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Discrete self-similarity and critical point behavior
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The issues of scaling symmetry and critical point behavior are studied for Suctuations about
extremal charged black holes. We consider the scattering and capture of the spherically symmetric
mode of a charged, massive test field on the background spacetime of a black hole with charge Q
and mass M. The spacetime geometry near the horizon of a ~Q~ = M black hole has a scaling
symmetry, which is absent if ~Q) & M, a scale being introduced by the surface gravity. We show that
this sy~~etry leads to the existence of a self-sinai&ar solution for the charged Seld near the horizon,
and further, that there is a one parameter fa~i&y of discretely self-similar solutions. The scaling
symmetry, or lack thereof, also shows up in correlation length scales, de6ned in terms of the rate at
which the in6uence of an external source coupled to the Seld dies oK It is shown by constructing the
Green's functions that an external source has a long range inSuence on the extremal background,
compared to a correlation length scale which fd&~ off exponentially fast in the ~Q~ ( M case. Finally
it is shown that, in the limit of b, = (1 —Q /M ) ~ -+ 0 in the background spacetime, infinitesimal
changes in the black hole area vary like b ~ .

PACS number(s): 97.60.Lf, 04.70.—s

I. INTRODUCTION

Recently, n»rnerical studies of gravitational collapse
have shown scaling and critical-point-type behavior in
the formation of zero mass, neutral black holes [1,2].
These studies showed several interesting properties; in
the zero mass limit, the wave form of the collapsing wave
always evolved to a particular form, which was discretely
self-similar in appropriate time and space variables. The
mass of the formed black hole and a nonanalytic depen-
dence on a variety of parameters measuring the difference
in the strength of the wave from some critical value, and
the exponent was found to be ~miversal.

Suppose that charged particles collapse to form a black
hole. In this case, the black hole must have a mass which

is greater than or equal to its charge. Would critical
point-type behavior be seen in fiuctuations about the
minimal area'? Or more generally, would such behavior
be seen in the interactions between charged wave pack-
ets and an already existing charged black hole, in the
extremal limit?

There are two geometrical reasons why this might oc-
cur. First, the spacetime geometry near the horizon of a

Q = M black hole has an infinite throat (the metric ap-

proaches a Robinson-Bertotti metric). The throat has no

scale, and the metric has a dilatation symmetry, which

means that test 6elds on this background will have a scale
invariance. By contrast, the geometry near the horizon
of a nonextremal black hole has a scale set by the surface

gravity ~. Second, dust with a mass density equal to its
charge density can be placed in arbitrary con6gurations
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and will stay in eq»ilibrium with other configurations
of such dust, and with arbitrary distributions of charge
equal to mass black holes. There is no particular size of
charge equal to mass dust that is needed for a force bal-
ance. This is reminiscent of the picture of fiuctuations
on all length scales occurring at a critical point.

In this paper we will focus on the questions of scaling
invariance and self-similar solutions, correlation length
scales, and how fiuctuations in the area of the black hole
depend on b, —:gl —Qs/Ms, as b, ~ 0. Of course one
would like to have exact solutions describing wave pack-
ets of charged fields scattering off a charged black hole,
analogous to the n»r»erical work [1,2]. Here, in order to
make some progress analytically, we will study a charged,
massive, test Beld scattering off a fixed black hole back-
ground with charge Q and mass M. This is a consistent
approach since (1) we are interested in the lir»it where the
change in the area is infinitesimal, and (2) because there
is already a black hole present to do perturbation theory
around, unlike the neutral black hole case. We imag-
ine an initial wave packet which heads towards the black
hole, part of which is scattered and part of which is cap-
tured. One is interested in the form of the captured wave,
in particular to see if it shows scaling behavior when the
background spacetime approaches extremality. %'e wiH

6rst show that near the horizon of an extremal black hole,
the wave does have a scaling symmetry when the back-
ground spacetime is extremal. Among these solutions
there is one which is self-similar, and has a translation
invariance in logarithmic time and logarit~~ic radial co-
ordinates. Further, we will show that near the horizon
there exists a set of eigenfunctions of the wave equation
which has a discrete self-similarity.

