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Top quark radiative corrections in nonminimal standard models
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We derive the one-loop effective action induced by a heavy top quark in models arith an extended
Higgs sector. We use the effective action to analyze the top quark corrections to the p parameter
and to the Higgs-boson —gauge-boson couplings. We show that in models with p g 1 at the tree
level, one does not lose generally the bound on m& &om the p parameter.
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I. INTRODUCTION

Recent precision measurements at the CERN e+e col-
lider LEP allow us to strongly constrain the top quark
mass in the standard model (SM) [1]. These constraints
are obtained by analyzing the radiative corrections in-
duced by the top quark to measurable quantities. From
the p parameter, p = mL/(mz&cos es ), we get the
strongest constraint on mq, since the top radiative cor-
rections to p grow quadratically with the top mass.

In the minimal SM in which the Higgs sector consists
of one Higgs doublet, the value of p at the tree level, pq„„
is equal to»~sty so radiative corrections must be finite.
Nevertheless, when an extended Higgs sector is consid-
ered (nonrninimal SM's), one can have pt„, g 1. Since
the experimental value of p is very close to»nity, one
expects that, in such no~minimal SM's, a simultaneous
expansion in (pt„,—1) and g2mi2/m2iv can be carried out
such that the top corrections to p are the same as that in
the SM. It has been recently claimed [2], however, that
such an expansion is meaningless; i.e., the limit p~„, ~ 1
is not continuous. It has been argued that in these mod-
els p is a &ee parameter, so it cannot be computed, but
must be extracted &om the experiments. The explicit
calculation of the top corrections to p was carried out in
Ref. [2], and it was claimed not to be finite. It implies
that one loses the bounds on mq.

In this paper we show, using two different methods,
that in nonminimal standard models the radiative cor-
rections to p are finite and meaningful, even for large
values of pq„, —l. In the particular model considered
in Ref. [2], we find that the bound on mi is as strong as
that in the SM. This has also been stressed in Refs. [1,3].
In Sec. II, we compute the top corrections to p follow-
ing the efFective action approach [4]. Such an approach
is suited to computing radiative corrections to relations
that depend on the vacua~ expectation values (VEV's)
of the scalar fields. Neither tadpole diagrams nor coun-

I

terterms for the VEV's of the scalars need to be con-
sidered, since the one-loop effective action is computed
in the symmetric phase, before the electroweak symme-

try breaking (ESB).Furthermore, the efFective action ap-
proach allows one to relate the top corrections of Diferent
low-energy processes. In Sec. III, we reinforce our state-
ment by computing the top corrections to p following the
usual counterterm approach.

II. EFFECTIVE ACTION APPROACH

The efFective action I'(P) is defined as the generator of
the one-particle-irreducible (1PI) n-point Green's func-
tions I'~"):

r(4) = ) —', d4*, "d4z„r&")(~„.. . , *„)
x P(xi) P(z„) . (1)

An alternative expansion of the eH'ective action is in pow-
ers of momentum about the point where aH external mo-
menta vanish,

rg) = f4*~ —v(y)+ a„ys y+ "~,Z

where V(P) is the so-called efFective potential [6]:

V(y) = —) —', r("&(p; = 0)y" . (3)
n

Let us now consider the model of Ref. [2]. The Higgs
sector consists of a Higgs doublet with Y = 1 and a real
Higgs triplet with Y = 0:

p+ ) &&+1
1 up+&GO~ I

and E= Zo, (4)
(~~( + )j

respectively. Our phase convention is such that Z
—(Z~)'. We want to analyze the one-loop efFects of a
heavy top quark. Since our model is SU(2) I, x U(1)& in-
variant, the one-loop eHective action before the ESB is
given by [following an expansion as in Eq. (2)]

I'= d z —V@,Z + 1+A4 Cy D„4 D"4 + —D„Z ~ D"Z

B(4t4)(4 tD&4') [(Dv@)t@]+ 2C(Ot@)[(4'tD„4)(@tDv@)+ H c ] +.. .),

See Ref. [5], for an example in which the efFective potential is used to compute the top radiative corrections to the Higgs
mass in the mi~~~al supersymmetric model.
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d x —V, ZO + Z 28„8"
+-', &„Zo&"Zo+ llw(Z2o, 42)W, W"

