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To extend cluster algorithms also to continuous gauge theories is highly desirable. So far in the
very special case of N, = 1 in SU(2) lattice-gauge theory at finite temperature an embedding of
an Ising model with variable couplings has been successful. We get an improvement in this case by
using a different flipping rule for the cluster spins. Looking for a generalization to the case N, > 1,
we find that, by appropriate gauge transformations, one can trade field effects for frustration but

not get a net improvement.

PACS number(s): 11.15.Ha, 05.50.+q, 64.60.Ht, 75.40.Mg

In the case of the Ising model the cluster algorithm
of Swendsen and Wang [1] reduces critical slowing down
in Monte Carlo simulations considerably. Embedding of
an Ising dynamics in models with continuous variables
such as the O(n) model [2] and ¢* theory [3] also leads
to efficient algorithms. For gauge theories there are clus-
ter algorithms for the discrete groups Z(2) and Z(3) in
three dimensions [4,5]. However, so far there is no clus-
ter algorithm for continuous gauge theories. Only in the
very special case of N; = 1 in finite-temperature SU(2)
lattice-gauge theory [6] has an Ising embedding been suc-
cessful.

Because critical slowing down increases when one ap-
proaches the region of physical interest in continuous
gauge theories, any effort is justified to find a cluster algo-
rithm for these theories, too. To consider SU(2) lattice-
gauge theory at finite temperature in four dimensions
for this purpose appears favorable because there are the
mentioned achievements for N, = 1 [6]. To study the
possibilities in this case more thoroughly is the purpose
of the present paper.

Ben-Av et al. [6] propose the embedding of an Ising
model with variable couplings. For this embedding we
achieve some improvement for N, = 1 by exploiting the
freedom in the choice of flipping rules for the cluster
spins. Considering generalizations to N, > 1 we look
for ways to overcome the problems of treating frustra-
tion and external magnetic fields. In this context we use
the fact that the update procedure can be changed by
gauge transformations. It turns out that in this way one
can trade magnetic field effects for frustration, but, not
get a net improvement.

In [6] for the action

S = —gzp:trUp, (1)

the relation to the signs o, of the Polyakov loops P, =
%trU,J with U, = Hf;’l U(z,t),0 has been established by
noting that for N, = 1 one has

1
QtrUP = P.P, + const (2)
for the timelike plaquettes. We would like to point out
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that for general IV, without imposing a particular gauge
the action can be cast into the form

S=-Y Joy(U)ozoy — Y me(U)o. + RU), (3)

where z and y are nearest neighbors on the three-
dimensional spatial sublattice and R(U) is independent
of 0,. With respect to o, one thus has an Ising model
with variable couplings J, ,(U), which take positive and
negative values, and variable magnetic fields m.(U).

Equation (3) follows from (1) after inserting the quan-
tities U, 2US , and Uy,pUJ , with Uz = [Iie, Ue,i)o
into the timelike plaquettes of the first time slice. The
contribution to S of such a plaquette (after absorbing the
factors U;yz and Uy ) takes the form %tr(UaU,,UJUJ),
where U, and U, are matrices on the spacelike links. In
the Pauli-representation the Polyakov loops P, and P,
are the zeroth components of U, and U, and (3) is ob-
tained by explicitly calculating %trUp in this representa-
tion.

For N, = 1 (3) simplifies drastically. The couplings
Jz,y become 3|P,P,| and thus are positive and the mag-
netic fields m, vanish identically, such that the cluster
algorithm works in the usual way. To update the re-
maining degrees of freedom and to ensure ergodicity, in
addition to the cluster sweeps, local sweeps (Metropolis
or heat bath) must be performed too. In [6] the clusters
have been grown according to Wolff [2] (WO) and n clus-
ter sweeps per local sweep have been done keeping the
ratio R = n{M)/N3, where M is the cluster size, con-
stant. The latter implies a redefinition of the time scale
which corresponds to the use of an effective autocorre-
lation time [7]. This is appropriate only if the cluster
labeling takes most of the CPU time and if, with respect
to different clusters, it is done in a purely sequential way
[8]. It thus is not justified for our programs.