Second, addressing the issue of correlation lengths is
a bit confusing —this is not (at least apparently) a sta-
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tistical system with degrees of &eedom to average over.
However, one can construct the Green's functions for the
wave equations, and these tell what the response of the
test field is to a source. The Green's functions show that
on the extrexnal background the inhuence of a source is
long range, whereas on a background with Q ( M, it
falls oK exponentially fast. Third, the captured part of
the wave adds xnass and charge to the black hole. We will
show that the resulting change in the area of the black
hole goes like b, i~2 in the limit where 4 -+ 0.

To avoid repeated absolute value signs, we will take
the charge of the black hole to be positive. We will use
units with G = 1.

M2
R —M -+— M

and A~ ——A -+ ——,
y

(8)

while, for Q (M,

R —R~ m R~e "", A m 2&R~e "", Ai m 4'oe ""

2M, & Q»Vs»„R Rs )
Last, we s~~~marize the behavior of the system near the
horizon. In the tortoise coordinates, the black hole hori-
zon R = R~ is at y + —oo. One Bnds near the horizon
that, for Q = M,

II. DESCMPTION OF THE SYSTEM

Consider a charged scalar Beld on a Reissner-
Nordstrom background spacetime, with the metric given
by

2M Q2
ds =A (—dt +dy )+R dQ, A =1-

R R2

where e = &B~A ~~s is the surface gravity at the hori-
zon, which vanishes for the extremal black hole.

III. SCALING BEHAVIOR AND SELF-SIMILAR
SOLUTIONS NEAR THE HOMZON OF

EXTREMAL BLACK HOLES

Here y is the usual tortoise coordinate, dy = dR/Az, R =
R(y), and Q and M are the electric charge and mass of
the spacetime. Ass»me that the charge Q is positive.
Choose the gauge of the electrostatic potential such that
it ~~ashes on the horizon, R = R~.

Ac = do —R, 4o —=

R~ (2)

The quantity Po is then the difference in the electrostatic
potential between the horizon and infinity. In the context
of the first law of black hole thermodynamics, Po is con-
jugate to the electric charge Q. Note that, for Q = M,

—g D.4D 4'+ m'@@*,

where the gauge-covariant derivative D 4 = (8
ieA )4. The equation of motion for the scalar Beld is

M
R'

The matter action, for a scalar Beld of mass m and
charge e, is given by

From the asymptotic behaviors of the gauge potential
and metric function, it follows that the wave equation (6)
for the scalar field is invariant under the rescaling

yM ay, t Mat, a=const.

This implies that there are solutions to (6) which are
functions only of the ratio t/y. Equivalently, in terms of
logarithmic coordinates t = lnt, y = ln( —y), there are so-
lutions of the from @ = F(t:y). These solutions have the
translation invariance, corresponding to self-sinai&arity in
the original t, y coordinates, Q(t+ D, y+ D) = g(t, y)
for any D. By contrast, the field equation on the
nonextremal black hole spacetime does not have scaling
invarianc- the surface gravity tc introduces a scale.

The scaling invariance is a refiection of an additional
dilatation symmetry of the metric near the horizon,
dsz ~ „, (—dt + dyz) + MzdQz, with the dilatation

Killingvector( = t(s~) +y(& ) . The symmetryis ac-
tually best seen in a slightly difFerent set of coordinates,
in which the metric function is used as a coordinate. Let
z = 1 —M/R. Then the wave equation (5) becomes

V V 4' —2ieA V 4 —(m + e A A )C = 0 . (5)

We w'ill consider spherically symxnetric waves on the
background (1). Let Q = R(y)4. Then the equation
of motion for the field (5) becomes

8„$—8, $+ 2ieAgBg@+ (e A~ —m A —V~ „)vP = 0,
(6)

with the potential V~ „given by

+z (e —m )O = 0 . (11)

As x ~ 0 the horizon is approached and the difFerentia1
equation becomes invariant under transformations of the
form z ~ —x, t -+ at, with a = const. The utility of the
coordinate x is that it is consistent to include the term
(e2 —m2)4. In the tortoise coordinates above it is not
clear that one can legitimately retain this term, while
ignoring higher-order terms in the inversion relation be-
tween y and R.
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Noir let ~ = xt and look for solutions of the form

4(z, t) = t'"E„(m) .

