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Evolution of topological defects during in+ation
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Topological defects can be formed during ia8ation by phase transitions as weQ as by quantum
nucleation. We study the efFect of the expansion of the Universe on the internal structure of the
defects. We look for stationary solutions to the field equations, i.e., solutions that depend only on
the proper distance from the defect core. In the case of very thin defects, whose core dimensions are
much smaller than the de Sitter horizon, we find that the solutions are well approximated by the Sat-
space solutions. However, as the Sat-space thickness parameter bo increases we notice a deviation
From this, an efFect that becomes dramatic as bo approaches H /v 2. Beyond this critical value
we find no stationary solutions to the field equations. VVe conclude that only defects that have
Sat-space thicknesses less than the critical value survive, while thicker defects are smeared out by
the expansion.

PACS number(s): 98.80.Cq, 11.27.+d

I. INTRODUCTION

The infiationary epoch in cosmology increases the size
of the Universe by a huge factor [1], implying that the
present observable Universe originated from a tiny initial
region. Any topological defects formed at the onset of in-
6ation, or before the start of infiation would be infiated
away, implying that the only defects that could possibly
be observable at the present time would be those formed
at or near the end of the infiationary epoch. Topological
defects can be continuously formed during the course of
infiation by quantum mechanical tunneling processes [2],
and defects formed during infiation by this mechanism
could be present after infiation with appreciable densi-
ties. Phase transitions could also occur during inBation
if the symmetry-breaking 6eld y is coupled to the inBaton
field [3]. The characteristic length scales of the defects
formed in such phase transitions increases exponentially
due to infiation. However, if the phase transition occurs
close enough to the end of infiation, so that this length
scale does not exceed the size of the presently observable
Universe, then these defects are not diluted away. Def-
fects could also be formed during inBation by quantum
fiuctuations [4] in the case where the symmetry is broken
before or at the beginning of infiation.

AD of these defects would have been exposed to the ex-
ponential expansion of the Universe long enough to make
the question of what happens to the internal structure of
these defects during infiation significant. In this paper
we will address this question. The inBationary Universe
is approximated by de Sitter spacetime, which has a con-
stant expansion rate H. We can therefore look for sta-
tionary solutiens to the scalar Geld equations for demain
waDs, strings, and monopoles.

Intuitively, one expects that the defect structure in de
Sitter space will be essentially the same as in Bat space if
the fiat-space thickness of the defects ho is much smaller
than the de Sitter horizon H . On the other hand,
it is hard to see how a coherent defect structure can be

sustained on scales greater than H, and we expect that
stationary solutions do not exist when 6a exceeds some
critical value 8, H i, and that for ho ) 8„ the defects
are smeared by the expansion of the Universe. We shall
see that these expectations are indeed correct.

This paper is organized as follows. We study the struc-
ture of defects using a simple scalar field model; Sec. II
deals with the structure of domain wals, for which we

obtain numerical solutions. We also obtain analytic so-
lutions in two asymptotic regimes corresponding, respec-
tively, to the case of very thick waDs with Bat-space wall
thickness comparable to the critical value and to the case
of very thin walls. We do a similar analysis for strings
and monopoles in Sec. III. Our conclusions are summa-
rized in Sec. IV.

II. DOMAIN VKAX LS

The spacetime of the infiationary Universe is approx-
imately de Sitter spacetime, and the metric with Bat-
spatial sections is given by

ds' = dt —e' '[dh2 + dy2 + dz'] .

We consider a one component scalar 6eld theory with a
simple double-mell potential

(2)

The scalar field equation is given by

We consider a plane domain wall situated at z = 0. This
is not as special a case as it appears because a reco-
ordinization of de Sitter space in the calculations of [2],
reveals [5] that the spherical domain walls nucleating dur-

ing inBation are equivalent te plane domain @rails appear-
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ing at z = 0 in the new coordinates. We can write out
the field equation explicitly as

+ 3H —exp —2Ht + + yBt2 Bt ( ) Bxz By2 Bz2

= —2A(P(P2 —II2) . (4)

If the wall is not smeared by the expansion, it should
be described by a stationary field configuration, in terms
of the proper distance from the wall. Accordingly, we
choose the following ansatz for y:

Eq. (6) are negligible, and it reduces to the correspond-
ing flat-space equation. ] As C ~ 2, or bII ~ H /~2,
the solution approaches y = 0 over the whole range of
integration. %'e found no nontrivial solutions to the field
equations when be & H i/~2. We now wish to examine
the asymptotic behavior of the solutions more closely.
Accordingly, we consider two asymptotic regimes, one
where y (( 1 corresponding to very thick walls with Bat-
space wall thickness bII H i/~2 and the other where

]y —1~ && 1, which corresponds to large distances &om
the core.

y = y(u), where u = Hz exp(Ht) .

