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We investigate the phase structure of pure compact U(1) lattice gauge theory in four dimensions
with the Wilson action supplemented by a monopole term. To overcome the suppression of transi-
tions between the phases in the simulations we make the monopole coupling a dynamical variable.
We determine the phase diagram and Snd that the strength of the Srst-order transition decreases
with the increasing weight of the monopole term, the transition thus ultimately reaching second
order. After outlining the appropriate topological characterization of networks of currents lines, we

present an analysis of the occurring monopole currents which shows that the phases are related to
topological properties.
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I. INTRODUCTION

The investigation of the phase structure of U(1) lat-
tice gauge theory is important in two respects. First,
the theory should be the basis of /ED which is still not
understood at the nonperturbative level. Second, it pro-
vides a unique model to study the interrelation between
phase structure and topological properties of the Geld

con6gurations.
The phase transition in four-dimensional (4D) compact

U(1) lattice gauge theory is known to be related to the
occurrence of monopoles. Using the formulation of De-
Grand and Toussaint [1],Barber et a/. have shown that,
if one adds a monopole term to the action, depending on
its weight the transition can be suppressed [2] or shifted

[3]. The consequences of removing monopoles in the U(l)
theory have also been studied in [4].

Recent results [5,6] on the theory without a monopole
term give energy histograms which indicate a 6rst-order
transition. The problem in these simulations is that the
tn~neling between the phases is strongly suppressed. In
order to overcome the difficulty the authors of [5] intro-
duce some type of iterative reweighting for different P,
while the authors of [6] use a matching of hot and cold
start results.

To reconsider the case with a monopole term is of inter-
est in two respects. First the variation of the details of the
transition with the weight of this term provides further
insight into the properties of the theory. Second, if the
strength of the transition turns out to decrease with this
weight, then, by making the weight a dynamical variable,
one can set up a very efBcient simulation algorithm. The
efFiciency of such a procedure has been demonstrated in

[7], where, by making the number of states q in the Potts
model a dynamical variable, the authors could bridge the

energy gap that occurs for q ) 4.
Further aspects of the U(l) theory which deserve re-

consideration are the properties of the spatial structure
of the monopole currents in the configurations and their
relationship to the global features showing up in the ob-
servables. First results along these lines have been pre-
sented some time ago by Grosch et al. [8]. Recently this
issue has been addressed again by Bode et al. [9] who ob-
served that in 4D compact U(l) theory one is confronted
with clusters of monopole lines rather than with single
loops.

Because the topological description is straightforward
for loops only, this raises the question if a satisfactory
topological characterization of networks of current lines
can be found. In this context one should also discuss
the work by Lang and Neuhaus [10],who, simulating the
model on the surface of a 5D hypercube (homeormpor-
phic to a four-sphere) rather than on a 4D lattice with
periodic boundary conditions (corresponding to a torus),
found that the 6rst-order signal disappears.

In the present paper we show that the additional
monopole term provides the features needed to set up
a powerful simulation algorithm. Our investigations give
detailed properties of the phase transition and their de-

pendence on the weight of the monopole term. We intro-
duce a topological characterization of networks of current
lines and 6nd that the topology of these networks signals
the phases.

Section II gives de6nitions and general relations. In
Sec. III, the method of the Monte Carlo simulations is

described. Section IV presents the results based on his-

tograms and a discussion of the phase structure. In Sec.
V, the topological characterization of networks of current
lines is outlined. In Sec. VI, the numerical results on. cur-

rent networks are presented and discussed. Section VII
contains some conclusions.
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II. ACTION AND MONOPOLE CURRENTS III. METHOD OF SIMULATION

S=P ) (1 —cosO„„)+A)iMp, ~i.
gs) v, x

(2.1)

In terms of the link angles O„C[—n. , vr) the plaquette
fiux Opgp ~ E [ 47l'~ 47I') is

O„v = 0„+0„+„—0„+v—0„

The Wilson action supplemented by a monopole term
is of form

In the usual simulations A is a fixed parameter and
one deals with a probability distribution yp (0)
exp[ —Sp(e)]/Zp. In order to make the parameter A a
dynamical variable we consider pp(0) as the conditioned
probability to get a configuration 0 given a definite value
A and allow the values of A to vary with a chosen prob-
ability distribution f(A) T.hen, to siinulate the joint
probability distribution p(O, A) = f(A) pp(O), we use
y(O, A) = exp[ —S(O, A)]/Z with S(O, A) = Sq(O)+g(A).
This implies that the relation between f and g is given
by

The physical fiux O„„C[—m, x) is defined [1] by
f(A) = Zpexp[ —g(A)] /Z (3 1)

(2.2)epv, x = Op, v, a + 2~n pv, e
with Z = Q„Zgexp[—g(A)].