The freedom in the choice of flipping rules for the clus-
ter spins can be used to optimize the algorithm. Respec-
tive possibilities have been studied for the ferromagnetic
Ising case [8] and analyzed in more detail later [9]. Here
in addition to the WO rule also the rule of flipping the
spin of the largest cluster (LC) [10] is considered.

Our simulations for N, = 1 are for 8. = 0.8730 [6] and
N, = 4,6,8,10,12,16,24. We compare the algorithms
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with the LC rule and one cluster sweep per local sweep,
with the WO rule and one cluster sweep per local sweep
(WO1), with the WO rule where n is scaled keeping
R ~ 0.28 (WOmn), and a local algorithm (Metropolis for
spacelike links, heat bath for timelike links). The statis-
tics collected is 5x 105 to 1.5 x 10 sweeps in each of these
cases. The measured observables are timelike plaquette
W., Polyakov loop P = (1/N2)| Y, P.|, susceptibility
thereof x, = (1/N2)(3, P:)?, and cluster size M. Our
exponential autocorrelation times 7.xp and integrated au-
tocorrelation times 7i, are determined as described in [8],
fitting the autocorrelation function to cexp(—t/7).

Figure 1 shows typical fits of Texp to kINZ. It is seen
that the LC rule leads to the smallest autocorrelations
(for the WO rule we also give WOn results though for
comparison actually only the WO1 ones are appropri-
ate). We have determined exponential and integrated
autocorrelation times for the observables W, P, x,, M
obtained by the local algorithm and by the algorithms
with the rules WO1, WOn, and LC. All of the data we
get for Texp and iy allow fits to the law kNZ. Tables I
to IV summarize our results for z and k. The exponen-
tial times are seen to be independent of the particular
observable as they should. On larger lattices using the
rule that requires flipping the largest cluster and those
not in contact with it (SC rule) described in [8,9] further
improvement is to be expected.

We have also investigated the dependence of the auto-
correlation function on the numbers of local steps and of
cluster steps within one total sweep. In particular, con-
sidering the case where s. cluster sweeps using the LC
rule are performed per local sweep, we find that there is
only very little gain for s, > 1 as compared to s. = 1.
On the other hand, in the case of the WO rule we see
still some gain for s, > 1, which is in agreement with
observations in Ref. [6].

For N, > 1 (3) no longer simplifies and one is con-
fronted with external magnetic fields and frustration ef-
fects [11]. There are two ways to deal with the magnetic
fields in the simulations.

The first way accounts for the magnetic fields not when
growing the clusters but when flipping their spins [1,13].
The delete probabilities of the cluster growth then are

local
T z=196(2)

exp t WwOo1 7
2=107(2)

WOn2
10 . z=0.61( )_
[ LC 1
z2=073(2)]
3
I A PR | s
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FIG. 1. Typical fits of Texp to kN7 (shown for the Polyakov
loop) for various flipping rules (with errors smaller than sym-

bols).
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TABLE I. Fit results z for Texp = kN.

Observable Local WO1 WOn LC
W, 1.91(2) 1.06(4)  059(2)  0.75(2)
P 1.96(2)  1.09(3)  0.61(3)  0.73(2)
Xp 1.92(2) 1.07(2)  061(3)  0.73(2)
M 1.05(2)  059(3)  0.74(2)
Pay,del(0) = exp(—Joy020y — |Jzy|) 4)

and the spin of a particular cluster is flipped with prob-
ability

o (- )

zeC

e Cpme) ()

zeC zeC

in order to respect detailed balance.

The second possibility is to account for the magnetic
fields already when growing the clusters by defining a
ghost spin [14]. In addition to the delete probability (4)
related to neighboring spins one now introduces the prob-
ability

p:,del(a) = exp(—mz0, — |my|), (6)

referring to the relation between a spin and the ghost
spin. The cluster spins then are flipped with probability
0.5 except for that of the ghost cluster, i.e., of the one
which contains the ghost spin which must not be flipped.

