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The spectrum of the T system is investigated using the nonrelativistic lattice /CD approach
to heavy quarks and ignoring light quark vacuum polarization. We find good agreement arith
experiment for the T, T', T" and for the center of mass and fine structure of the yg states. The
lattice calculations predict bb D states with a center of mass at (10.20 + 0.07 + 0.03) GeV. Fitting
procedures aimed at extracting both ground and excited state energies are developed. We calculate
a nonperturbative dispersion mass for the T(1S) and compare it with tadpole-improved lattice
perturbation theory.
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I. INTRODUCTION

Hadrons containing one or more heavy quarks have
been the focus of intense investigations by lattice gauge
theorists in recent years. One motivating factor is that
these systems are also being studied extensively by exper-
imentalists trying to nail down the remaining parameters
in the standard model. Nonperturbative /CD results are
needed in many instances to convert experimental num-
bers into determinations of fundamental parameters or to
test the standard model. The lattice approach to nonper-
turbative /CD is now starting to yield reliable numbers
for several of these crucial inputs. Part of the activity
has been in heavy-light systems, focusing on leptonic and
semileptonic decays of heavy-light mesons (the B's and
D's) and on neutral meson mixing [I]. Another area of
investigation, which is also the focus of the present ar-
ticle, has concentrated on heavy-heavy systems such as
the J/g and T families. Studies of the latter systems
have already lead to the most accurate lattice determi-
nations of the strong coupling constant n, [2—4], and of
the b-quark pole mass Ms [5]. In heavy-heavy systems
one can take advantage of the fact that only heavy quark
propagators are required to do high statistics simulations
at only modest computational cost (of course only once
the gauge configurations have been created). This cou-
pled with the wealth of experimental data on quarkonium
allows one to carry out stringent tests of computational
methods employed by lattice gauge theorists. These sys-
tems may also be the place where effects of quenching can
be studied quantitatively. We report here on a study of

the T system using the nonrelativistic /CD (NRQCD)
[6,7] approach to heavy fermions. Our goal is to start
from a first principles /CD Hamiltonian and show that
it can reproduce the T spectrum. Along the way we
develop and refine methods to analyze numerical data,
methods that we hope will be useful in other lattice cal-
culations as well. For instance, we find that extracting
excited state energies is straightforward using our fitting
procedures. Our simulations also serve to test pertur-
bation theory on the lattice in a new setting, through
comparisons of nonperturbative simulation results for the
T kinetic mass with perturbative formulas. The investi-
gations in this article provide the foundations for our
determination of the b-quark pole mass. The Mp calcu-
lations are described in a separate publication [5]. We
emphasize that NRQCD provides an extremely efficient
way to obtain realistic and accurate heavy quark propa-
gators. The prospect of NRQCD having impact not only
in investigations of heavy-heavy but also of heavy-light
systems looks very promising [9].

The 6 quarks in the T system are quite nonrelativis-
tic, with v 0.1. The splittings between spin-averaged
levels are around 500 MeV [O(Msv2)], which is much
smaller than the mass [O(2Mb)], indicating that a sys-
tematic expansion of the /CD Hamiltonian in powers of
v2 is very appropriate here. The continuum action den-
sity, correct through O(Ms v ), is given by

yt (D + Hcont) y + yf bIIcont y

with

D~cont
2Mb

bH' = —cq o (D ) +c2 o (D E —E D) —cs o
o. (DxE —ExD) —c4 oo' B.

2M~0
(2)
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@, gt are two component Pauli spinors and at the tree
level we have c, = 1 for all i. Previous NRQCD studies
[6,10] have used the leading order Hamiltonian (bH =
0) or the leading order plus the o . B terin and gave
encouraging results. Here we include all the O(Msv )
terms. This means systematic errors due to relativity
will be of O(Msv ) 5 MeV, which is about 1% of a
typical radial or orbital excitation energy and 10% of a
typical spin splitting.

In our lattice simulations there will be other sources of
systematic errors. Finite volume errors are not a problem
here since the T's are smaller than regular light hadrons.
Finite lattice spacing errors in the fermionic action can
be corrected for order by order, similar to the system-
atic v corrections. This is explained in Ref. [7], where
the relation to other improvement programs such as the
Symanzik program [8] is also discussed. The main re-
maining sources of systematic errors come from the gauge
configurations, namely, O(a2) errors from using the stan-
dard Wilson gauge action and quenching errors due to the
absence of light quark vacuum polarization. From poten-
tial model calculations we estimate the latter errors to be
the dominant ones. One consequence of quenching will be
that inverse lattice spacings a extracted from difFerent
observables will not agree with each other in general, and
one will have to make some choice when presenting di-
mensionful results. We find that our two basic splittings,
the 1S-1P and the 1S-2S T energy level splittings, give
a 's that differ by one to two o. We use an "average"
lattice spacing in our dimensionful plots.