In the simulations we use a discrete set of n values
of A. For the efficiency of the simulations an appro-
priate choice of f(A) is crucial. We require this to be
(approximately) constant so that (almost) identical to-
tal numbers of sweeps are spent at all values of A. By
(3.1), constant f(A) means g(A) = in' + c, with an
arbitrary constant c. Reasonable values of g(A) are read-
ily obtained by short r»ns at fixed A. These values can
be improved iteratively in the full simulations, replacing
g(A) by g(A) + in[nf(A)] in subsequent iterations, which
converges to constant g(A).

While the total amount of time spent at a definite A

value is fixed by f(A), there is still the freedom to vary the
average stay time (the average number of sweeps spent
at a particular A before leaving it). The reciprocal of
this time is the s»m of the transition probabilities to
the neighboring A values. To get an efficient algorithm
these probabilities must not be too small, which means
that one must use a sufficient number of A values. Fur-
ther it appears appropriate to make these probabilities
(roughly) the same in all cases, which can be achieved by
adjusting the distances between the A accordingly.

In our application of the algorithm each update of the
0 link variables has been followed by an update of A. As
individual update steps we have used Metropolis steps in
both cases. For the Aq with q = 1, . . . , n we have used
the proposal matrix

where n„„=0, +1,+2. The monopole content of 3D
cubes which enters the additional term in (2.1) is given
by

127™pa = —,epo pv(Opv, a+a —Opv, a) (2.3)

where Mp ——0, +1,+2. The O„v are invaria, nt under
gauge transformations

0'„=[e„+y +„—y + 7r] mod 2m —7r

).(Jp, —Jp,- p) =o-
p

(2.4)

and the field equation

) (8p —8p ) = 2+Jp (2 5)

have a straightforward geometric interpretation on the
dual lattice.

Summing (2.5) over three of the four coordinates, for
periodic boundary conditions we obtain

with y 6 [
—m, m) (which guarantees that 0'„6[ n,x)—

as well).
We find it convenient to introduce Jp = Mp +p and

2
6'p p Op +p+ because then the current con-

servation law

&0 &1 &2

(2.6)

~&0 ~&1 ~&S

J„,= f„,for J„,6N, (2.7)

where f» is constant. By (2.6) the net current fiows fp
of the occurring networks have to s»m up to zero.

i.e., the vanishing of the net current Bow through any
hypersurface perpendicular to the direction of the How.
We note that (2.4) holds separately on each network N
of current lines (cf. Sec. V) disconnected from the rest.
Therefore, summing (2.4) in that case over three of the
four coordinates we still get

For the efficiency of the algorithm it is crucial that the
fact of making A a dynamical variable opens an easier
pathway between the phases. In the case under consider-
ation this happens because the strength of the first-order
transition decreases with A. This is illustrated by Fig.
3 (discussed in Sec. IV), which indicates that traveling
along the peaks is easier than tunneling through the val-
leys.

For each value of A one must fix a corresponding value
of P. To exploit the algorithm already at the stage when
one searches for the transition line, the A interval can
be gradually extended, starting &om a region with over-
lapping peaks and adjusting the P values with increasing
statistics.
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The tunneling times [14] between the phases for our
algorithm with dynamical A are greatly reduced as com-
pared to those of a conventional Metropolis algorithm.
For example, for L = 8 at the phase transition line (cf.
Sec. IV) we get, in units of 10s, 0.17(2) as compared to
3.0(3) for A = 0 and 0.25(4) as compared to 23(5) for
A = —0.3.