In terms of the logarit~»inc time t introduced above, the
prefactor is e'", and so the solution will have a discrete
self-similarity t -+ t + —and x = —lux m z + —„.For
the eigenvalue v = 0 this is the continuously self-simi&ar
solution discussed above, depending only on m.

The wave equation (ll) becomes, for z « 1,

a discrete self-si~~&arity with D = & . Alternatively,
it could be that the imaginary part of the frequency v is

positive, so that the lowest frequency dominates at late
times. Or, it may be that the evolution &om vrave pack-
ets "at in6nity" is not self-similar. It will certainly be of
interest to resolve this question.

IU. SCATTERINC A.ND ASYMPTGTIC
SOr.UTrOXS

I

1 —
M, i

+."(~)+2
1

—ie —,+ —
/
+.'( . m iv)

( 2 2 2ev v +iv)
+~ m —e + —,~I'„=O. (i3)

l tU 6) )
Analyzing the solutions to this equation is a topic for fu-
ture study; however, we have shown that the wave equa-
tion for a massive charged field on the background space-
time of an extremal black hole has discretely self-si»»bar
solutions, as the horizon is approached. It is worth noting
that for v = 0 the differential equation becomes

d f ioz )
dm ( Mz)~

1 —
~
f'(m) —2ief —(e —m )f =0. (14)

For. e = m it is simple to find the solution

(M+m&"
f(~) = &i+&s

I M(M —m)

In terms of the tortoise coordinate y this is

~A = —i(~ —e40)0 . (17)

Then (6) becomes

Bz@+ [(u) —ego) + 2e(ur —ebs)Ai

The scaling symmetry can be displayed in terms of
the Green's function for the scalar Beld equation. The
Green's function describes how the Beld propagates in
response to an external source. We will show that the
Green's function for the Q = M case has long range 1/y
correlations, compared to the Green's function for the

Q & M case, in which correlations die off exponentially
with the scale e . To this end, we will find eige»modes
of the wave equation in the asymptotic regimes, and use
the solutions to construct the Green's function. Further,
the scattering behavior of the eige»~odes will be ana-
lyzed to determine what scatters and what is captured.
From this, the change in the horizon area hA will be
found, when a small amount of mass and charge is cap-
tured. bA has nonanalytic behavior as extremality is
approached, whereas, away from Q = M, bA is linear in
the added mass and charge.

To put the wave equation in the form of a scattering
problem, first, Fourier transform in time; let

A general solution to the wave equation near the hori-
zon can be written as a s»m of the eigenfunctions (12).
However, an arbitrary s»m will no longer be discretely
self-simi&ar. So, perhaps the most interesting question
is the following: do generic wave packets starting in the
fiat region (or any packets for that matter) evolve into
a packet which is a special sum of the modes (12), such
that the s»~ is discretely (or continuously) self-simi&ar~

We do not yet know the answer to this, but one can
imagine at least two ways in which this could happen.
%'hen the eigenvalue problem is solved with appropriate
boundary conditions for a @rave packet incoming &om the
Hat region, it may be that the eigenvalues v are actually
quantized, say v = nM. Then the solution would have

+e A, —m A —Vs, „]Q = 0, (18)

or)

B„Q+[k —V —Vs, „]/=0, k +m =u, (19)

where

V + —(earQ —m M) —(e —m ), R m oo . (20)
2

R M2'

At large distances R ~ y and the form of the potential V
is the same in all cases. V~ „faQs ofF like B 3. However,
near the horixon there is a qualitative H~Herence for the
extremal and nonextremal cases.