Finally, we need to discuss the number of parameters
in the NRQCD action. In addition to the bare mass M&o

and the gauge coupling g one has the c s. We work with
the c s set to their tree-level values c, = 1 while at the
same time "tadpole improving" the lattice version of the
NRQCD action [11]. This ensures an optimal perturba-
tive scheme so that one can expect renormalization effects
to be small. We find that, in practice, tree level values
give the correct P-state fine structure splittings, giving us
confidence that setting c; = 1 is a viable approach. The
6nal parameter we must consider is the zero of energy
which is used to relate NRQCD energies with absolute,
relativistic energies (this term is usually omitted from
NRQCD actions). As with the c s, it can be fixed at tree
level to equal M&, or calculated in perturbation theory.
It can also be calculated nonperturbatively by requiring
that the dispersion relation of the T be Lorentz invari-
ant, up to the order in v2 at which we are working. We
find excellent agreement between perturbative and non-
perturbative determinations, further encouraging us that
perturbation theory is working. We stress that the only
&ee parameters which we tune to match experimental re-
sults are those appearing in the original QCD action, M&
and g. In other words, this is a first-principles QCD cal-
culation, not a QCD-inspired phenomenological model.
The coupling g is eliminated as a &ee parameter, in the
usual way, when we fix the scale a i = a i(g) to match
the 1S - 1P and/or the 1S-2S splitting. Mi, is tuned so
that the simulated kinetic mass for the T agrees with the
experimental T(lS) mass.

Our results for the spectrum of the T system are shown

in Figs. 1 and 2. We use a ~ = 2.4 GeV, which is an av-
erage between the inverse lattice spacings obtained from
the T 1S-2S and 1S-1P splittings (the error in this esti-
mate for a is at the 4% level, details are given in Sec.
IV). One sees that the general features of the known spec-
trum are reproduced nicely [12]. Figure 1 shows the T,
gg, and singlet P and D states and Fig. 2 shows the P-
state fine structure. In both figures the errors refIect sta-
tistical errors plus some systematic fitting errors. We do
not show estimates of systematic errors due to quenching
or the efFects of uncertainties in the scale a

Both the gs and D states (center of mass) are predic-
tions of the theory. We find an qs state at (9.431 + 0.005
6 0.001) GeV and D states with a center of mass at
(10.20 + 0.07 6 0.03) GeV. These numbers include the
dominant statistical and/or systematic errors other than
those due to quenching. For the D states the 6rst error
corresponds to the statistical error in 6tting the D mass
in lattice units. For the qg state this error is negligible,
and so the first error quoted there is the systematic error
kom neglected higher order relativistic terms and finite
lattice spacing corrections. In both cases the second er-
ror arises from the uncertainty in the value of a . We
expect the 8 states and hence also the T-gg splitting to
have noticeable quenching errors. Spectrum calculations
with dynamical gauge configurations are already under-
way. It will be interesting to compare the quenched and
unquenched spectra.

In the rest of the article we give more details of our
analyses, starting with the quark propagator calculations
and the meson correlations in the next section. Section
III includes a lengthy explanation of our 6tting proce-
dures. The main message there is that, instead of go-
ing to large time slices in search of a plateau, we have
worked with high statistics correlations on shorter lat-
tices (24 time slices) and carried out simultaneous multi-
exponential 6ts to several correlations at a time. We also

(Gev)
10.5--

10.0--

9 5--
——~--

~0 ~l ~1 D2

FIG. 1. NRQCD simulation results for the spectrum of the
T system including radial excitations. Experimental values
(dashed lines) are indicated for the triplet 8 states, and for
the spin-average of the triplet P states. The energy zero from
simulation results is adjusted to give the correct mass to the
'T(1 Sg).
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and the correction terms are

g (2))2
bH = —ct o +c2 p (A E —E.K)

g
c3 p 2tr. (A x E —E LL) —c4 p

tr. Bg
2

o2/(4) tt(/(2)) 2

24M& 16n(M& )
FIG. 2. Simulation results for the spin structure of the low-

est lying P-wave states in the T family. The dashed lines are
the experimental values for the triplet states. Energies are
measured relative to the center of mass of the triplet states.

devised methods to extract splittings directly. Our sta-
tistical errors for spin-averaged level splittings are about
20—30 MeV, for P-state fine structure splittings about
5—10 MeV and for the 8-state spin splitting down to 0.5
MeV. In Sec. IV we discuss determination of a and
comparison with experiment. We also present results for
meson wave functions at the origin. Section V describes
the extraction of a "kinetic mass" aMj„, for the T(1S)
&om correlations with xnomenta and comparisons with
perturbation theory. Section VI gives a brief sumxnary.