Since we are interested in the results for all of the A

values considered, these times reflect the actual gain. If
we were interested only in one of the A values, to make a
fair comparison we would have to multiply the times of
our algorithm roughly by the number of A values used.
Thus envisaging interest in the results for A = —0.3 only,
multiplying the above timing by n = 21, we would find
that there remains still considerable gain. Envisaging
only A = 0, where traveling to negative values is no longer
needed, the factor would be 15 and there would be some
gain there as well.

The actual point, however, is that for large L (in which
one is mainly interested), and similarly also at negative A,

our algorithm is in any case superior. This occurs simply
because then the peaks in the energy distribution related
to the phases (cf. Sec. IV) get separated so that by
using conventional algorithms one does not observe any
transitions at all. It should be realized that the situation
in this region is entirely diHerent &om the one in regions
where there is considerable overlap of the peaks, in which
case one can, of course, not gain much.

A further important virtue of the present algorithm
is that it allows vectorization and parallelization of the
computer programs (as does, e.g. , not hold for the mul-
ticanonical method [11]).This has allowed us to develop
an efBcient parallel implementation running on the con-
nection machine CM-5.

TABLE I. pc of phase transition for L = 8; p and g(A) of
simulatious.

IV. PHASE STRUCTURE

Rather precise results on the phase transition have re-
cently been obtained [5,6] in the absence of a monopole
term by considering energy histograms. Including the
monopole term in investigations based on histograms,
we find that the strength of the first-order transition de-
creases as A increases. This is seen &om Fig. 1, which
compares the distributions P(E) of the average plaquette
energy

E = (I/6L ) ) (1 —cos0„„,)
p, )v, a
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In the present work we have run the algorithm with
dynamical A for L = 8 using the 21 values of A, and
corresponding values of P and g(A), given in Table I. For
L = 8 at A = 0.9 and for L = 16 at A = 0 and at A =
0.6 we have also performed conventional simulations at a
number of P values. The statistics we collected is larger
than 10 sweeps for each of the A values we considered
for L = 8 as well as for L = 16.

—0.30
—0.25
—0.20
—0.15
—0.10
—0.05

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.525
0.55
0.575
0.60

pc
1.1786(1)
1.1501(1)
1.1217(l)
1.0932(1)
1.0647(1)
1.0361(1)
1.0075(1)
0.9787(1)
0.9496(1)
0.9203(1)
0.8908(1)
0.8609(l)
0.8304(1)
0.7995(l)
0.7680(1)
0.7359(1)
0.7028 (1)
0.6860(1)
0.6688(2)
0.6512(2)
0.6335(2)

1.1785
1.1501
1.1217
1.0932
1.0646
1.0361
1.0074
0.9788
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0.8610
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0.7685
0.7364
0.7034
0.6864
0.6693
0.6515
0.6337
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FIG. l. Distribution P(Z) in the transition region on lat-
tices with L = 8 (rhombs) and I = 1.6 (crosses), (a) for A = 0
and (b) for A = 0.6.
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on lattices of sizes L = 8 and 16 for A = 0 and 0.6.
(The data of Fig. 1 for L = 8 are given in Table I. For
L = 16 we used P = 1.010781 for A = 0 and P = 0.6428
for A = 0.6. For L = 16 and A = 0 the peaks have
been obtained by equal numbers of hot and cold starts,
respectively. )

As the peaks overlap the determination of the location
of the phase transition needs special care. This is illus-
trated by Fig. 2, which for A = 0.6 and L = 16 shows
the sensitivity to the value of P.

From Fig. 3, which presents the distribution P(E, A)
we obtained in the transition region for L = 8 by sim-
ulations with dynamical A, the decrease of the strength
of the transition is seen in more detail. The figure also
makes the case for our algorithm: &om the profile of the
distribution it is clear how a simulation with dynamical
A can trace the peaks and thus avoid the long correlation
times due to the separation of the phases in the region
where the transition is strongly of the first order.

We define as location of the phase transition the maxi-
mum of the specific heat, which determines for us Pc for
given A. To adjust the data measured in the transition
region appropriately, we use reweighting [15]. The loca-
tion of the transition in (P, A) space is depicted in Fig.
4 for L = 8. Corresponding numerical values of Pc up
to A = 0.6 are given in Table I. For L = 8 at A = 0.9
we get Pc = 0.3885(5) and for L = 16 at A = 0.6 we
obtain Pc = 0.6428(3); the value for L = 16 at A = 0
determined in Ref. [6] is Pc = 1.01082(6).

