formulas and Eq. (75) into Eqs. (73)
and (74), we reach our goal —the finding of Cq, and C2
in the comoving coordinates:

Equation (75) says how to choose C; at the i stage in
order to match right to the comoving coordinate system
at the m stage. We can now put Eq. (75) into Eq. (70)
and solve Eqs. (70) and (71):

(3uqyq(sin d+ yq cos d) —vq[(2 —7)(cos d —1) —
yq sin d]),

3a2&yD
2ay 2 ~ 2C2 ——— {3uayx (10 —3y, —10y,y, )»n d+ (—10y2+ 10y, —3y, y, ) «s d

5a2o'y D
—vg {—2(2 —p) (5 + y2) —yg (10 —3y2) —

10y2 (2 —p) sin d + (2 —7) (10 —3y2) + 10yzy2 cos d) ) .

(79)

(80)

So far, no approximations have been made. We will start
making them now.

The n»merical value of the denominator D, and hence
the absolute values of Cq and C2, depend critically on
how close the exiting value p(gq)—:7q is to 2. We are in-
terested in wavelengths that were longer than the Hubble

radius at g = g~. Their wave numbers satisfy the require-
ment yq « l. On the other hand, y2/y) ——a2/aq )) 1,
and d = y2 —yq

—y2. The wavelengths longer than
the present-day A, = 2m a(g~)/n, = 220 Mpc correspond
to small y2, and n & n, . These are the wavelengths of
the major interest for the discussion of the large-angular-
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n, —/12pi/(2 —pi) & n & n,
G2

unless the exiting value pi is so close to 2 that the second
term can be neglected. In order to deal with the most
favorable situation and not proliferate complications, we
will assume that pi ——2 and (p'/p)(qi) = 0. We know,
see Sec. IV, that the transition from the very end of the
i stage (after a thin "sandwich" interval) to the very be-
ginning of the e stage can be made arbitrarily smooth (at
least, in theory). So, we will be using D —2yi « 1.

We should now take into account the fact that vi &( ui
for all wavelengths of our interest. Indeed, we are inter-
ested. in modes that have interacted with the potential
barrier in Eq. {38)and have been amplified at the i stage.
For the scale factors (6), their wave numbers satisfy the
requirement (nqi) « P(P+ 1) which translates into the
condition yiz « P/3(P+1), or simply yzi &( 1. We will de-
rive the approximate formulas valid in the leading order
by the parameter y».

As we know, there are two independent solutions in
the underbarrier region. Which of them dominates is the
matter of choice of the initial conditions at q = qo [choice
of constants Ai, and Az in Eq. (40)]. For classical solu-
tions, one can choose the initial data in such a way that
there will be no amplification at all, or there will be even
attenuation instead of amplification. However, a "typi-
cal" choice of initial data at g = qs, which amounts to the
averaging over the initial phase (or a rigorous quantu~-
mechanical treatment), always leads to the dominant so-
lution p a~p, and to amplification [19]. This is the
choice that we imply here and will justify later, Eq. (102)
in Sec. VIII. Since v (p/a~p)' and p, a~p, the quan-
tity vi is relatively small. Concretely, for solutions (40),
one has

+2
(81)

and

so that

vi 3(l + P)
u, 2P+3

Thus, we can neglect all the terms containing vi in
Eqs. (77)-(80).

In the leadiag order, one has

scale anisotropy in CMBR. In the approximation of small
y2, two leading terms in D are

2 2 +» 4D p»g» + gg12

The second term is much larger than the first one (and,
hence, the expected Ci, and Cz are hopelessly small) for
all

2

Bi = B—2 = ~2 p(gi) = B,
2Q»

B»+ B2 = By»

These formulas ensure the standing wave pattern for all
wavelengths at the e stage and the power spectrum mod-
ulation at the m stage (compare with Sec. V). The lead-
ing order expressions for C», C2 are

1 1
Ci ~ —9 2 p, ('gi) sin d,

2+2 9»

3 1—V2 p(gi) (10 —3y2) sin d —10y2cos d
5G2 g»

(82)

(83)

3~3' 1
(n. ) = —~(~i)

2

This n»mber is 3~3'' times larger than Ci, Eq. (84),

We will give a brief analysis of Eqs. (82) and (83). The
growing and decaying components of hi(rl) and be/eo, see
Eqs. (66) and (6T), are of the same order of magnitude
at g = gz for all wavelengths. The coefficients Ci, C2 are
smooth for long waves, d y2 &( 1, n && n:

1 6 &n&'
~2 V(ni), C2 = — — ~2 V(ni) (84)

2ai 5ai

and are oscillating for shorter waves, n ) n, (Sakharov
oscillations). At a series of frequencies, the factor sin d
is zero, and the growing compoaent totally vanishes:
no gravitational field perturbations, no time derivatives
of the perturbatioas, ao energy density perturbations.
These modes were highly excited, as others, at the end
of the i stage, but were stripped off of their energy by
the very late times of their evolution. In terms of quan-
tum mechanics, one can say that these modes have been
desqueezed, sent back to the vacuu~ state [23]. The
position of zeros is determined by ~(gz —gi) = z'k,

k = 1,2, 3 . . . or, approximately, by —„" = xk. If
one de6aes the distance x traveled by sound waves be-
tween the barriers at g = g» and g = g2 by z
a~(g2 —gi), the zeros arise when z is covered by an

integer number of half-waves, z = 2k. The first zero in
the spectr~~m of the growiag component arises at k = 1
which corresponds to the present-day scale of the order
of 70 Mpc.

The numerical values of C» aad C~ as functioas of n are
controlled by the n-dependent function p(qi). For sim-
ple scale factors (6) and solutions (40), p(gi) is given by
Eq. {81)where the value of A.i is determined by quan-
t»~ mechanics, as will be discussed in Sec. VIII. The
function p(gi) is exactly the same as the one used for
gravitational wave calculations [17]. This allows us to
make certain comparisons of density perturbations with
gravitational waves. For instance, the growing compo-
nent of gravitational waves taken at the begi~~~ng of the
m stage, h~(g2), has the following amplitude in the low

&equency limit, n && n:
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VII. DENSITY AND ROTATIONAL
PERTURBATIONS IN THE HIGH-FREQUENCY

LIMIT

The normalization of the perturbations is determined
by quantum mechanics. We intend to amplify the zero-
point quantum Quctuations of the primeval matter which
is, in our case, the scalar field (1). Before the ampli-
fication, the frequencies of the fiuctuations were much
higher than the frequency of the gravitational pump field.
To the modes of our interest the surrounding space-time
seemed at the beginning almost fiat. As a preparation for
quantization, we will first consider density and rotational
perturbations in matter placed in the Minkowski space-
time, that is when gravity is totally neglected [a(q) = 1
in Eq. (2)].

The deformation of an elastic medium is usually de-
scribed [24] with the help of a displacement three-vector
u;(t, x) which can be written as

u; = ((t)Q„+e(t)Q;

The scalar function Q is defined by Eq. (8), the vector
function Q; is defined by the equations

Q;,i, ' +n Q;=0, Q';=0
The deformation tensor is

(86)

which gives the amplitude h for density perturbations
in the same limit. We can also compare the growing
component of h~ with the growing component of gravi-
tational waves. Let us take g = g~ and n (( n~ where
n~ = 4vr/(gR —g ) corresponds to the wavelength equal
to the Hubble radius at g = g~. One can derive

2
8~~~( u l

4(ga) = hs (ilR)15 (n~)
As we see, gravitational waves and density perturbations
"enter" the (time-dependent) Hubble radius with approx-
imately equal amplitudes, regardless of the numerical val-
ues of parameters lo, P describing the i stage.

According to our definitions, see Sec. VIII, the Fourier
component of the quantized field includes the factor
Ip~//2n in addition to h(q) or h~(g). We can give an es-
timate for the "characteristic" amplitude h(n) nlp~Ci
of the h field, which is a substitute for a more rigorously
defined expectation value of the dispersion (square root
of the variance) of the field per logarithmic frequency in-
terval. Combining Eqs. (84) and (81) we can find in the
low frequency limit n « n: h(n) (/p~/lo)np+, i.e., ex-
actly the se~e behavior as for gravitational waves. The
growing components of h~(g) and he/eo(g) contain the
additional factor n2(g —ri )2 which gives two extra pow-
ers of n in their spectra. There is nothing spectacular
about the de Sitter case P = —2. The derivative of the
Hubble parameter can be arbitrarily close to zero at the
time when the wavelength of our interest leaves the Hub-
ble radius at the i stage. The perturbation will have a
finite, not infinite, amplitude today.

o;i = s(Q, ', i, + Q,i;) +. pc, e(Q; i + Qg;)
+n'(2s p—c,'()Qb (87)

where p is density, c~ is the longitudinal velocity of sound,
cq is the transverse (torsional) velocity of sound, and s is
arbitrary function of time. The equations of motion

82u; BC,".