II. THE SIMULATION

The last two terms in bH come from finite lattice spac-
ing corrections to the lattice Laplacian and the lattice
time derivative, respectively. LL is the symmetric lattice
derivative and 6( ) is a lattice version of the continuum
operator P D4. We used the standard cloverleaf opera-
tors for the chromoelectric and magnetic fields E and B.
The parameter n is introduced to remove instabilities in
the heavy quark propagator caused by the highest mo-
mentum modes of the theory. For our simulations at
P = 6.0 and with bare masses relevant for the T system,
we set n=2.

As mentioned in the Introduction, we tadpole-ixnprove
our lattice action by dividing all the U's that appear in
E, B, and the covariant lattice derivatives fields by uo,
the fourth root of the plaquette [11].This is most easily
done as the U„'s are read by the simulation code. The
efFect is to transform the operators that appear in the
evolution Eqs. (4) as follows:

A. Quark propagators

Quark propagators in lattice NRQCD are determined,
in a single pass through the gauge-field configuration,
from evolution equations that specify the propagator for
t ) 0 in terms of its value at t = 0. Various evolution
equations have been suggested in the past. Currently
we use the equation proposed in [7], modified slightly for
improved efficiency. Our propagators are defined by the
equation

U4t

E
B

A„G(z)

~(2) G(*)

: U4/up,

: E/(uo)'
: B/(uo)'
: [U~(z)G(z+ I )

—U„(z —jc)G(z —jc)]/2up, (10)
: [U~(z)G(z+ I )

+U,'(* —~)G(* —~)]/up —2G(*)
(11)

( aHp) " f aHpi
~

1—
~

U4
~

1—
i Gt+g —(1—abH) Gt2' ) ( 27l, )

=b„,obt, o, (3)

where Gq ——0 for t ( 0. For numerical work it is conve-
nient to rewrite this equation in the form

2A) ( 2tt)
fa n

2A ) ( 2A )

(t) 0). (4)

On the lattice, the kinetic energy operator is

with

~(2) & ~(2)
y

~(4) ) (~(2))
2

(12)

( aHpi" aHp)"
U4 Gt+1

~

1—
~

(1—«H)
i
1—2' 2tt )

Tadpole ixnprovement of the action allows us to work
with tree-level values for the c s in bH without having
to worry about large renormalizations. Hence our lat-
tice action depends only on two parameters: the bare
mass M&o and the QCD coupling constant g. We have
collected data for three values of the bare mass, aM& ——

1.71, 1.8, and 2.0, all at P = 6.0. For this P, up = 0.878.
We computed our quark propagators for aM&

1.8, 2.0 using a diferent evolution equation:

= b,o bt, o (14)
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Propagators from this evolution equation are the same as
those &om the other equation [Eq. (3)], but with extra
factors of (1 —aHo/2n)

" in both the source and sink.
These extra factors cannot afFect the meson spectrum,
but they do modify the quark's wave function normaliza-
tion to order v . For this reason our other formulation
[Eq. (3)] is superior; with it, NRQCD quark fields are
normalized to unity up to corrections of order o., and v .

B. Meson correlation functions

Once one has the quark propagators it is straightfor-
ward to obtain meson propagators. Let Qt and yt denote
fields that create a heavy quark or heavy antiquark, re-
spectively. The following interpolating operator creates
a meson of momentum p, where it is understood that we
are working in a fixed (Coulomb) gauge:

) Q (x1) I'(xr —x2) gt(x2) e'~'("'+"').
Xy 1Xg

The "meson operator" I' can be written as I'(x1 —x2) =
0 p(~x1 —x2~). The operator 0 is a 2 x 2 matrix in

spin. space and generally includes derivatives acting on
the radial function P(r). Using translation invariance,
we eliminate the summation over the initial antiquark
position. The meson propagator is then

G „.„(p,&) = ) T Gt(y ) r('") (y —y )G (y, )
71)7&

x.-"{"+~), (16

with

Gi(y) = ) Gi(y —x) I' " (x)e*~ ",

and the trace is over spin and color. In the above equa-
tions we distinguish between I"~"~ and I'~'"~, i.e., the
smearing at the source or sink. Gi(x) can be obtained
directly using Eq. (4) with h o ~ I'(")(x)e'~'". In the
future we will often refer to the smeared propagator t

as the quark propagator. The convolution in Eq. (16) is
evaluated using fast-Fourier transforms.