Figure 5 presents the latent heat as a function of A at
the phase-transition line for L = 8, confirming the fact,
already seen &om Fig. 1 for L = 8 and 16 and &om Fig. 3
for L = 8 for a whole range of A values, that the strength
of the transition decreases with increasing A. We give the
data in Fig. 5 up to the point where separation of phases
appears numerically justified. The merging of the peaks
signals that the transition ultimately gets of second order
(a further indication of this will be discussed in Sec. VI).

We confirm the observation [6] for A = 0 that the latent
heat at the transition point &om L = 8 to 16 decreases.
However, the requirement for a first-order transition is

P(E,l)
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FIG. 3. Distribution P(E, A) for L = 8 with P in the tran-
sition region.
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FIG. 4. Location of phase transition in (P, A) space for
L = 8, P versus A.
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FIG. 2. Distributions P(E) for A = 0.6 and L = 16, for
p = 0.64&2 (rhombs), p = 0.6428 (crosses), p = 0.6424
(squares) .

FIG. 5. Latent heat for L = 8 as function of A at the
transition line.
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only that extrapolation to infinite L of the latent heat
versus 1/L leads to a finite value [12]. For the Potts
model it has recently been demonstrated that such an
extrapolation does reproduce known results [13]. If we
extrapolate our values 0.046(2) for L = 8 and 0.030(2)
for L = 16 linearly versus 1/L we obtain the finite value
0.014. It is, nevertheless, still an open question to what
extent finite-size scabng already applies.

Our results for the distributions of the monopole num-
ber density p = (1/4L ) g ~M~ [

are very similar to
the ones presented above for the distributions of the pla-
quette energy E. This confirms the strong correlation
between E and p at the transition point which has been
known for some time [16]. In Fig. 6, which illustrates
data obtained with L = 8 and A = —0.3, we show the
preferred direction of the distribution P(E, p) in (E,p)
space. From Fig. 7, which exhibits P(E, p) for L = 8
and A = —0.3, 0, 0.3, 0.6, 0.9, it is seen that the slope
of the correlation shows only little dependence on A. In
addition &om Fig. 7 it is apparent that the p of the cold
phase is roughly the same for all A.

From Fig. 7 we see that the slope of the correlation
between plaquette energy and monopole density AE/Ap
ranges &om approximately 1.1 to approximately 1.3, with
the smaller value slightly favored for larger monopole
density. Remembering that the ratio between total num-
bers of plaquettes and cubes in a four-dimensional lattice
is 2, this indicates that the average total extra plaque-
tte energy associated with the presence of a monopole is
AEt, q 1.8. A semiclassical explanation for this num-
ber can be obtained along the following lines. A calcu-
lation of the minimal plaquette energy needed to pro-
duce a monopole loop of length 4 in an otherwise totally
ordered field configuration gives E = 6.65, i.e., a total
plaquette energy per monopole = 1.61. (We have used a
constrained relaxation technique to evaluate this number.
One must of course impose a constraint since a monopole
loop is classically unstable. ) This can account for the
value of b,E/b, p in the low monopole density regime.
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0.3 0.4 0.5 0.6

FIG. 7. P(E, p) for L = 8 in the transition region, for
A = —0.3, 0, 0.3, 0.6, 0.9 (giving the distributions from left
to right, respectively).

With a very high density of monopoles a more appro-
priate quantity to consider would be the total plaquette
energy necessary to produce a long monopole line. In this
case the plaquette energy per monopole can be obtained
by calculating the total plaquette energy for a single
monopole configuration in a three-dimensional system,
which is given by E = 4.41. This number is much larger
than the observed b,E/b, p, but one must also consider
that in regimes of high monopole densities the monopoles
are produced over the background of a rather disordered
gauge field. Thus it would not seem correct to attribute
to the presence of a monopole the entire energy necessary
to create it from the vacuum, but instead only the excess
energy over the background. For this reason we have also
calculated the excess plaquette energy above some defi-
nite cuto8' in a classical monopole configuration [i.e., we
have summed min(E&i ~„,ii, —E,„i6, 0) over all plaque-
ttes]. With E,„qir = 0.2 and 0.25 this gives E = 1.80,
and 1.50, respectively. Thus, in either case (low and high
density of monopoles) the number that emerges from the
semiclassical calculation is in reasonable agreement with
the observed values.
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FIG. 6. Distribution P(E, p) for L = 8 and A = —0.3 in
the transition region.