ForQ&M,

V -+ 2&ye/0 —e $0 —m —[2ego(ur —ego) —m 2+R~]e ""+ O(e ""), y -+ —oo . (21)

ForQ=M,

V -+ —m —e + 2eu + 2e(ur —e)——(e —m ), y —i —oo .2 2 M 2 2M2
9' JJ
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An analysis of the potentials shows the following qual-
itative features of the scattering problem: At large y,
the potential faf&s off quite slowly (like y ~). A WKB
approximation shows that the transmission is exponen-
tially suppressed if the incident wave is under the barrier.
For the purposes of the following discussion then, it will

be sufficient to approximate the capture cross section as
a step if the wave is over the barrier, it is captured,
and if it is under the barrier, the wave is scattered. Es-
sentially, we are working in a geometries optics approxi-
mation. (However, we know that the approximation is a
good one here, because the scattering problem is similar
to that in [3,4], in which the scattering is worked out in
analytic and n»clerical detail. )

So what we need is the criterion for an eigenmode to
be over the barrier. Now, this is not quite a standard
scattering equation, because the height of the potential
depends on the incident wave frequency u But s. tudying
the potential, one finds that to be over the barrier, a wave
with frequency u must satisfy

8 @+ (u —e) —2e(ur —e)—@ = 0 .2 2 M
P. (25)

The inward propagating solution correct through order
M .—ls

eM
g Q(est —c)v1— (26)

where

2~2 1
8 = (~ —e)y+ eM ln(-y) +

2(ur —e) y
(27)

The outward propagating mode is given by

Q. More information will be needed, so next we find the
leading nontrivial behavior of the wave near the horizon.

For Q = M and for y &( —M, the wave equation be-
comes

m2 6+~
(~ —ePp) &, e&0,

e 1 —b2' (23)

—eM

$2 ——e' e'& -'& (28)

For q ( M and zy (& —1, the wave equation becomes

where

a = /1-qz(M2. (24)

8„$+ [(~ —ePp) + P e ""]Q= 0, (29)

4 is a parameter which measures how close the space-
time is to extremal. e is any n»aber greater than zero,
and merely ensures that a wave packet centered on the
frequency ~ reaches the horizon in finite time. This con-
dition is the same as one finds from analyzing paths of
charged particles, which is a much simpler way to see the
results.

The scaling symmetry discussed above shows up in the
form of the solutions near the horizon, and also in correla-
tion lengths. Of course, this is not a statistical or quan-
tum mechanical system (though the fact that Hawking
radiation mates it seem like one is intri~~i»g) so to find
correlation lengths we cannot take an ensemble average.
However, we can compute the Green's function for the
wave equation, which tells how the classical field evolves
in response to a general source. /nant»m mechanically,
the two point correlation function is the Green's func-
tion. Next we show via the Green's function that the
infiuence of a source dies off exponentially for Q ( M,
whereas there is a long range tail for Q = M.

Let a wave be incident on the black hole, with—e 'f '~&' '"" as y -+ oo, with ((u-g2~
ego) satisfying (23). Then as y m —oo,
g[k/(~ —ePp)]e 'f 4"lf +"~. The normalization fol-
lows because the Wronskian of (18) is constant, and using
the fact that the amplitude of the captured wave is much
greater than the amplitude of the scattered part. This
is only the leading term in the asymptotic solution for

y3 = t.'—'(~—e~)~ —Ae'"V
e (30)

where

P (2(ur —ePp) +i
4(u) —epp)2 y 2~z ( 2+ )

For ~ (& (ar —ePp),

ePp m Ra . f' ego 2)em Ra+i
2e 2((u —ego) (2(ar —ego) 4((u —ego)2)

The outward propagating mode is the complex conjugate:

@4 =Os . (31)

As a consistency check, the Wronskian of each of the
above solutions @;(y) is constant, as it should be.