Bt' Bzi'

reduce to the oscillatory equations for elastic waves. In
terms of g time, they can be written as

C2 C2

(88)

We shall now relate the theory of elasticity with the
theory of cosmological perturbations. We shall consider
the high-frequency limit of the perturbations, that is
when the scale factor a(g) is almost constant and its vari-
ability can be neglected in comparison with frequencies
of the waves. As we know, the perturbed components of
the energy-momentum tensor for density and rotational
perturbations have the general form (see Eq. (10) and
Ref. [2])

To = ——eiQ, T~ = —To ———(Q,;+ —e Q;,

I Q," +Q';
i

———
I Q" +Q; I

a 1 p& t,a i l 1
a22n2 ( ' ') a2n2 ( ')

1+—,(pi+ pi)~'~Q (89)

The differential conservation laws T~ = 0 can ben,P
reduced in the high-&equency limit to the following
equations: the a = 0 component gives the equation
—ei + ('nz = 0, which integrates to

n (=ei2

the a = i components give

("+ p, = 0, 8" + ~ = 0 (91)

Equations (90) and (91) can, of course, be obtained from
the perturbed Einstein equations as well.

The stress tensor cr; is connected with the perturbed
components T; by o;." = —pc2T;" (a(g) = 1). From the
comparison of Eqs. (87) and (89) one finds

2 2
2 l 2~t 2 J l

pi =u ( g=u —8, s= —pcc c 2'Q
(92)

With these expressions for pi, y, Eqs. (91) coincide with
the wave equations (88). In cosmology and theory of elas-
ticity, we are dealing essentially with the same physics.

The quantization of density and rotational perturba-

~'a =
2 (u', i, + ua, ;)1

= —,'4(Q, ', i + Q, i,') + —,'~(Q', a + Qa, *.)

and its trace is u = u*; = (—n2Q The stress tensor can
be written in the general form
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tions should be based on Eqs. (88). Rotational perturba-
tions have been considered elsewhere [2]. The quantum-
mechanically generated rotational perturbations can con-
tribute to the CMBR anisotropy and may be important
for the smaller scale astrophysics. (One should be aware,
though, that there exists also an alternative view on the
subject according to which rotational perturbations are
"irrelevant for cosmology" [25].) We will concentrate
here on density perturbations. For simple models of mat-
ter, such as perfect Huids and scalar fields, the functions
g and p~ vanish. One is left with the single variable ( and
isotropic stresses. The quantization of these oscillations
in an elastic material placed in the Minkowski space-time
would lead to the notion of phonons.

There is no wonder that in the case of scalar field
matter the role of ( is played by pi. If one writes
((rl) = (o e '"" and pi(rl) = bio e '"", Eq. (24) gives

iii(o = FoPio (93)

In the high-frequency limit (large n), the first term in
Eqs. (23) and (25) dominates. With the help of Eq. (93)
one derives ei ——pi ——n, f. In other words, for the high-
frequency scalar field perturbations, the velocity of sound
is almost equal to the velocity of light. The perturbations
behave as massless scalar particles.

It is the scalar field oscillations that should be nor-
malized by ascribing a "half of the quantum" to each
mode. Because of the Einstein equations the scalar Geld
perturbations are accompanied by the gravitational Geld
perturbations. In the high-frequency limit, the second
term in Eq. (43) can be neglected, the normalization of
yi transfers to the gravitational field variable p, and ulti-
mately to h and h~. This is how we will know the initial
amplitude for density perturbations.

VIII. QUANTIZATION OF DENSITY
PERTURBATIONS

In the limit of a free massless scalar field placed in the
Minkowski space-time, we have, for each mode,

beak = viQ+~iQ' = ~i(t) e'""+vi(t) e '""

The total field can be written as

1 3by(t, y) = C d k eye ' "'e'
(2m) ~ i/2iol, .

ill, t —ik y
k (94)

The normalization constant C is to be found &om the
requirement

oo 1 oo

(0~ ed y~0) = —li d kioi, (0~ci,c„+c„ci,~0},
—OQ —OO

where e is the energy density of the Geld. Since in our
case,

~ = —, (b~,o)'+ (b~, i)'+ (b~,2)'+ (bV, s)'

The field operator takes on the form

we derive C = c~h. Obviously, the normalization co-
efficient C includes the Planck constant h but does not
include the gravitational constant.