V. CHARACTERIZATION OF NETWORKS

The currents J~ related to links of the dual lattice
take the values 0, kl, +2. We define current lines such
that for J~ = 0 there is no line on the link, for J~
+1 there is one current line in the positive or negative
direction, respectively, and for J~ = k2 there are two
lines in the positive or negative direction. Because the
J~ are subject to (2.4) the same number of lines must
arrive at and depart fmm a site.

The current lines thus form connected sets which we
call netw'orks. The topologically relevant ingredients of
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these networks are the vertices, defined as the sites where
at least two lines arrive (and depart), and the edges, de-
fined as the current lines connecting the vertices.

For networks of current lines it is intuitively clear
whether a network wraps around the torus in some di-
rection or not. However, a precise mathematical criterion
remains to be given. It should be obvious that cutting
the network into loops is not allowed because (apart from
being highly nonunique) this would change the topology.
In the following we point out how the fundamental ho-

motopy group mq can be used to obtain the desired topo-
logical characterization.

The elements of xq correspond to equivalence classes
of paths which can be deformed continuously into each
other and which all start and end at the same point,
called base point. A strategy to determine vrq(X, b) of a
space X with a base point 6 is to cover X by a suitably
dense network and to make use of the fact that the related
edge path group is isomorphic to z'q [17]. Analyzing the
network then leads to zq(X, b) For th. e four-dimensional
torus considered here one gets zq(T4, b) = Z4 indepen-
dently of the choice of b.

This motivates a related procedure which we propose
for characterizing the topology of the networks of cur-
rent lines embedded in Y4. For a particular network N
it exploits the observation that the analysis provides the
generators of zq(T, b) if T4 is suitably covered by N,
while it gives only those of a subgroup thereof if N does
not wrap around in all directions. Thus one gets an ap-
propriate characterization by the (proper or improper)
subgroup associated with N.

To derive our rules we choose one vertex point of N

to be the base point b and consider the set of all loops
through 6, i.e., of all paths through N which start and end
at this point. We then use the fact that the group content
of this set is not changed if we perform mappings preserv-
ing the homotopy of all of these paths. This in particular
holds for a mapping by which one edge shrinks to zero
length. By a sequence of such mappings one finally can
shift all other vertices to b. One thus gets a bouquet of
paths starting and ending at the base point.

To perform this shrinking procedure in practice, we
represent any path on Y by a vector which is the sam of
the oriented steps along the path. Thus a vector of this
type is associated with each edge (and depends on the
starting point and the end point of the edge, however,
not on the particular path it takes). Then a shrinking
of one edge implies that the coordinates of the moving
vertex and the vectors of all other edges connected to this
vertex are to be modified appropriately.

For a network N with Ko vertices and Kq edges one
obtains a bouquet of K = Ky —Ko + 1 loops on 7,
which are related to elements of zq('r4, 6). The bouquet
is described by a set of vectors of the type introduced
above, s; withi = 1, . . . , K. If the ith loops wind around
the torus m;~ times in direction j (including the sign),
the jth component of the respective vector is s;~ = zv,~L~
where Lz denotes the lattice size and j = 0, 1,2, 3. Thus,
one can equivalently use the vectors vr; with components
m;z to represent the bouquet.

The networks considered here have the additional

properties of given path orientation and of respecting
current conservation at the vertices. This reduces the al-
lowed patterns. For the net current fiow (2.7) it implies
the relation f = P,. w; for the bouquet vectors, which
restricts the form of the bouquet matrix.

While the group content of the bouquet is unique,
which particular loops occur depends on the succession
of the shrinking mappings chosen to form the bouquet.
Transformations between equivalent bouquets have to
preserve homotopy and to respect current conservation.
We observe that elementary maps of this type are ones
in which three vectors w, erg, vr„selected out of the
bouquet, are replaced by w, w& —w, w, + w (as one
readily verifies considering the partial network with two
vertices from which, depending on the edge selected for
shrinking, the first or the second form arises).