+-,'Ilz(y') Z„Z.}, (7)

where

Z(4') = 1+&(0")+ (&'/2) [B(&') + C(&')]
2 2

(Zo', 4') = O'Z'o+ [ + &(&')] (8)
2 2

[1+&(&')]

+(g'&'/8 cos'8~) [B(&') —C(&')1

where sin28gr = g'2/(g'2 + g2) with g and g' being the
gauge coupling of SU(2)L, and U(1)y, respectively. The
efFective action (7) is not finite, since it has not been yet
renormalized and then it is given as a function of the
bare parameters and fields of the model. The IIw and
IIz Green's functions can be easily calculated. They cor-
respond to the 1PI Green's functions with two external
W or Z and an arbitrary number of external P. To one
top-bottom loop order, they are given by

2 2 2~ m2
II = 'Z'+ + ) m'I b, —li

4 32n2 - ' ( p2 2i=t, b

IIz(0') =

where we have only kept terms with a maximum of
two covariant derivatives, which are the only terms rel-
evant to our analysis. Note that the operators A(@t4),
B(4t@), and C(4't@) that arise at the one-loop level
only depend on 4' because Z does not couple to the
quarks. When the neutral Higgs bosons develop VEV's,
(P):—v and (Zo) = vs

1
the operators in Eq. (5) in-

duce mass terms for the gauge bosons. The last three
terms in Eq. (5) contribute difFerently to the W and
Z masses; i.e., they break the custodial SU(2) symme-
try [7]. The Higgs triplet kinetic term only contributes
to the W mass, while B(4't4)(otD„4)[(D"4)t4] and
C(4to)(@tD„O)(4tD44) contribute only to the Z mass
[4]. Notice that these two terms are finite, since they
correspond to operators of dimension higher than 4. The
first two terms in Eq. (5), however, are not finite. The
efFective potential V(O, Z) can be renormalized following
Ref. [6]. The kinetic term for the Higgs doublet can be
made finite by a field rede6nition

4 ~ (1 —A) i
I@—(@l4 . (6)

After the rescaling (6) and the renormalization of the
efFective potential, the one-loop effective action is 6nite.

As a function of the neutral Higgs and gauge bosons,
the e8'ective action (5) before the redefinition (6) is given
by

N, is the color number (N, = 3 for quarks), p, is the
renormalization constant, and 4 = ln4z —p+ 1/e, where
p is the Euler constant and e = (4 —n)/2 with n being
the space-time dimension. From Eqs. (8) and (9), we can
extract A(gP) and [B(P ) —C($2)]. We now rescale the
neutral Higgs doublet as in Eq. (6), and we obtain

GF/v 2 —g /8llw(Zo 4' )
VEV

= 1/2[v + 4vs],

~EM = g»n 8w/4&,
where mL, l~hy and mil~hy are the W and Z physical
masses, G~ is the Fermi constant measured &om the p
decay, and Q.EM is the electromagnetic 6ne-structure con-
stant. If we de6ne the p parameter as the measurement
of the relative strength of neutral to charged currents in
neutrino deep-inelastic scattering, we have

p =
H (~2)',8

= po(1+ po&p~h), (14)
VEV

with

po ——(1+4vs/v ) . (15)
Following Ref. [1],we can also define the p parameter as
the ratio p = m2ii, l~hy/(mal&hycos28~), where sin 8~
is the weak angle in the modi6ed minimal-substraction
scheme [8]. Using Eqs. (13) and the fact that sin28iv =
sin 8iv, we have that p is equal to the p given in Eq. (14).
In Eq. (15) v and vs are renormalized quantities (the val-
ues of P and Zo that minimize the renormalized eIFective
potential), so the radiative corrections to the p param-
eter are finite and meaningful. In our particular non-
minimal SM, we have, &om the experimental value of
the p parameter, p = 1.005+ 0.0024, a stronger upper

