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Signatures of discrete symmetries in the scalar sector
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I discuss methods to identify the presence of discrete symmetries in the two-Higgs-doublet model

by observing the masses and the cubic and quartic interactions of the scalars. The symmetries
considered are a Z2 symmetry under which $2 -+ —$2, and a CP symmetry which enforces real
coupling constants in the Higgs potential. Those symmetries are spontaneously broken, and the Zz
symmetry may also be softly broken. I identify the signatures in the interactions of the scalars that
these symmetries leave after their breaking.

PACS number(s): 11.30.Er, 11.30.Ly, 12.60.Pr, 14.80.Cp

Twenty-one years ago, Lee [1] pointed out that CP
may be spontaneously broken. In his two-Higgs-doublet
model, CP is a symmetry of the Lagrangian, which is
broken by the relative phase between the vacuum expec-
tation values (VEV's) of the two Higgs doublets. ' Other
xnodels of spontaneous CP violation have been suggested
since then [2,3], and spontaneous CP violation has been
used as an ingredient in the building of many models
[4,5]. However, no one has yet attempted to answer the
following basic questions: how can we experimentally dis-
tinguish between spontaneous and explicit CP violation?
If CP violation is spontaneous, does that fact lead to
some relationships among the coefficients of the various
interaction terms in the Lagrangian, relationships which
might be experimentally tested for? (At least in prin-
ciple, even if the practical measurements xnight be too
difficult. )

In the context of the two-Higgs-doublet model, it is
usual to assume the existence of a discrete symmetry Z2,

under which one of the two doublets changes sign, while
the other doublet remains unadFected. That symmetry is
softly broken in some models. How can we assert exper-
imentally whether or not such a symmetry exists, and
whether or not it is softly broken?

After discrete symmetries in the scalar sector are spon-
taneously or softly broken, do they still leave traces of
their presence in the fundamental Lagrangian?

I present in this Brief Report a partial answer to these
questions.

For de6niteness, I concentrate on the two-Higgs-
doublet model. That model is now very popular, partly
because two doublets is the Higgs structure of the min-
ixnal supersyxnmetric standard model. If there are more
than two doublets the algebra involved becomes ex-
tremely heavy. I consider a SU(2)U(1) gauge model
with two scalar doublets P1 and $2. The most general
Higgs potential consistent with renorxnalizability is

V = m1$1$1 + m24'2/2 + (ms''14'2 + H.c.) + a1(pt4'1) + a2(4'2/2) + as($1/1) (4'2/2) + a4($14'2) ($24'1)

+ a5($14'2) + s(ap $11)($1/2) + a7(42tt'2)(4'~14'2) + H c

All the coupling constants, except m3, a5, a6, and ap, are real because of Hermiticity. I assiime that the VFV's Qf
P1 and $2 are aligned, in the sense that they preserve the U(l) of electromagnetism. 1 Those VEV's have a relative
phase: the VEV of 41 is v1, and the VEV of pz is v2 exp(ia), v1 and v2 being real and positive. v = V v1 + v2 is a
measurable quantity, e = 174 GeV.

Instead of working with p1 and $2, it is convenient to work in the Georgi [6] basis of doublets H1 and H2, with
the following de6ning features: Hq has real and positive VEV v, while H2 has vanishing VEV. The Georgi basis is
reached by means of the transformation

(vlH1 + v2H2) jv i

$2 ——e' (V2H1 —V1H2)/v. (2)

In the Georgi basis, the Higgs potential reads
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The VEV of p1 is made real and positive by a gauge transformation. This represents no loss of generality.
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P1H1 Hl + P2H2H2 + (P3H1H2 + H )
t t

+~1(H1H1) + ~2(H2H2) + ~3(H1H1)(H2H2) + ~4(H1H2)(H2H1)

As(H, H2) + As(H, H, ) (H, H2) + A7(H2H2) (Hi H2) + H.c.

in which all the coupling constants, except p3 A5 A6,
and AY, are real by Hermiticity. Because only H1 has a
nonzero VEV v, which is real, the stationarity conditions
of the vacuum read

P1 = —2A1v 2

P3 = —A6v
2

(4)

(5)

I use these conditions to eliminate p, 1 and p,3 as indepen-
dent variables &om V. Because p3 is complex while p, 1

is real, Eqs. (4) and (5) constitute three real equations.
They correspond to the three real equations which, in the
basis of $1 and P2, determine the stability of the vacuum
by fixing the partial derivatives of the vacuum potential
with respect to v1, v2, and o., to be zero.