In Table I we list the zero momentum b b meson states

TABLE I. Meson operators.
D,~

= 4;Aj —/j;~b, 2/3.
denotes the symmetric lat tice derivative and

Meson
2s+1L

(JPc)
's. (o-+)

Lattice
Rep.
x-+

1

r = ny(. )
0
I Q„..(r); n., = loc, l,2,3

S1 (1 )

'P (1' )

'p, (o++)

3P (1++)

3P (2++)

T+-
x{t)

8++
(Ie)

g, Ajoj

4; cr~ —A~ cr,

6;cr, —A~cr~

P„..(r); n„= loc, l, 2

T++
2(tj)

(' wi)

'D2 (2 +) +
(A. )

+
2(s3)

D,; —D,,

D,,

P ..(r); n„= loc, 1,2

D1 (1 )

D2 (2 )

P.D,,a,

2{i ) (D*' —Djj)o~

+D~1,&~ —Da.-~'

'D3 (3 ) (D,~.oi. + D, i.o, + Di,;crj)/3. .

D;,a, —2/5+. D,,o,

2( ') (D" —D,,)o 1

+2(Dkioi Diijoj )
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studied in the current project together with their cor-
responding meson operators, I'(x). We choose P„..(r)
for n„= 1,2, 3 to correspond to Richardson poten-
tial radial wave functions for the S-, P- or D-state
ground and excited levels. We also used b-function lo-
cal sources and sinks. These are referred to as n„=loc
in Table I. For each set of meson quantum numbers
we evaluated correlations with all possible independent
smearings, (n„,n, x, ) = (loc, loc), (loc, 1), (loc, 2), ... at the
source and the sink. So for the S states we obtained a
4 x 4 matrix of correlation functions and for the P and
D states 3 x 3 matrices. In addition we looked at S-state
mesons with small moxnenta. For those we used Px, and

Table I also lists the continuum quantum numbers J
and the lattice cubic group representations for our meson
states. This allows us to see which states are expected
to mix with each other. Mixing will occur both due to
relativistic corrections and due to lattice artifacts. For
instance, since L is no longer a good quantum member in
a relativistic theory the Sq and the Dq states will mix,
both being J = 1 . This mixing, which happens
even in the continuum limit, is suppressed by v2. On
the lattice one can also have mixing between different J
states that fall into the same lattice representations. Ex-
amples are mixing between D3T2 and D2T2 or between
D3Tq, DqTq, and Sq. We have measured cross corre-

lations between these states, but postpone their analysis
for future work, concentrating here on the spin-averaged
D states.

In the expression Eq. (15) one has sums over color and
spin degrees of freedom. One could calculate quark (and
antiquark) propagators separately for each color and spin
quantum number at the source. We have done so for the
color degrees of freedom and verify a reduction of statis-
tical errors by ~3 compared to when only one value for
the initial quark and antiquark color was used. As far
as spin is concerned we decided to save on CPU time by
setting the initial quark and antiquark spins equal to 1.
This means that at the source we are sensitive only to
the 1-1 component of the 2 x 2 spin matrix in I'~"~ and
mesons of definite quantum numbers are projected out
at the sink. From Table I one sees that groups of mesons
such as So and Sqz, or Pqx, Pqy, and PBT2zx
etc. have the same 1-1 component of I'&"~ up to normal-
ization. For each group, the meson correlations for its
members can be obtained &om one common quark prop-
agator (this must be repeated for each smearing func-
tion, P .. at the source), and are highly correlated. We
have taken advantage of these strong correlations to re-
duce statistical errors in our fits for hyperfine and fine
structure splittings. We worked with 13 zero momen-
tum quark propagators with S- or P-state smearing at
the source and four 8-state propagators with xnomen-
tum. Out of these quark propagators 129 S- and P-state
meson correlations were evaluated using different I'&'"&

and many combinations of smearing functions at source
and sink. For aM& ——1.71 we also evaluated an addi-
tional 15 quark propagators with D-state smearing. To
date we have only analyzed combinations of these D-state
quark propagators giving rise to the D2 mesons. With

five polarization and nine different source-sink smearing
combinations, this means a total of 45 D-state meson
correlations.