11~ = g'Z', + g'y'/4,
g2$2IIz- (mivV/COS 8iV)Apgh4 cos28w

where

&«h = —(g'&'/8mw) [B(&') —C(&')]

Notice that we only need to renormalize (rescale) the
Higgs doublet field to get a finite result; i.e., there is
not renormalization of the gauge couplings. We can now
compute the physical observables

mwlvhy = ilw(Zo~4' )IvEv = g vs + g v /4,
2 2 2

2 2 2 ~ Wmzlphy —IIz(zonk )IYEv —
2 2 +p&b ~4 cos Hw cos Hw

where

2 2 2~t mb ~t
m2-m2' m2

b b

m, h = (h, h/~2) y, (10)

g2$2 g2N, ) . 2 ( m2&

4cos 8vt 32m cos28iv - ' ( p )~=t,b

To obtain the explicit form of B(gP) and C(P ) we need to
calculate Z(P ). Nevertheless, only the difFerence [B(P )—
C(P )] is relevant to our analysis.

We have taken the experimental value of p from Ref. [1].
Note that ere can extract sin 8~ Rom the experimental data
using the relation, sin Hiv = pro, EM/~2Gpmivlph„, derived
from Eqs. (13).
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bound on mq than that in the SM, since both contribu-
tions (from the Higgs triplet and the top) are positive.
In the limit v3 ~ 0, we get the SM prediction. We can
write Eq. (15) as a function of only v3 using Eqs. (13):

pp ——1+4~2Gy v3, (is)
which implies

v3 ( 7.8 GeV . (17)
In models with a non-minimal Higgs sector, large radia-
tive corrections can also be induced by Higgs bosons [9].
In model (4), however, we have noted that, neglecting
terms of O(v3/v) 3 x 10 3, the Higgs sector has an ap-
proximate global SU(2) custodial symmetry under which
Z transforms as a triplet. It follows that Higgs correc-
tions to p are very small and the bound (17) holds. It is
important to note that Eq. (14) is a result valid for any
no~minimal SM. In a general case,

).(T' —T';+ T') l(4') I'

(18)po =
):»3,1(4")I'

where T; and T3; are the total and third component of the
weak isospin of P;. As is well known [10], for a SM with
an additional complex Higgs triplet with Y = 2, y, we
have pp = 1 —4~2G&(Z)3 for small values of (Z). Then,
a partial cancellation can take place between the terms
4~2G~(g) and b,pals so that a larger m~ is allowed in
this model. For a very heavy top, however, a nonpertur-
bative calculation of p is necessary. Such a calculation
was carried out in Ref. [11]using a 1/N, expansion.

The Higgs efFective potential, once renormalized, de-
pend on mq. Then, if v3 is obtained &om the minimiza-
tion conditions of the efFective potential, v3 will depend
on mq. One would expect

v3(m, ) = vs (m4 ——0) + b, , (i9)

V(Zp, p) = aqZp + a3Zp + a3ZpgP + a4Zpp + V(4t) .

(20)

From the minimization condition of Eq. (20), we have

v3(~ = 0) —a4v /2[aq + a3v ] (2i)

where v3 has been ass»med to be small. Because Z does
not couple to the top, there is no vertex correction to a;.
The only correction arises from the rede6nition of the
Higgs doublet (6). Thus,

V '
(Zp, p) = aqZp+ a3Zp+ a3(l+ b)Zpp

+a4(1+ E)Zpg + V(P), (22)

where 4 is of O(g3m43) or even of O(g3m~4/mzw); i.e., the
smallness of v3 is not stable under radiative corrections of
a heavy top. It is easy to see, however, that this cannot
be the case. Consider the most general Higgs potential
[10]

and (22), we have

v3(mq) = v3(mq ——0)(1 + [aq/(aq + asv )]b,) . (23)