Obviously these elementary maps correspond to steps
of a modified Gauss elimination procedure within the
bouquet matrix m;~, in which adding of a row to another
one requires to subtract it simultaneously &om a further
row. Applying steps of this type m,~ can be cast into
a standard from with rows aq, . . . , a„,t, 0, . . . , 0 where
a g 0 and where r & 4 is minimal. Because the entries
of the matrix are integers and because divisions are not
allowed in the procedure, one in general remains with a
triangular form of the a;, for r = 4 withi elements which
may differ from zero (while in our application except for
very few cases further reduction to a;~ = +h;z occurs).

The pair form with rows a;, —aq, . . . , a„,—a, f,
0, . . . , 0, which explicitly exhibits f, for K & 2r +
1 is immediately obtained &om the standard form.
For f = 0 the number of nontrivial directions is
r. For f g 0, rewriting the pair form for K
2r + 3 as aq, —aq, . . . , a„,—a f, —f f 0, . . . , 0, it is
seen that the number of independent pairs out of
aq, —aq, . . . , a„,—a„,f, —f is the number of nontrivial di-
rections, which may be r or, provided that r+1 & 4, also
v+1

VI. MONOPOLE CURRENTS

There exist quite a number of contacts of current lines.
We define their number at a site by the number of lines
arriving at the site (or, equivalently, departing from it)
minus one. We find that their overall number per size is
larger in the hot phase than in the cold one, decreases
with increasing A, and shows little dependence on L. The
data in Table II give an overview of this.

The number of contacts in a network equals the num-
ber of links along its lines minus the number of sites on
its lines. We get a roughly linear increase of the number
of contacts with the size of a network (with some increase
of the Buctuations around the curve and of its slope with
size). For A = 0 this confirms an observation of Ref. [9].
For larger A we find that the slope gets smaller. We see
almost no L dependence of the slopes. Table II also con-
tains mean numbers of contacts in a network per network
size (for networks larger than 19), which are seen to be
similar to the overall numbers.

In Fig. 8(a), we depict the probability to find a net-
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TABLE II. Contacts per size in units of 100.

L
8

8
8
16

16

—0.3

0.0

0.3

0.6
0.9
0.0

0.6

Phase
Cold
Hot
Cold
Hot
Cold
Hot

Cold
Hot

Overall
6.2(1)
11.3(1)
5.5(1)
7.9(1)
4.4(1)
5.9(l)
3.9(1)
3.0(1)
5.1(l)
7.1(1)
3.4(1)

Network
9.7(2)
11.7(2)
8.4(1)
8.7(1)
6.7(1)
7.0(1)
5.6(1)
4.5(1)
8.2(1)
8.2(1)
5.5(1)

1.0- + + + s y ~

0.8—

0 0.6-
Z'. 0.4-

-0.3 0.0 0.3

1.0-

0.8-
0 0.6-

work which is nontrivial in at least one direction and in
Fig. 8(b) the probability to find one nontrivial in four
directions as functions of A along the transition line for
L = 8. We have obtained the data for the hot (confining)
and the cold (Coulomb) phase by separating the E his-
togram at the minimum between the peaks (up to the A

value where this has been still possible). From Fig. 8 it
is obvious that the topological characterization provides
a signal for the phases.

We find that for L = 16 this efFect at A = 0 is already
more pronounced than it is for L = 8 at A = —0.3. The
obvious reason for this is that the peaks related to the
phases become well separated, which makes the signal for
the phases rather perfect, the hot phase being indicated
by a network nontrivial in all directions, and the cold
one by the absence of nontrivial networks. This appears
to be the generic situation for larger lattices. It thus
turns out that the topological characterization provides
an unambiguous signal for the phases.

It is useful to emphasize the difference between the
topological classification of the networks we have given
here and the "winding number" (I/L„)g &NM„, as
defined in Ref. [9j, which, because of current conserva-
tion, equals the net current fiow f„(2.7). Our topolog-
ical characterization formalizes the intuitive notion that
a network of monopole loops wraps all around the torus,
i.e., that it contains oriented paths that allow one to go
around the torus and come back to the original point.
This can happen, and thus give to the network a nontriv-
ial topology, even if the network carries no net current
Bow. Indeed, for A = 0 we also found numerically that
the net current Bow is nonzero only in very rare cases for
L = 8 and not at all for L = 16. For larger A the fraction
of such events increases. Some of our data on the net
current How are reproduced in Table III.