III. DATA ANALYSIS AND FITTING RESULTS

Our calculations used P = 6.0 quenched gauge field
con6gurations on 163 x 24 lattices provided by Greg Kil-
cup and his collaborators. We worked with an ensem-
ble of 105 independent con6gurations that were gauge-
fixed to Coulomb gauge. For each configuration we se-
lected eight difFerent origins on the 6rst time slice for
our quark (antiquark) propagators. Because of the small
size of T mesons one expects to have negligible correla-
tions among propagators from different origins, and this
was confirmed by some simple tests. For instance, after
binning over origins, errors in the correlation functions
changed by at most 5%%uo and essentially no changes were
observed in y~ values or in the errors and central values
of fitted energies and amplitudes. For our aM& ——1.71
P states we also ran with eight origins on time slice 12.
This data was binned together with the time slice 1 data
for each configuration and spatial origin. Hence for each
of the 129 (or 129 + 45) meson correlations, discussed
above, we worked with 105 x 8 = 840 measurements.
In Figs. 3 and 4 we show some examples of effective
mass plots for our data. The errors are bootstrap er-
rors. Figure 3 shows aM& ——1.8 data for So states.
The effective mass plots are arranged as a 3 x 3 ma-
trix corresponding to the nine source-sink combinations
(n„,n, x, ) wxth n„,n, x, = loc, 1,2. Fxgure 4 shows soxu-

lar plots for aM& ——1.71 Pq data. We have averaged
over Pzx, Pqy, and Pqz. This h~ state has not been
observed yet experimentally, but there are strong theo-
retical reasons for believing that it lies close to the cen-
ter of mass of the P levels. Hence we will sometimes
refer to the Pq level as the "spin averaged" P state.
One sees &om Figs. 3 and 4 that our S-state correla-
tions with n, k ——loc and n,g

——1 sinks have excellent
statistics. The S-state correlations with excited state
smearing n, g ——2, 3 and the P-state data have good to
reasonable statistics. In the effective mass plots, trunca-
tions at large t means that signal to noise in the original
data was worse than 3:1 beyond that point or that the
correlation had switched sign. We have used the naive
definition m,xx(t) = ln[G(t)/G(t + 1)], although a xnore
sophisticated version could be used when one deals with
off-diagonal correlations in which some amplitudes can
come in with negative signs. Our plots provide a rough
assessment of the quality of the data; we do not use them
in our fits.

A. Fitting procedures for ~Sq and singlet P and D
states

We investigated a variety of 6tting procedures to ex-
tract the spectrum from the meson correlations. For the
S states and singlet P and D states we used simultaneous
multiexponential 6ts to several correlations in order to
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obtain the ground state and one or two excited state en-

ergies. We employed xnainly two such fitting procedures
and got consistent results &om both of them within one
0.. In the first procedure, we 6t simultaneously to a xna-

trix of correlations with n„,n,g
——1,2, 3 for S states and

n„,n,g
——1,2 for the spin singlet P and D states. Sixni-

lar 6tting methods have been discussed by other groups
in the past [13]. In the matrix fits each meson correlation
is 6t to the expression

&exp

G „„(n„,loc;t) = ) b(n.„k)e
k=1

(19)

exponential fits was to take a set of smeared-local correla-
tions, (n„,n, i,) = (n„,loc) with n„= 1, 2, 3 or n„= 1,2
and fit them simultaneously to the same set of energies,
EI,. These smeared-local correlations have the smallest
statistical errors. They are 6t to

Nexp

Gmeson(nsc~ nets t) = ) a(nsc~ k) a (net~ k) e
%=1

Using charge conjugation symxnetry one can argue that,
for equal mass quarks, the coefficients a(j, k) can be cho-
sen to be real numbers. From the effective mass plots
of Figs. 3 and 4 it is clear that if one wants to make
use of most of the data one does not want to move too
far out with t; in search of a plateau. One wants in-
stead to fit to several exponentials working with as small
a tm;„value as possible while still maintaining good y 's.
Multiexponential fits to a single correlation, however are
usually tricky and unstable. It is much easier to do multi-
exponential fits to several correlations simultanously, es-
pecially if one makes sure that each exponential has a sig-
nificant amplitude in at least one correlation. Although
the number of parameters in our fits was sometimes large
(we were typically doing 6-,9-,12-, and 16-parameter fits)
they were highly constrained, and we did not run into
stability problems. Since we had a large nuxnber, 840,
of measurements to play with we also did not have to
worry about the size of the covariance matrix becoming
too large. We used N,„p = 3 for the 3 x 3 matrix fits and
N,„p = 2 for the 2 x 2 matrix fits.

The second procedure for doing multicorrelation multi-

Note that this is the same ansatz as Eq. (18), with

b(n„, k) = a(n„, k)a'(loc, k). We used N, „z ——2 or 3
when 6tting two correlations and N, p

—3 or 4 for three
correlations. We use different sets of correlations for fit-
ting procedures 1 and 2. So the fact that, as we will see,
consistent energies are obtained &om the two procedures
gives us confidence in the final results.