Therefore, v3 has a weak dependence on the top mass
and on the renormalization prescription of the efFective

potential.
The one-loop effective action (5) gives us more infor-

mation than the top-bottom corrections to the gauge bo-
son masses. From Eq. (5) one can also obtain the one-

loop Higgs-boson —gauge-boson couplings. In the case of
a neutral Higgs boson, the P WW(P"ZZ) coupling is
given by the nth derivative of IIw(IIz) with respect to
P at P = v [12]. For example, the one-loop QZZ vertex
is given by

arI&
QZZ-

P=e

g V

2 cos28~

+g N /16m' vcos Hw

, ( m,'x ) m;~6 —ln ' —1~
)

(24)

in agreement with the explicit one-loop calculation [13].
In model (4), the H+WZ coupling can also be obtained
from Eq. (5). The H+ is the orthogonal state to the
charged Goldstone boson, i.e.,

H+ = —sinPP+ + cosPZ+, (25)

where tanp = 2v3/v. Equations (4)—(6), (12), and (25)
yield

g3v sin p
~H+ o'z

2 g

2gmw sm p +W Z„
mzcos ew

(26)

Note that the H+WZ vertex at the tree level [first term
of Eq. (26)] is very small because it is proportional to
sinP v3/v. Such a proportionality to sinP is maintained
at one-loop level [second term of Eq. (26)], so top correc-
tions to H+WZ are also small. In models with two Higgs
doublets, 4' = (P+, 1/~2[/ +iI ]),a = 1, 2 (such as
the minimal supersymmetric model), the H+WZ cou-
pling is zero at the tree level [14] but can be induced to
one-loop order [15]. In these models, if we now neglect
ms, the one-loop efFective action is given by Eq. (5) re-
placing 4 by 42, the Higgs doublet that couples to the
top, and Z by 4z. The H+ is given by

H+ = —sinP4~ + cosPP3 (27)

where now tanP = ($3)/(Pq). Prom Eqs. (5), (6), (12),
and (27) we obtain

2 3
&a+wz = —

4
[&(4'3) —&(4'3)] 4'3 W~Z"

with b, = O(g3m~3). The explicit form of E depends
on how we renormalize the efFective potential, i.e., the
definitions of the renormalized a3 and a4. From Eqs. (21)

g3N, m~3cotP

64m m~ cos8~ (28)
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Notice that the H+WZ vertex arises only &om the cus-
todial breaking terms of Eq. (5) [16].

III. COUNTERTERM APPROACH

the renormalizatioIl prescription of the Higgs sector of
Ref. [17],i.e., the renormalized vs is defined to be the true
VEV of Zo at one loop. Neglecting the mixing between
the Higgs doublet and the triplet, which is of O(vs/v),
one finds b'vs ——0. Thus, Eqs. (29), (30), and (31) still
hold, and the physical W mass is given by

2 1 2 g v Icos Hw
bmz = [v gbg + g vhv]—

2 cos28w 4 cos4 Hw

Az ) (29)

The gauge sector of the SM depends on only three in-
dependent parameters that we choose to be g, sin28w,
and v. Three conditions have to be given to fix the coun-
terterms bg, b sin 8is and hv:

(a) We define the Z mass to be the physical mass, i.e.,

mz]~h„= mz ——g v /(4 cos 8is ). It follows that

mw ~zi,r —cos 8is mz + cos 8isrhmz2 2 2 2

+g vs + 2vsgbg + A~

2 Aw —cos HwAz= mz~i, i,„cos 8is 1+
cos HW fAZ

+ 1+4v3 Aw —cos Hw Az
V2 ~w~2z

(32)

where Az is the coefBcient of g"" in the vacuum polariza-
tion tensor of the Z [it corresponds to Ilz($2 = vz) —mz
in Eq. (9)].
(b) We identify Gy/~2—:gz/SmL, which implies

and Eq. (14) is recovered. As was noted in Sec. II, a
change in the renormalization prescription of the effective
potential (or a change in the experimental input) implies
a shift vs2 ~ vs2[l + 6] with 6, = O(gzmtz) and then a
negligible change in Eq. (32).

vhv = —(2/g )Ais

(c) We define sinz8is = sin 8is, which leads to

(30)
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