The (advanced) Green's function can now be con-
structed. For Q = M this is

where P = 2egp(ur —ePp) —2I4mzR~. P must be pos-
itive for the wave to actually get over the barrier, by
(23). There are two (potentially) small parameters here,
e which goes to zero in the extremal limit, and (a —ePp)
which we want small to be adding a small amount of
mass to the black hole. The regime of interest will be
tc &( (&u —ePp), to approach the extremal black hole, and
this is included in the P & 0 range.

The inward propagating solution, correct through
terms of order e "~ is
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G(t, y; t, y = —
2 e(b t)0(—by) e(b t + by) e " (")"l ——(1 —ieM)

~

——1
~
+ exp —i, (b t + by)

I I ~ eM
2 gy ) y'

x exp 2 (1 —i eM)
~

——1
~

—
2 O(b t)O(b y) O(b t —by) e" &"~" —(1 —ieM)

I

&y'

)
( .eM 1 . t'y'

+ exp
~ i,—(b,t —by)

~

x exp ——(1 —ieM)
~

——1
~y' ) 2 Ey

(32)

For example, the field response to a 6 function source at yo, to is

Q(y, t) —e *' '"~")"'~ —(1 —ieM)
~

——1
~

——exp[ —~(1 —ieM)] exp
~

i —(b,t+ by)
~ ~

1+ ——
~

. (33)
1 . (y() l 1 ( .eM t' 1y()1
4 Ey ) ) E 2y).

The solution shows the scaling symmetry, and long-range
correlations; i.e. , the efFect of the source falls ofF like

y . G (or @) has a piece which is independent of time,
and a piece which goes to free oscillations at a frequency
eM/y(), which depends on the location of the source
point.

By contrast, for Q & M there is no scaling symme-

try, and the in6uence of the source falls oK exponentially
fast, like e2"3'. The Green's function has pieces which
are oscillations at two frequencies: y, —:egoe4"" and xp,

m Rwhere p
—= . The first depends on the location of

etI[tp

the source point, and the second goes to zero in the ex-
tremal limit. Let h(b, y) = e~"+" —1. Then the Green's
function for Q ( M is

G(y, t;y', t') = 0(kt)8( — )tyy( 8+tyttty) t exp
~

—i—h(tyy)) pe'"i 'e et exp t(1 —ip)tt(tyy) ——e ' etx'eeet

x exp( " "i ") +e(ttt)e(iyy)e(tyt —Dy) —'exp i—tt(tty))
2K

p,e'"& "~ exp 2 1+i' h Ey ——e '" + ~ exp — h Ay (34)

For example, the field configuration at large negative val-
ues of y, due to a point source, can be read ofF from the
first two lines, showing that @approaches free oscillations
exponentially fast.

6&a = 6M+ M
~

&'+2 6'M Q 6Q)

(35)

V. CMTICAI POINT BEHAVIOR?

For the formation of a mass, neutral black hole, the
m~merical studies [1,2] looked at how the mass of the
new black hole varied with the parameters of the incident
wave. It was found that t~is behavior was nonanalytic
(and uytyversal) When fo.rming a charged black hole, the
relevant quantity may be Buctuations about the minimal
area. In the present context, let us look at i~mtesimal
changes in the area of an already existing black hole,
in the limit where the black hole approaches extremal.
(This is the analogue of the approach to the putative
critical point. ) For a black hole with general charge and
mass, the horizon radius is Rlr = M(l+ b) and the area
is 4z'R&2. If small amount of mass 6M and charge 6Q are
added, the change in the horizon radius is

where terms of order 6M2, 6Qz have been neglected. For
a wave carrying bQ = e to be captured, as discussed in
(23), it must have

m2
6M = (u = etIttp + (b. + e),

e

where e ~ 0 to add the minimal possible mass. Now
there are two cases. If one fixes 4 and then considers
6M, 6Q (& b., then as expected, one finds a formula for
the change in radius which is linear in the perturbations
to the mass and charge:

6&sr = e
i 4o —

I
+ —(&+ ~) I

1+—
I (»)Q) ~ (

Mb& e g b)
On the other hand, for the case of interest here, m and
e are still small compared to M and Q, but in addition,
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b, ~ 0. Precisely, for 4 (( m /(Me),

2Mm2 ( e2 )
bRH —e + , I&+e

e ( m2) (38)

(MR~= 4mB~

2Mm2 -P
= —2~R~ z I

&+&
e g mz&

VI. DISCUSSION

Therefore, in the limit where the change in the area is
as small as possible (e -+ 0), the variation in the hori-
zon area has nonanalytic behavior, as the extremal back-
ground is approached. Of course, (38) could be written

as linear in b, where b = (1 —~~, ) ~4. Here b appeared
to be natural choice because the horizon area is polyno-
mial in A. The suggestion in (38) is that tuning through
the background spacetimes as 4 ~ 0 is like t»mng the
magnetic field to a critical value.

The first law states that bM = s" 6A + PobQ. e and

Po play the roles of the temperature and an electric (or
chemical) potential, so derivatives of bR~ with respect
to e, Po are also of interest. Instead of using M and b,
as the two independent variables to describe the state of
the system, we switch to the variables e =

M&&+&), and

Po ——+&++& . Then, for example, the analogue of the
specific heat is

black hole have nonanalytic behavior in this limit. We
showed that correlation lengths, defined in terms of the
classical Green's function, are long range on the 4 = 0
background, and decay exponentially for spacetimes with
b, ) 0. Further, we showed that spherically symmetric
packets of the test Seld evolve to con6gurations which
have a scaling sy~~etry near the horizon, if and only if
the background has 6 = 0. Near the horizon, the eigen-
modes can be chosen such that each mode has a discrete
self-similarity. This is interesting, because the numerical
studies of formation of neutral black holes showed that
the collapsing field was discretely self-similar, near the
critical point. In the present study we do not know if
the same is true; does an incident wave packet evolve
into a special sum of the eigenmodes, such that the sum
has a discrete self-similarity. This is an interesting open
question.

Fluctuations about zero mass is a limiting case of Buc-
tuations about the minimal area (irreducible mass), when
the black hole is neutral. This would suggest that a key
feature to criticality is extremality. However, there is
another possibility which is interesting to think about.
A black hole with Q = M in a spacetime with positive
cosmological constant is not extremal. However, it does
have the property that the surface gravity of the black
hole is equal in magnitude to the surface gravity of the
de Sitter Cauchy horizon, i.e., the two temperatures are
the same. Geometrically, the spacetime geometry has an
infinite throat near the horizon of the black hole, similiar
to the geometry of the throat discussed here. Therefore,
one might expect that the behavior of a charged test field
would be the same as in the present case. If this is true,
then the key ingredient would be equality of the Hawking
temperature with the background.

Consider the class of spacetimes consisting of a charged
black hole, parametrized by M and 6, interacting with
charged matter. We have been looking at various prop-
erties of this system, that suggests that the point b, = 0
is like a critical point. To examine this, we move away
from this point (look at Q ( M spacetimes) and probe
the system with charged test fields, to see the behavior
as 6 -+ 0. It was seen that Buctuations in the area of the

ACKNOWLEDGMENTS

I would like to thank David Kastor for several useful
conversations, and the Aspen Center for Physics for its
hospitality. This work was supported in part by NSF
Grant No. NSF- THY-8714-684-A01.

[1] M. Choptuik, Phys. Rev. Lett. TO, 9 (1993).
[2] A. Abrahams and C. Evans, Phys. Rev. Lett. 'FO, 2980

(1993).

[3] J. Traschen and R. Ferrell, Phys. Rev. D 45, 2628 (1992).
[4] K. Shiraishi, Int. J. Mod. Phys. D 2, 59 (1993).