To write the field operator (94) in the curved space-
time (2) one should make the replacements

1 eAy=a(g)x, k= n, wl. =
a(n)

'
a(n)

'

=[ ()]"'

1 1 3 1
(95)

This expression is only valid in the high-frequency limit,
when the field can be regarded as kee and its nonadia-
batic interaction with gravity can be neglected. When
the interaction becomes important, the time dependence
of the field ceases to be so simple. The operator e e
should be replaced by cn(rl), and the evolution of c (il),
c~t(rl), should be found from the Heisenberg equations of
motion.

The matter perturbations are accompanied by the
gravitational field perturbations. Because of the Einstein
equations they are linked together and form, in a sense, a
united entity. As we have seen in Sec. III, the entire dy-
namical problem at the i stage reduces to a single wave
equation (38) for a single variable p(rl). All perturba-
tions can be found from a given solution to this equation.
It follows from Eq. (43) that p(rl) = ~2~ayi(g) in the
high-frequency limit. Since the positive frequency scalar

1 3C(rI, x) =4~7rlpi ( d n c (il)e'

+ct (g)e (96)

The annihilation and creation operators c (rl), ct (il) are
governed by the Heisenberg equations of motion

field n-mode solution is &pi(g) [1/a(rl)]~chc„e '"" this
leads to p(rl) 4~vrlpic e '"". Note that the normal-
ization coefficient includes the gravitational constant and
is proportional to the Planck length lp~ = (Gh/cs)i~2.

Having in mind the basic wave equation (38), we can
now introduce the "fundamental" scalar field 4(il, x)
which describes the whole quantum system interacting
with the gravitational pump field:
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dc (rl)

6'
= —i[c„(rl),H],

dct q = —i[et (rl), H]

The interaction Hamiltonian H is given by

H = nctc +net c +2o(g)ctc +20'(il)c c

(97)

where c (0), ct (0) are the initial values of the operators
taken at some g = go long before the interaction became
effective, and [c (0),ct (0)] = 6s(n —xn). The classi-
cal complex functions u„(il), v„(rl) [do not mix up with
the functions u(il), v(il) introduced in Sec. III] obey the
condition )u„)2 —)v„)2 = 1 and satisfy the equations

iu„' = nu„+ 2crv„', iv' = nv + 20u„', (100)

c (rl) = u„(ri)c (0) + v„(rl)c (0),

c (rl) = u„'(rl)c (0) + v„'(rl)c (0),
(99)

C

where the coupling function 0(q) is a(q)
Equation (98) demonstrates explicitly the underlying
parametric interaction of the field oscillators with the
pump field. This is simply a generalization of a theory
previously developed for gravitational waves (for a re-

view, see Ref. [19]).
The common way of solving Eqs. (97) and (98) is to

write the operators in the form

with the initial data u„(0) = 1, v„(0) = 0. If one intro-
duces p„(rl) = u„(rl) + v„'(il), it follows from Eqs. (100)
that the function y,„(il) should satisfy precisely Eq. (38).
The initial conditions for p,„(il) in the high-frequency
limit ~nq~ -+ oo are p„(il) ~ e '"~" "'&, p,„'(rl)

g
—i'll(g —77p)

For each mode n there exists the vacuum state ~0„)
defined by the condition c„(0)~on) = 0. As a result
of the Schrodinger evolution with the Hamiltonian (98),
the initial vacuum state ~0, „):—~0 ) ~0 „) transforms
into a multiparticle two-mode squeezed vacuum state (see
Ref. [19] and references cited therein). In other words,
the perturbations (waves) are generated in correlated
pairs. The statistical properties of the field are deter-
mined by c (il), ct (rl). By using Eq. (99) one can rewrite
Eq. (96) in the form

OO

4(g, x) = 4@z.lpi s 2 d n cn(0)p„(il)e'n'"+ct(0)p'(rl)e (101)

where the functions p,„(il), p„(rl) should be taken with the appropriate initial conditions discussed above. For simple
solutions (40), the iiutial conditions translate into the requirements

cos /3n.
i(ngp+ ~q ) g g —i~Py8 (Io2)

The q~antiz~d gravitational field perturbations are expressible entirely in terms of the @(i7,x) field (96). There
are many components of 6;z but there is only one sort of creation and annihilation operators. Let us introduce new

1 2 1 2 1 2. .
notations h(il) = h(rl), h(rl) = hi(q) and the polarization tensors P;~ = 6;~, P;z ———n;n~/n, and P;zP' = —1. The
field operator h,~ (g, x) can be written as