In fitting correlations the delicate question is always
how to pick the range t;„/t in t over which to fit.
Needless to say, in our multiexponential fits the larger
N p the sxnaller we can make t;„.On the other hand
for fixed N,„p when one increases t; there could come
a point when the signal for the higher exponential is no
longer above the noise leading to larger errors in the en-
ergies of even the lower lying levels. To illustrate some
of these issues we show in Table II examples of fits to
aM& ——ls71 Sq states using procedure 2. We tabulate
results for different number of exponentials and correla-
tions and show the dependence on t; /t . The last
column gives Q, the "goodness of fit", i.e., the probability
that Huctuations in correctly modeled data will generate
a g2 greater than that of the fit. One usually desires

Q ) O.l, but slightly smaller values do not necessarily
rule out a fit. Table II starts with two exponential fits
to two correlations with (n„,n, i,) = (l,loc) and (2,1oc).
One sees that for t;„of6 to 8 good fits are obtained to
the ground and first excited level. For t;„=4 the Q

TABLE II. Examples of simultaneous multiexponential fits to two and three Sq smeared-local
correlations.

Fits to (l,loc )
and (2,1oc)

Fits to (l,loc),
(2,1oc), (3,1oc)

&exp
2

tmin/tmax

8/24
7/24
6/24
5/24
4/24
3/24
5/24
4/24
3/24
2/24
7/24
6/24
5/24
4/24
3/24
4/24
3/24

aEg
0.4533(8)
0.4531(8)
0.4531(7)
0.4533(7)
0.4533(7)
0.4537(7)
0.4531(8)
0.4534(8)
0.4531(4)
0.4531(7)
0.4533(9)
0.4533(9)
0.4530(8)
0.4535(8)
0.4531(8)
0.4529(9)
0.4530(8)

aEg
o.7o7(9)
0.702(8)
0.707(6)
O.712(5)
0.725(5)
0.740(4)
0.70(2)
0.69(1)
0.69(1)
0.69(1)
O.72(3)
0.72(5)
0.71(7)
0.68(1)
0.69(1)
0.71(4)
0.71(2)

aE3

1.0(6)
1.1(2)
1.1(1)
1.0(1)
0.82(5)
0.83(8)
0.85(9)
0.91(2)
0.95(1)
0.82(10)
0.80(2)

0.62
0.63
0.68
0.62
0.04

Yx10
0.57
0.54
0.48
0.45
0.76
0.77
0.75
0.64
0.33
0.74
0.51



TABLE III. Examples of 2 x 2 and 3 x 3 matrix 6ts to Sq correlations.

Fits to
(1,1), (1,2)
(2.1) (2,2)

Fits to
(1,1), (1,2)
(2,1), (2,2)
(1 3) (3 1)
(2 3) (3 2)
(3,3)

&exp
2

tmin/tmax

5/24
5/22
6/24
6/22
6/16
7/24
7/22
8/24
8/22
4/24
5/24
S/22
6/24
6/22
6/16
?/24
7/22
8/24

aEg
0.4537(7)
0.4539(7)
0.4536(7)
0.4538(7)
0.455(1)
0.4536 (7)
0.4539(7)
0.4534(7)
0.4537(8)
0.4540(6)
0.4538(6)
0.4540(7)
O.4S36(7)
O.4S38(7)
o.4s5(1)
0.4537(7)
0.4540(7)
0.4534(7)

aE2
0.694(7)
0.693(7)
0.708(9)
0.708(9)
0.71(l)
0.70(l)
0.?0(1)
0.71(l)
0.71(l)
0.702(6)
0.697(8)
0.696(8)
0.710(9)
0.709(9)
0.711(9)
0.67(3)
o.6?(3)
0.64(5)

0.88(2)
0.86(3)
0.86(3)
0.90(7)
0.89(7)
o.9o(9)
0.74(2)
0.74(2)
0.724(9)

0.10
0.17
0.24
0.41
0.21
0.17
0.31
0.13
0.24
0.04
0.06
0.06
0.14
0.18
0.05
0.22
0.31
0.49

value starts to deteriorate. Adding a third exponeatial
allows one to go down to t;„of2. The third energy E3,
however, is not reliable yet until we include another corre-
lation with Ps smearing. Such fits, i.e., simultaneous fits
to three correlations, G ss(1, 1 co;t), G ss(2, 1 co;t) and
Gssz (3,1oc; t) are also shown in Table II.