The Georgi basis is useful because the Goldstone
modes are perfectly identified when one uses it. Writ-
1ng

( G+
~g v+ (Ho + iGo)/~2 ~

'

( H+

~ (R+iI)/~2y ' (7)

G+ and G are the Goldstone bosons which, in the uni-
tary gauge, become the longitudinal components of the
VV+ and of the Z . H, R, and I are real neutral
fields, which are linear combinations of the three physical
scalars Xg.

(x, ) (H')
X2 ——T R

ix, )
T being an orthogonal matrix. H+ is the physical
charged scalar. As a consequence of this, it is easy to
write down the mass terms [7] and the cubic and quar-
tic interactions of the physical scalars as functions of the
coupling constants of the potential in the Georgi basis,
Eq. (3). By observation of those masses and interactions,
p2 and the A, (i from 1 to 7) can be measured. 3 Because
A5, A6, and Ay are complex, this corresponds to a total
of 11 real quantities.

However, the Georgi basis is not totally well defined:
H2 can suffer a U(1) rephasing, while preserving its defin-

ing property of having a zero VEV. When this is done,
the phases of A6 and of Ay get changed by the arbi-
trary phase p, while the phase of A5 gets changed by 2&@.

Only rephasing-invariant combinations are measurable.
Therefore, there are only ten real measurable quantities
in the scalar masses and interactions. Two of these are
phases connected to the presence of CP violation [7]. For
instance, the phases of A8A7 and of A5A6Ay are two in-
dependent measurable phases, while the phase of A5AT is
not measurable. The other eight measurable quantities
are the moduli of p2 and of the A, .

Let us consider exactly how the various parameters of
the potential in the Georgi basis might be measured. Let
us denote by Ai, (k from 1 to 3) the squared masses of the
three neutral scalars Xp. Those squared masses are the
eigenvalues of the mass matrix M in the basis (Ho, R, I),
which mass matrix has been explicitly written down in
[7]. I denote by A+ the squared mass of the charged
scalar H+. The only observables in the matrix T are the
matrix elements of its first column [7]. For instance, the
Z„couples to the current

) Tsi (XgB"G —G 0"Xs)
2 cos Hgr %=1

+ ) el, i Tj,ix(8"X , (9)
k, l, rn

being the totally antisymmetric tensor with
1. One should remember that T11+T21+ T31 = 1 be-
cause of the orthogonality of T, therefore only two of the
three TA,.1 are independent. Once one knows A1, A2, A3,
A+, and the three Tg1, one can find the values of six
parameters of the potential via the equations

= P2+A3V 2

3

M„= 4A, v2 = ) AI, T„', 1,

A;=1

M22+M33 —2
2 + ~3+ ~4 v ) +L Mll ~

P2 2=
A:=1

(12)

P2 2

M22M33 —M23 = —+ A3 + A4 + 4~&3[
2 4

—A1A2T31 + A1A3T21 + 2A3T11 &

(13)

Once p2 and the A,. have been measured, one can get from
them the coupling constants of the potential in the original
basis, Eq. (1), and also vi/v2 and n But the qu. antities more
directly measured are p2 and the A;.

I omitted in the current in Eq. (9) the terms involving the
charged scalars.



50 BRIEF REPORTS 7091

M +M =4lAsl v

3
= ) A&T&, (l —T&1) —2) AsAiT&, T

le=1 Ie(l

(14)

2M12M12M22 —M22M12 —M22M12 + M11(M22 + M&3)

The other four parameters of the potential might be de-
termined in the following way. The following cubic inter-
actions are present in the potential:

V = +2vH H+ (A2H + RReA7 —IlmA7) +.. . . (16)

= 4v' 2Re (A;A2, ) —
l

—",' + A, + A, lA, l'

+M11(M22 + Mss) —A1A2As .