In terms of the variable u, the field equation may be
rewritten as

B2
(1 —u ) —4u = 2Cy(y —1),Bus Bu

where y = rp/rl, and C = H 2/A iII z, where bII ——

(~A) is the fiat-space wall thickness. The solution
must obey the boundary conditions

y(0) = 0, y(+oo) = +I .

Equation (6) cannot be solved in closed form. We
therefore used a shooting routine to obtain numerical so-
lutions. The nIImerical results are graphically depicted in
Fig. 1. As expected, at large u the Beld y approaches its
vacuum expectation value (VEV) II. However, the solu-
tions exhibit an aperiodical damped oscillatory behavior
as y approaches the VEV, as opposed to the monotonic
approach to the VEV in fiat space. At large values of
C, when bII « H, the solution is essentially identical
to the fiat-space solution y = tanh(~Cu). [In this case
most of the variation of y between 0 and 1 occurs at small
values of u, so that the terms proportional to u2 and u in

A. Large-distance asymptotic

In this asymptotic region, where u is large, the field
equation can be written as

u + 4u —+ 2Cy(y —1) = 0.2B y By 2

BtL |9'll
(8)

+4u +4Cf =0.B'f Bf
BtL 8'll

(9)

Now, making a change of variables e = in+, we have

B Bf+8 +4Cf =0.
Bv2 Bv

(10)

The solution is of the form exp(av), with

a +Sa+4C = 0.
It follows that

(12)

Furthermore, we can assume that y = 1—f where f « 1,
in the region of interest. Substituting this in Eq. (8) and
discarding higher-order terms in f we have

1.00

I I

)

I I I I

I
I I I I

t
I I I I

t
I I The solution for f is therefore given by

f = Au ~ cos(zv16C —91nu) .

0.75

0.50

This indicates that the field y approaches the vacuum
expectation value g for large u as expected. In agreement
with our numerical results, the Beld exhibits a damped
oscillatory behavior about the vacuum expectation value
for large u.

0.25 B. Near-critical behavior (be H i/~2)

OOO — '

, , 1, 'I « I I I I I I I I I I I I I I

25 5 7 5 jo
zHexp(Ht)

The numerical results presented earlier in this section
indicate that y = y/g becomes very small over the whole
range of integration of Eq. (6) when C = 2, i.e., when

bII = H i/~2. In this regime, we are therefore justified
to assume that y &( 1 up to large values of u. The field
equation can then be linearized to become

FIG. 1. The scalar Seld y/Il ss s function of zK exp(Kt),
shown for difFerent values of the Sat-space thickness parame-
ter, C = 10, 4, 2.5, 2.05, and 2.001. (1 —uz) —4u + 2Cy = 0 .z Bzy By

Otc Btl
(14)
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Now making a change of dependent variable y
w/Q(1 —u ), and replacing it in Eq. (14), we have

(1 —u ) —2u + (2(C+ 1) —(1 —u ) }w = 0.
t9 QJ l9Q) 2 —1
Btc BtL

(15)

III. STRING, S AND MONOPOI, ES

A. Strings

We again consider a scalar field theory with a simple
double-well potential

This is precisely the associated Legendre equation [S].
The general solution to this equation is

w(u) = AP„"+BQ"

with p = 1 and v(v + 1) = 2(C + 1).
In order that the solutions to this equation be bounded

at u = +1, v is constrained to assume only integral val-
ues. The value of interest to us is v = 2, which cor-
responds to C = 2. With this value, the nonsingular
solution of Eq (1.5) satisfying the boundary condition
(7) atu=0is

y = A(1 —u2) 'i P2i(u) = Au,

&(v -) =
2 (v -v - —n')'

where a = 1, . . . , ¹ The values N = 2 and N = 3
correspond to strings and monopoles, respectively. The
scalar field equation is given by

B„(g""B„y) = 2Arp —(gyves —g ) . (22)

We consider an infinite straight string situated along
the z axis. This is again a configuration that is equivalent
to the nucleating circular loops discussed in [2]. The
cylindrical symmetry of this string configuration suggests
a recoordination of the de Sitter metric as follows:

where A is a constant. Although (17) solves Eq. (15)
only for C = 2, we expect it to be approximately valid
for C 2.

The constant A was approximately evaluated in our
earlier paper [7] as

ds = dt —exp(2Ht)(dp + dz + p dP ) . (23)

The string is described by a two-component scalar field
theory. Since we are looking for stationary solutions to
the scalar field equation, we choose the following ansatz
for the scalar field:

A2= (C —2).7
3C V g

——f (pe ') cos(nP),
(p2 ——f(pe ') sin(nP) . (24)

y'(0)b - 1 . (i9)

Combining Eqs. (17), (18), and (19), we can obtain an
approximate expression for the wall thickness in de Sitter
space:

b - H-'(1 —2(Hb )'}-'~' (20)

The efFect of de Sitter expansion assumes significance
as bs H and becomes dramatic when bo ~ H /~2
In this limit Eq. (20) indicates that the wall thickness
grows without bound. Thicker walls cannot survive in de
Sitter space as coherent objects. They are smeared by
the expansion of the Universe.