2 W

h ~
——4~m'lpi d n ) P;~(n) c„(0)h„e'"'"+ ct (0)h„ (1o3)

where the classical complex functions h„(rl) should be de-
rived from y,„(ri) through the equations and initial con-
ditions already discussed. A similar expression can be
written for the operator of the energy density pertur-
bation 6e/ee. Equation (103) is the starting point for
the calculation of the expected angular anisotropy in the
CMBR.

tion of observations is characterized by the unit vector
e" = (sin 8 cos P, sin 8 sin P, cos 8). In the absence of
perturbations, the temperature of the CMBR seen in all
directions would be the same, T. Gravitational Geld h;~
associated with the density perturbations at the m stage
causes a variation of the temperature with respect to the
unperturbed value T [26]:

IX. VARIATIONS OF THE CMBR
TEMPERATURE CAUSED BY' DENSITY

PERTURBATIONS OF
QUANTUM-MECHANICAL ORIGIN

T 2 p ( 8'g
(104)

The photons of the CMBR are emitted at g = g@
and are received by us at g = gR. A particular direc-

where ivi ——qR —il@, and Oh;~/Oil is taken in the co-
moving synchronous coordinate system along the path
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x" = e"~, g = gR —m. In case of small perturbations,
which we are actually dealing with, the emission time g@
can be regarded as being one and the same for all di-
rections. Since the scale factor satis6es the approximate
relationship a(q@)/a()7~) 10, and the rI time can be
chosen in such a way that q~ —q = 1, the quantity
mq is close to 1. We will use mq ——1. The wavelength

equal to the present-day Hubble radius IH corresponds
to nH = 47t.

For the quantized h;z perturbations, the tempera-
ture variation bT/T, Eq. (104), becomes a quantum-
mechanical operator. Since it is only the Longitudinal-
Longitudinal part of h, ;~ that participates in producing
bT/T, we can write

(e ) = —2~vrlpi dpi) d n '
c~(0)f„(ilR —i())e'"" + c„(0)f„*(rl~ —iU)e

where

f„(rI~ —ii)) = 1 dhi(il)
2n

The individual observed distributions of the CMBR temperature over the sky should be compared with theoretical
predictions based on the quantum-mechanical expectation values. The mean value of hT/T(e") is obviously zero,
(0)bT/T(e")~0) = 0. The variance (OjbT/T(e")bT/T(e")~0) is not zero but does not depend on the point and
direction of observations. To study the angular distribution of the temperature variations one should construct the
angular correlation function K for two diH'erent directions eke and e2, eyP26k' —cos 8:

K 0 bT,kbr, k 0

By manipulating with the product of two expressions (105), one can derive

1 1 oo

K = 4mlpi du) de n ~f„~ dn sin8d8
0 0 0 0

(106)

where (" = e~zii) —es2Cu. A lengthy calculation of the integrals over the angular variables P, 8 gives

f 8d8 ' ' '
( ()d4')

0 O A A

4' cos n Jq/z n + 1—5cos b n J3/2 A

+2 cos b(1 —cos b)(nu))(nut)(n() ~ Js~2(n() + 4(3 cos b —1)(n() Js~2{n()

+8 b( co8s—lc)o(snso)(ncc)(n() l Jcp(n() + (cos 6 —l) (nco) (nco) (n() Js/s(nj)), {107)

where ( = (w —2ioii) cosh+ Cv )i) . For further calculations one may use the formula (valid for half-integer v)

(n() "J„(n()= ~2~) (i + k)
" " „,P„+„,(2(z),

J„+),(nm) J„+),(ne) d
{108)

where z = cosh and P~(z) are the Legendre polynomi-
als. (I derived and used this formula in the course of
studying the gravitational wave [17] and rotational [2]
perturbations, but I believe that this formula may exist
somewhere in the previously published literature. ) With
the help of Eq. (108) one can rearrange the correlation

function E to the final expression

K = lpi ) KiPi(cos h)
l=o

where

(109)
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Ki = (2l + 1) II&„I «,
0

"f„(rl~—x/n) f l(/ —1)ln—

2+—~-+i(*)I&* (110)

where

ICOSI = 2I@(p)I n ~n, sin

I@(P)l'=- 2"-- P I'I P+-
I

+1 ( 3)
2. 2).

I@(P)I = 1 for P = —2.

The expression for K~ takes on the form

..14(P)l' .'(2/+1) '~" ' —( -)'d
0 0 nc

(112)

where

and x = nm. The derived formula for K is general and
can be used with arbitrary function f„In .practice, the
limits of integration over n are determined by the fre-
quency interval within which the perturbations were re-
ally generated.