By diagonalizing the mass matrix M we find that this
interaction is written in terms of the eigenstates of mass

Xq, X2, and X3 as

4v4Re (AsAsA7)
y 2vH H+ (AsH + RReA7 —IImA7) = v 2vH H+ ) XI, AsTg1+

v2 . f1—T',', 1 —T', t

Re(A, A;) I
(17)

with L P k and m g k and l g m. This allows us to find
the values of As, Re (AsA7), and Re (AsAsA7). Finally, A2

can be found, for instance, &om the fact that it is the
coefficient of the (K H+)2 quartic interaction.

Suppose that there is an exact symmetry Z2 under
which $1 ~ P1 while $2 ~ —P2. Then, ms ——0 and
a6 ——ay ——0. Because there is then only one term in the
potential which sees the relative phase of P1 and $2 [the
term as($1/2) + H.c.], there is no CP violation [3,8].
as can be set real by a rephasing of $2. In the case of
exact Z2 symmetry there are therefore seven parameters
in the Higgs potential: mq, m2, aq, a2, a3y a4, and a5.
These seven parameters determine v and the ten coeffi-
cients in the scalar masses and cubic and quartic inter-
actions. We thus expect four predictions. Two of those
predictions are connected to the absence of CP violation
in this model: the two independent measurable phases
vanish. The other two predictions can be derived by the
following method. One first uses the stability conditions
of the vacuum to write m~ and m2 as functions of vq and
of v2, or, equivalently, of v and the ratio v1/v2. One then
uses the change of basis in Eq. (2) to write p2/v2 and
the seven A; (which in this case are all real) as functions
of v1/v2 and of a1, a2, ..., as (being dimensionless, they
cannot depend on v). One finally inverts those equations
to find v1/v2 and a1, a2, ..., as as functions of p2/v
and of the A;, in this process obtaining the following two
relationships among the measurable parameters:

2 (As + A7) + 2(A1A7 + A2As) —0 g (18)

Im As(As + A7) + (A2 —A1)Im(AsA„') = 0, (20)

+ A3+ A4+ 2As
l (A2 —A1) + As A7 0. (19)

V2 )

These equations are the answer to the questions ad-
dressed in this Brief Report for the particular case of the
model with nonsoftly broken Z2 symmetry. After mea-
suring p2/v and the seven A; by observing the scalar
masses and the scalar cubic and quartic interactions,
one should check whether there is no CP violation, and
whether Eqs. (18) and (19) are satisfied. If this applies,
we are in the presence of a model with nonsoftly broken
Z2 symmetry.

I now address the case of softly broken Z2 symmetry
and spontaneously broken CP symmetry [9—11]. In this
case, a6 and a~ are zero because of the Z2 symmetry. m3
is nonzero, breaking the Z2 symmetry softly. However,
there is CP invariance in the Higgs potential; m3 and a5
are real. CP is broken by the phase o; between the VEV's
of P1 and P2. We now have ten measurable quantities
written as functions of seven parameters (a1, a2, ..., as,
a and v1/v2). We expect three equations among the
observable quantities to hold. After some work we find
them to be

and

(A2 —A1)Im As(As —A7)',
— A' —A1 —(A. —A1)(As+ A4) + IA71' —IA. I' Im(A. A7) = o

@21 2

(A1 —A2)+2 —,'
(A3+ A4)(A1 —A2) +

l

—+ A1+ A2
l
f2+ (2A2+ 2A4 —A1 —A2)(A, —A2) (f1)

+(A1 A2) [f2 4fs + 2(A1 A2) (A3 + A4 Al A2)] fl (Al A2) [(f2) + (fs) i ( 2)

where
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fI = [Asl + [A7['+2Re(ASA7),

f2 =—IA71' —IASI'

f, = Im(A, A,*).