In Table III we give examples of 2 x 2 and 3 x 3 matrix
fits (procedure 1) to Si levels for several t;„/t . The
results are consistent with Table II but with generally
worse Q values. For the 3x 3 matrix fits one sees that the
signal for the second excited state has disappeared once
t;„&6. The errors in Tables II aad III are obtained
by the criterion that by2 = 1. We have checked that
bootstrap errors agree with these errors to within +10%.
This indicates that the statistical Huctuations in our cor-
relations are close to being Gaussian. In Figs. 5 aad 6
we show "efFective amplitude" plots (for G „(t)e@")
corresponding to the N,„~ = 3, t; /t „=5/24 fit to
two correlations in Table II and the 3 x 3 matrix fit with
t;„/t = 7/22 in Table III. One sees that most of the
correlations are reproduced reasonably well by our fits.

Information on how well our smearing functions are
doing is contained in the fitted amplitudes, the a(n, k)'s
and b(n, k)'s of Eq. (18) and Eq. (19). These measure

the overlap between our smearing functions and energy
eigenstate wave functions. In Table IV we show a(n, k)
for several matrix fits of Table III and similarly in Ta-
ble V we show b(n, k) of smeared-local fits. One sees
for instance that with n„,1,

——1, the amplitude for the
ground state (k = 1) dominates, whereas for n„,,i, = 2
or n„,1,

——3 one has the largest overlap with, respec-
tively, the first or second excited state (k = 2 or k = 3).
Our Richardson potential smearing functions are doing
a reasonable job in focusing correlations onto the right
levels. One might do better by using our own simulations
to provide good smearing functions. We are planning to
do this in future simulations.

The multicorrelation multiexponeatial fits described
above were used to obtain energies for the gg, T, the
hg levels, and the singlet D states. The qg fits are similar
to those shown for T states. The hg and the D-state cor-
relatioas are more noisy. We give examples of fits for the
hg levels in Table VI using 2 x 2 matrix fits [with (n„,n, i,)= (1,1),(1,2), (2,1), and (2,2)] and using simultaneous fits
to (n„,n, i, ) = (l,loc) and (2,1oc). We will give sum-
maries of all our fits for difFerent M& below, where we
also convert dimensionless numbers into real energies in
GeV. Here we go on to describe fitting procedures used

0.1 0.01

0.095—

0.09—

0.085—
TTTTTTT

0.005—

0—

-0.005—

FIG. 5. Sq efFective amplitudes G(t)e
from three-exponential Sts with t;„=5,
tmax = 24.

0.08
0 5 10 15 20 25

-0.01
0 5 10 15 20 25
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TABLE IV. Examples of fit results for amplitudes a(n„,,i„k).
Fit

N„~ =26tsto
(1,1), (2,2)
(1,2), (2,1)

N,„~ =36ts to
(1,1), (1,2), (2,1)
(1,3), (3,1), (2,2)
(3,3)

tmin/tmax
6/22

7/22

a(n„,.i, = 1, k)
0.877(5)
0.18(1)
0.878(5)
0.18(2)
0.877(5)
0.18(1)
0.094(9)
0.878(4)
0.17(1)
0.09(1)

a(nsc, sis = 2, k)
-0.065(3)
0.79(3)

-0.066(3)
0.78(3)

-0.065(3)
0.79(2)

-0.1(1)
-0.066(3)
0.75(2)
0.09(8)

a(nsc, si, = 3, k)

-0.015(1)
0.07(4)
0.8(2)

-0.014(1)
0.03(4)
0.70(6)

to obtain fine-structure splittings between the yg states,
the T-gg splitting, and the splitting between states with
zero and nonzero momenta.

B. Fitting procedures for spin splittings

One test of the NRQCD efFective action is to see how
well the fine and hyperfine structure in the bb system can
be reproduced. These splittings will be the ones most
sensitive to the coefficients c; in the action and the ques-
tion is whether, with tadpole-improvement, tree-level val-
ues of c; = 1 are adequate. The splittings between the

yg states are a few tens of MeV. From Table VI one
sees that direct determination of P-state levels have er-
rors that are at best 0.005—0.010 in dimensionless units.
With an inverse lattice spacing of a 2.4 GeV (see
next section) this corresponds to an error of 12 to 24
MeV, and it seems marginal whether we would be able
to resolve fine structure if each P level were fit indepen-
dently. To get around this problem one can take advan-
tage of the fact that correlation functions for different
mesons on the same configuration can be highly. corre-
lated. This allows for a direct fit to the mass splitting
between them. We have employed two methods for ex-
tracting splittings: bE = Ez —Ez, &om two very corre-

086
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FIG. 6. Si effective amplitudes G(t)e "
for three by three matrix Bts arith t; = 7,
t „=22. Off-diagonal Sts are averaged over
source and sink.
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TABLE V. Examples of St results for amplitudes b(ss„, k).