In that paper we studied instanton solutions of the
scalar field equations in Euclideanized de Sitter space.
These instantons describe nucleation of spherica, l domain
walls during inBation. The subsequent evolution of the
walls can be found by analytically continuing the instan-
ton solutions. Moreover, by a suitable choice of coordi-
nates, an expanding nucleated wall can be transformed
into a planar wall (5). [This transformation is similar to
the transformation &om the de Sitter metric with closed
spatial sections to the spatially flat form. ] This leads to
the conclusion that expression (18) for A is still applica-
ble for Lorentzian wall solutions.

The wall thickness in de Sitter space can. be approxi-
mately calculated using the relation

Replacing y from Eq. (24) in Eq. (22), and introducing
the dimensionless variables u = Hpe+'A and y = f/q,
the two field equations reduce to a single equation for y:

02 1 —4u By —yu = 2Cy(y —1), (25)v t9th

up to very large values of u. Substituting this in the
linearized equation, Eq. (25), we obtain a condition for
C, C = 2. This indicates that the critical value of the
flat-space core thickness is bo ——H ~/~2, the same as
for the domain wall.

where C = H 2/bo2, and h'0 is the flat-space thickness of
the string core. As we did for walls, we look for solutions
to Eq. (25) in two asymptotic regimes, i.e., the region far
away &om the string core where y 1, and thick string
asymptotics where y 0.

In the large distance distance regime, u &) 1, and y =
1+ f, with f (& 1. Then Eq. (25) reduces to the same
equation (9) that we obtained in the case of a domain
wall. The solution is given by Eq. (13). Once again,
instead of a monotonic approach to q as observed in Hat
space, the string solution exhibits a damped oscillatory
behavior.

For a thick string we can assume that y (( 1 and lin-
earize Eq. (25) by discarding the cubic term in y. We
expect that in this case, the solution will be well approx-
imated by a linear term,

(2s)
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B. Monopoles IV. SUMMARY

We consider a monopole located at the origin. Using
spherical polar coordinates to describe the spatial part of
the de Sitter metric,

ds = dt —exp(2Ht)(dr + r d8 + r sin 8 dP ) (27)

we choose the following ansatz for the three components
of the scalar Beld:

yi ——f(reH') cos8,
y2 = f(re ) sin8 cosP,
ys = f(re ) sin 8 sin 4 .

The field equation then reduces to

(1 —tt2) + —2yu = 2Cy(y —1),2 Bzy 2 —4uz By
Buz u Btt

where u = Hre~t, y = f/tl, and C has the same mean-
ing as before. In the large distance limit, we find once
again that the asymptotic behavior is described by Eq.
(9), with the solution (13). In the thick monopole limit,
linearizing Eq. (29), and substituting the linear u de-
pendence (26), we obtain C = 2 as in the previous two
cases.

Instead of using the linear ansatz (26) for thick
monopole and string solutions, we could look for a gen-
eral solution of the linearized field equation and require
regularity at the horizon (u = 1), as we did for domain
walls in Sec. II. The analysis is essentially identical to
that given in Ref. [7] and leads to the same critical value
ofC=2.

We studied the effect of the exponential expansion of
the Universe on the internal structure of topological de-
fects, concentrating mainly on the case of domain walls.
We found that Bat-space domain-wall solutions whose
thickness bp is much smaller than the de Sitter hori-
zon H are not substantially modified when the wall
is transplanted to de Sitter space. The main modifica-
tion is that at distances greater than H &om the wall,
the field exhibits a damped oscillatory approach to the
VEV tl (in contrast with the monotonic approach to rl in
fiat space). As the fiat-space wall thickness bp approaches
the critical value

b, =H /v2

the effect of de Sitter expansion becomes predominant.
In this limit, the wall thickness grows unboundedly ac-
cording to the relation (20). No regular solutions to Eq.
(3) exist for hp ) 6,. Very similar results have been
obtained for strings and monopoles. In all three cases,
when the fiat-space thickness of the defect core bp ex-
ceeds the critical value (30), no stationary solutions exist
indicating that thicker defects cannot survive in de Sitter
space as coherent objects. They are smeared out by the
expansion of the universe, and their thickness grows as

eHt

The formation of defects by quantum Quctuations dur-
ing infiation, which was discused in Ref. [4], assumes that
the scalar field mass m~ (( H, so that hp m„i ))
H . Hence, in this case, defects cannot be considered as
"formed" until after the end of infiation, and instead of
defects it is more appropriate to describe them as "zeros
of the field p." However, since defect formation eventu-
ally occurs where there are zeros of p, the conclusions of
Ref. [4] remain essentially unchanged.
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