(23)
(24)

(25)

Let us now consider the Lee model of spontaneous CP
violation. In that xnodel, there is no Z2 symmetry, and
therefore a6 and a7 are nonzero, but there is CP invari-
ance at the Lagrangian level, which means that m3, a5,
a6, and a7 are real. Therefore, the difference &om the
previous model is the existence of two extra real couplings
as and a7. However, QI and p2, because there is now no
symxnetry Z2 which distinguishes between them, are not
uniquely defined. One may rotate PI and P2 freely by
means of an orthogonal transformation (orthogonal and
not unitary, because we want to preserve a real scalar
potential)

(f2) ( Sing COSH) ($2) (26)

Equation (22) does not hold in the Lee model either. I
expect one further constraint among the physical observ-
ables to hold in the Lee model, which should somehow
involve the quantity in the left-hand side of Eq. (22).
Unfortunately, I have been unable to 6nd this extra con-
dition characteristic of the Lee model.

As a final model, let us now assume that CP violation
is explicit, not spontaneous, but that there is a softly
broken Z2 symmetry. That is, a6 ——a7 ——0, while m3
and a5 are complex. However, because we are now &ee
to rephase $2, it is only the phase of msa2swhich is rele-
vant. Therefore, this model has only one more degree of

in such a way as to eliminate one of the parameters of
the potential, ms for instance [1]. There is thus one pa-
rameter in the potential which is spurious. Therefore,
the two extra parameters a6 and a7 really correspond to
only one extra degree of &eedom. We thus expect two
relations (instead of three as in the previous model) to
hold among the measurable quantities. Indeed, Eqs. (20)
and (21) do not hold any more. However, one linear com-
bination of them still holds when a6 and a7 are not zero:

(A~ —A~) (A~+ A4+ —
) + ~A6~

—
~Ay~

8

xlm(ASA7) + —Im [As(AS + A7)

+2A2Im [ASAS(AS + A7)] + 2AIIm [A*A7(A6 + A7)] = 0.
(27)

&eedom than the model with softly broken Z2 symme-
try and spontaneous CP violation. We therefore expect
two conditions axnong the physical observables. Indeed,
one finds that in this case Eqs. (20) and (21) hold, but
Eq. (22) does not.

I summarize my results. Any two-Higgs-doublet model
can conveniently be written in the Georgi basis. The pa-
rameters of the potential in that basis constitute a set of
ten independent quantities, which can be directly mea-
sured by considering the coefBcients of the various scalar
cubic and quartic interactions, and the scalar masses.
Those tenquantities are p2, AI, A2 As A4 IASI IASI IA71

and two independent CP-violating phases, the phases of
A6A7 and of A5 A6A7, for instance. If some discrete sym-
metries, like a Z2 symmetry or CP symmetry, are im-
posed on the potential in a non-Georgi basis, then some
equations will hold among these ten otherwise indepen-
dent quantities. In a model with nonsoftly broken (but
spontaneously broken) Z2 symmetry, there is CP conser-
vation (which means that the two physical phases van-

ish), and the conditions of Eqs. (18) and (19) hold. If
Z2 is softly broken, but CP is a spontaneously broken
symmetry of the potential, Eqs. (20)—(22) hold. If Z2 is
softly broken, and CP is explicitly broken, Eqs. (20) and
(21) hold, but Eq. (22) does not. It is interesting to ob-
serve that the difference between these two cases is only
whether or not Eq. (22) holds; as Eq. (22) is extremely
coxnplicated, in practice it will certainly be impossible to
distinguish between the two models in this way. Finally,
in the general Lee model of spontaneous CP violation,
without any Z2 symmetry, Eq. (27) holds and, presum-
ably, another much more complicated condition will also
hold.

It is fair to say that all the conditions found are rather
coxnplicated and should be very dificult to test. This
unfortunate result means that, possibly, much theoreti-
cal speculation on the existence of discrete symmetries
in the scalar scetor may be untestable in practice. Also
note that those conditions are just tree-level ones and,
because the symmetries on which they depend are bro-
ken, should receive 6nite radiative corrections.
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