Because of (2.6) f„g0 implies that more than one
nontrivial network occurs. From Table III it is seen that
the case f g 0 coincides indeed with the occurrence of
more than one nontrivial network. It also shows that the
number of these networks increases with A.

In Fig. 9, we present the probability to End networks
being nontrivial in 0 to 4 directions as function of A along
the transition line (without separating phases and thus
allowing to cover the full range of A). For trivial networks
within errors there is no dependence on A. The &action
of nontrivial networks being nontrivial in less than four
directions is seen to increases with A. Thus there is a
A region where all of these structures become similarly
important, which is a further indication of the transition
getting of second order.

Figure 10 shows the mean size of the largest network
for I = 8 as function of A along the transition line (the
statistical errors given are small as compared to the Huc-
tuations of sizes around the mean). The signal for the

04

0.2
TABLE III. Probability for f g 0 and for more than one

nontrivial network in units of 100.

-0.3 0.0 0.3

FIG. 8. Probability for a network in cold (rhombs) and
hot (crosses) phase as function of A for I = 8, (a) being
nontrivial in at least one direction, (b) being nontrivial in
four directions.

8 —0.3
0.0
0.3
0.6
0.9

16 0.0
0.6

f QO
0.6(4)
1.6(5)

6.6(1.3)
14.6(1.5)
19.3(3.3)

0.0(3)
12.O(2.7)

No. =2
0.6(4)
1.6(5)

6.6(1.3)
12.7(1.5)
15.9(2.7)

o.o(3)
12.0(2.7)

No. =3
0.0(2)
0.0(2)
0.0(2)
1.4(4)
3.0(5)
0.0(3)
0.0(3)

No. =4
0.0(2)
0.0(2)
0.0(2)
o.5(3)
o.4(3)
o.o(3)
0.0(3)
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0.4—

1000 -.

100-
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0
0

00
0o

00
0oo

(a)

0.2

I

-0.3 0.0 0.3 0.6 0.9

2
3

0.1

0.01
I

10
I

IOO
I

0 0
004' ~000:

I

1000

PIG. 9. Probability for a network being nontrivial in 0—4
directions as a function of A for L = 8.

1000-

100-
(b)

phases is similar as in Fig. 8, which re8ects the fact that
the nontrivial network is large. Our data for L = 16 show
the same efFect [for A = 0 the mean size of the largest net-
work in the hot phase is 12 900(200) and in the cold phase
it is 790(50)]. Figure 10 in addition reveals that only the
hot phase data change significantly with A (as can also
be observed for p in Fig. 7).

Figure 11 gives the average number N(l) of trivial net-
works as a function of their size l for L = 16 and A = 0
in the transition region. The hot and cold phase data
turn out to be rather similar. The distributions within
errors decrease with power laws, slightly faster for the
hot phase. The plots for the L = 8 data look very sim-
ilar, apart from the numbers being smaller. They show
very little dependence on A. Table IV, with the results
of a fit of N(l) versus kt ', summarizes these findings.

The power law N(t) l may be related to a frac-
tal dimension Df. Assuming that the sum of lengths
of networks of size I per volume, /N(l)/V, does not
change under coarse graining, by which it gets the form
(I/b f)N(l/b f)/(b+V), one obtains z = 1+D/Df. In-

10
0

0
0

0
00

00
Oo

0.1

0.01
I

10

P~
0~a

54Axo00

I

100
I

1000

serting z &om Table IV and D = 4 it follows that Dy is
in the range between 1.8 and 2.8, i.e., well below 4.

Our observations can be used to get insight into the
mechanisms involved in the phase transition. We have
noticed (cf. Figs. 7 and 10) that in the cold phase p and
the size of the largest network show little dependence
on A, while in the hot phase these quantities decrease
strongly with A. The decrease of the latent heat (cf.

FIG. 11. Number N(l) of trivial networks as function of
size l for I = 16 and A = 0, (a) cold phase, (b) hot phase.