In our simulations for N = 2 and (8, = 1.873 [15] on
lattices with N, = 6, 8, 12, 16, using the first way to
account for magnetic fields we obtain 7ex, = 24.96(6),
44.7(2), 99(2), 185(4), and 7y = 24.5(2), 43.7(2), 98(1),
184(1), respectively, for the Polyakov loop and similar re-
sults for the other observables. This leads to the dynam-
ical critical exponents zex, = 2.02(3) and zj, = 2.04(2),
which are of the magnitude characteristic for conven-
tional algorithms. Thus the question arises if frustration
or magnetic fields or both are responsible for this effect.

Our simulations indicate that frustration effects are
small. Considering bond numbers as observables, on
lattices with N, = 6 we find that about 7 out of 144
bonds are frustrated (i.e., related to antiparallel neigh-
boring spins). For N, = 8 there are about 16 out of 331.
Further, in a typical configuration the spatial mean of
the magnetic fields turns out to be close to zero. Thus
one may wonder why the algorithm nevertheless is not
effective. The reason is that the values of the fields in
different regions of space are not small: we obtain about
1.22 for (1/N2)(>", |mz|). This causes the spins to fol-

TABLE II. Fit results k for Texp = kNJ.

Observable Local WO1 WOn LC
W, 0.31(1)  0.72(7)  1.43(5)  0.82(3)
P 0.29(1) 0.68(3) 1.41(3) 0.87(2)
X» 0.31(1)  0.70(3)  1.38(3)  0.86(2)
M 0.73(4) 1.45(7) 0.83(2)
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TABLE III. Fit results z for 73,4 = kNZ. TABLE IV. Fit results k for 154 = kNZ.
Observable Local WO1 WOn LC Observable Local WO1 WOn LC
W, 1.79(2) 1.08(2) 0.59(3) 0.75(2) W, 0.31(1) 0.55(2) 1.29(4) 0.74(2)
P 1.93(2) 1.04(3) 0.46(3) 0.65(2) P 0.31(1) 0.75(2) 1.84(5) 0.87(2)
Xp 1.90(2) 1.05(2)  0.48(2) 0.66(2) Xp 0.30(1)  0.72(2) 1.76(4) 0.93(2)
M 0.30(4)  0.56(2) 0.67(2) M 1.08(4)  0.69(3)  0.97(2)

low the fields. We confirm numerically that the magnetic
fields are indeed correlated with the spins such that m_ o,
is positive in most cases. This causes the values of p¢ for
larger clusters to get too small.

We have also performed simulations for N, = 2 using
the second way to account for the magnetic fields, i.e., us-
ing a ghost spin. The results for 7 and z are very similar
to the ones above. The effect now is that the ghost clus-
ter gets very large. For example, for N, = 6 its size is
about 164 (out of 216). Thus only a small fraction of
the spins is updated and the algorithm again becomes
ineffective.

Looking for a possible way out we note that the value
of m0, can be reduced by appropriate gauge transfor-
mations. We therefore have investigated the effect of such
a transformation, applying it before the cluster sweep is
performed and transforming back to the temporal gauge
afterwards. While the change of the sign of a Polyakov
loop corresponds to the update U — —U* on the timelike
links, this procedure amounts to U — —VU'V. In prac-
tice the transformations have been chosen at random, ac-
cepting them for decreasing m,o.. Typically, for N, = 6

and five gauge transformation steps per sweep we reduce
the size of the largest cluster from 94 to 6, which on the
average means a substantial increase of the probability
pc- In addition, also the pc for the smaller clusters rise,
e.g., from 0.043 to 0.100 for cluster size five, and still from
0.237 to 0.288 for cluster size two. However, at the same
time the frustration effects become larger, the number of
frustrated bonds rising to 30 out of 69. Thus it turns out
that one can trade field effects for frustration. However,
again determining autocorrelation times, we get similar
numbers as before. This shows that by such transforma-
tions one does not get a general improvement.
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