As we see, the decomposition of K consists of all mul-
tipoles including the monopole, l = 0, and dipole, / = 1,
terms. To carry out the calculations up to a concrete
number, we will consider scale factors (6) and solutions
(40).

As we know, the growing and decaying components of
h~())/) are of the same order of magnitude at g = g2. How-
ever, the decaying component is decreasing since then
and can be neglected in the calculation of bT/T. For the
coefficient Cq responsible for the growing solution, see
Eq. (82), we have

For / = 0 and l = 1, the term with the factor /(/ —1)
does not contribute to (ii„) . The results still have the
form of Eq. (114) but n2~ should be replaced by zoons
for / = 1, and by 36n for / = Q. These results are in full
agreement with Ref. [13]:in the limit of long waves, the
monopole and dipole contributions of an individual wave

are suppressed; the monopole component is of the same
order of magnitude as the quadrupole component, while
the dipole component is further suppressed by an extra
power of n.

We should now use (i~„)2 for the calculation of Ki.
This is where the spectrum of the perturbations comes
into play. %e can write, for l & 2,

1 1

K) = 2IQ(p)l (2l+ I)A, ~ ~+ + 'd~, (115)
0 0

and the appropriate replacements discussed above should
be made for / = 1, / = 0. Since we are working in the limit
of small n, the integration over n cannot be extended to
the values n & 1. However, typically, short waves con-
tribute little to the lower index multipoles. The values of
n up to n 2l are more important, but for the purposes
of simple evaluation we restrict the integration by n = 1.

The suppression of the monopole contributions of indi-
vidual waves saves us from big trouble. If Eq. (115) were
true for / = 0, the monopole term Ko would be power-
law divergent in the limit of n ~ 0 for all p ( —2. In
order not to be in convict with the 6nite observed 2.7 K
temperature, we would need to resort to the fine-tuned
minimally sufficient duration of the i stage, in which case
the long waves with this spectrum are simply not being
generated. From the correct Eq. (115) follows that the
danger of divergence for Ko and Ks arises only in mod-
els with p ( —4. (The quadrupole anisotropy produced
by gravitational waves does also diverge in these mod-
els [17].) Thus, the interval —2 & p & —4 is potentially
allowed.

We will now introduce the notations /p~/Ko ——M,
/p~+Kq ——D, /p~/K2 ——Q, and will compare M, D, and
Q. For the quadrupole Q, one can find, from Eq. (115),

"n —z t l(l —1)
a,„=,(, , —1 J.+,(*)

2+—J.~, (x) 1dz .~+ (113)

)2 g2 2l (114)

where

(
A, = 2'+ I'i L+ —,

We will now estimate the contribution of long waves,
n ( 1, to the lower order multipoles K~. The integrals
i~ should be calculated separately for / = 0, / = 1, and
l & 2, because of the factor l(/ —1) in Eq. (113).For l & 2,
the term with this factor dominates. The approximate
expression for (i~„)2, l & 2, takes on the form

(116)

The monopole M and dipole D are related with Q by

~5 D 3 P+4
2

'
Q 20 P+5

%e do not have an observational access to the unper-
turbed temperature T, but whatever is the measured Q,
we can expect that a correction of about the same magni-
tude as Q is included in the measured T The same is tr.ue
for the dipole component D (there is little doubt, how-
ever, that the overwhelming part of the measured dipole
anisotropy is accounted for by our peculiar motion).

%e will now compare the contributions of density per-
turbations and gravitational waves to the components
K~ of the correlation function K in the long wave limit,
n ( 1. We should compare Eq. (115) with the analogous
expression for gravitational waves [17]. The ratio of the
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gravity wave contribution &~ to the density contribution
d

K~ has the form

Jt x (l + 1)(l + 2) (2l + 1)
2l(l —1)

K&

We see that the ratio is independent of the parameters

la
1 P describing the i stage. For the quadrupoles Q and

d

Q, we have, in the long wave lixnit,

of density perturbations to the quadrupole anisotropy
would be much larger than the contribution of gravita-
tional waves. These contributions are of the same order
of magnitude while numerical coefBcients are somewhat
in favor of gravitational waves. At the same time, the
very generation of density perturbations (and rotational
perturbations) is more problematic than the generation
of gravitational waves. On these grounds one can con-
clude that if the observed large-angular-scale anisotropy
of the CMBR is caused by cosmological perturbations of
quantuxn-mechanical origin (what else?), they are, most
likely, gravitational waves.
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