1500—
TABLE IV. z and k &om Sts kl to the probability for

trivial networks of size l.
LLI
N
(/)

1000—

500—

-0.3 0.0 0.3

FIG. 10. Mean size of largest network in cold (rhombs) aud
hot (crosses) phase as function of A for I, = 8.

L
8

8
8
16

16

—0.3

0.0

0.3

0.6
0.9
0.0

0.6

Phase
Cold
Hot
Cold
Hot
Cold
Hot

Cold
Hot

2.46(2)
3.22(3)
2.48(2)
3.01(2)
2.48(2)
2.87(2)
2.66(1)
2.65(2)
2.41(1)
2.85(1)
2.63(1)

1 164(42)
2 059(110)

1 168(27)
1 814(60)

995(3)
1 494(43)
1 158(21)
1 007(36)

15430(130)
25 830(180)
19710(250)
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Figs. 1, 3, and 5), due to the strong correlation between
E and p (apparent from Figs. 6 and 7) essentially only
re6ects the indicated behavior of p. We have also seen
that for trivial networks neither the distribution of their
sizes (cf. Table IV) nor the probability to find them (cf.
Fig. 9) show significant changes with A. Therefore, the
quantity most affected by A must be the probability for
the occurrence of nontrivial networks in the hot phase.

Thus the following picture emerges. For negative A,
there is typically one large nontrivial network in the hot
phase. With increasing A (and with the consequent sup-
pression of monopoles) there occurs a progressive thin-
ning of such network, which reduces its size and the value
of p. Then increasingly it subdivides (Table III and Fig.
9) and breaks into smaller pieces. The dynamics at fixed
A may be illustrated in the following way. If there is
a very large nontrivial network, it will tend to thin out
to reach the size favored by the Boltzmann weight. On
the torus it can, however, only get gradually smaller to
a minimal size beyond which it must break into pieces.
One possible explanation of the first-order nature of the
transition for small A would then be that, in the absence
of thinning, the probability for the network to break up is
low and a substantial amount of en.ergy is also required.
Therefore one gets the valley in the two-peak distribution
and a gap.

If instead of the torus jI.
' one considers the sphere S4,

because xi(s") for n & 2 only contains the neutral ele-
ment, the topological characterization no longer identifies
distinct phases. To illustrate the dynamics in that case
one may again consider a very large network. Now it
can gradually get smaller without the above necessity to
break at some point. Thus there should be only one peak
(located roughly in the middle of the two-peak structure
of a comparable torus).

The authors of Ref. [10j, which simulate the system on
the surface of a five-dimensional cube, homeomorphic to
S4, observe indeed only one peak. Some caution apears
appropriate, however, because on smaller lattices the in-
homogeneities of the cube may cause smearing efFects,
that only the narrowing of the peak for larger systems
would exclude.

However appealing, the topological interpretation of
the order of the transition on the torus must face the no-
tion that first-order transitions are bulk e8ects, in which
boundaries play no role. In view of our observation that
for increasing lattice size the topological characterization
gets very clear, the disappearance of the transition also

on extremely large lattices is hard to imagine. If one
wishes to exclude the relevance of the boundary condi-
tions then the interpretation of our observations on the
topological properties of the networks would be that, al-
though not crucial for the order of the transition, they
form an excellent diagnostic tool. They indicate the oc-
currence of some type of percolation transition, whereby
the monopole loops condense into a network pervading all
of (four-dimensional) space. Also, the discrepancy of the
results of [10] with such picture would remain to be ex-
plained. If the topological properties of the networks are,
instead, intimately connected to the nature of the tran-
sition, this raises the question if such transitions, which
certainly are of interest in models, could have physical
implications, too.

VII. CONCLUSIONS

Adding a monopole term to the action has allowed us
to set up a powerful simulation algorithm, to study the
extended theory, and to extract the underlying mecha;
nisms of the phase transition. We have found that the
strength of the first-order transition decreases with the
weight of the added terms in such a way that the transi-
tion ultimately gets of second order. We have presented
detailed data on the properties of the system in this con-
text. In order to be able to analyze the occurring configu-
rations appropriately, we have worked out the topological
characterization. of networks of current lines. Prom our
analysis we have obtained detailed results on these net-
works. In particular, we have found that their topological
properties signal the phases.
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