Fit
N, „p =26ts to
(l,loc) and (2,1oc)
N, „p =3fitsto
(l,loc) and (2,1oc)

N„p ——36ts to
(l,loc), (2,1oc)
and (3,loc)

dmin/tmax

6/24

3/24

7/24

b(n„= 1, k)
0.135(2)
0.032(4)
0.135(2)
0.028(6)
0.030(9)
0.135(3)
0.02(4)
0.01(6)

b(n„= 2, k)
-0.0102(8)

O.114(2)
-0.0105(S)
0.100(8)
0.045(12)

-0.0104(8)
0.14(8)

-o.o4{9)

b(n., = 3, k)

-0.0023(4)
-0.01(3)
0.11(2)

lated propagators for mesons, A and B, having difFerent
quantum numbers. We call them the "ratio" method and
the "correlated-bE" method.

In the ratio method we take our 840 measurements for
each meson A and B and create a jackknife ensemble of
ratios of correlations. This is then fit to a single expo-
nential to determine bE. In the correlated-bE method
we pick a set of correlations for each meson and fit the
two sets simultaneously using

+exp

+meson A(+ac~ loci t) = ) c&(risc~ k) e

a(t) =x
~—bz .s (21)

We did not 6nd a signal for the correction terms and
the value for bE was consistent with those from naive
one-exponential fits only with slightly larger errors. We
give examples of 6ts to the T-gg splitting and one of
the yg splittings in Tables VII and VIII. For the ratio
method we use (l,loc) correlations and for the correlated-
bE method (l,loc) and (2,1oc) correlations for each me-

son. We see that it is possible to get T-gg splittings with
0.5 MeV and yg splittings with 5—10 MeV statistical er-
rors (again using a ~ of 2.4 GeV).

—(E bE t+meson B (&sc~ loci t) = egg('Asc, 1) e

N'exp

+ ) c~(n„,k) e (2o)

TABLE VI. Examples of 6ts to Pi correlations.

Of the two methods the second is more general, since it is
straightforward to include higher exponentials and han-
dle spin splittings of excited states. We have estimated
the efFects of higher states on the ratio method by 6tting
the jackknifed ratio ensemble to

C. Fit results

Using the Gtting procedures of the previous subsections
we obtained energies for the T, T', T" levels, the hg, 6&

levels, the T-gg splitting and for the splittings between
the gs levels. For aM&~ ——1.71 we also have results for
D states (to date we have only looked at averages over
the Gve polarizations of the D2 state and leave more de-
tailed studies of D-state fine structure and mixing with
S states to future work). Our estimates for the ener-

gies and splittings in dimensionless units are shown in
Table IX for several M& values. For comparison we also
show results for data without relativistic and 6nite lattice
spacing corrections (bH = 0) and for another set of data
without tadpole improvement (uo ——1). The errors in
Table IX difFer slightly Rom the purely statistical errors
of previous tables. In those tables one saw that the cen-

2 x 2 matrix
fits

Fits to (l,loc)
and (2,1oc)

Nexp
2

tmin/tmax
8/24
7/24
6/24
8/14
7/14
8/24
7/24
8/14
7/14
7/14
4/14

aEg
0.630(4)
0.630(3)
0.632(5)
0.625(5)
0.626(4)
0.630(6)
0.628(5)
0.628(10)
0.626(8)
0.629(16)
0.626(9)

aE2
o.s2(3)
0.81(2)
0.84(1)
0.83(1)
0.80(2)
0.85(3)
0.82(2)
o.s2(3)
0.81(2)
0.88(19)
O.79(6)

0.15
0.17
0.03
0.19
0.22
0.008
0.008
0.23
0.35
0.22
Oa40

Ratio Method

Correlated
8E 6ts

Nexp
1
1
1
1
2
2
2

&min/&max

18/24
16/24
12/24
8/24
8/24
7/24
6/24

abE
0.0123(2)
0.0123(2)
0.0126(2)
0.0129(1)
0.0123(2)
O.O123(2)
O.O122(2)

TABLE VII. So- Si splitting.

0.21
0.21
0.09
0.005
0.39
0.49
0.48
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TABLE VIII. Example of P-state fine structure: P2- Pp
splitting.

Ratio Method

Correlated
bE fits

Nexp
1
1
1
1
1
2

2
2

tmin/tmax

10/24
9/24
8/24
7/24
6/24
8/24
7/24
6/24

abE
0.021(4)
0.020(4)
0.017(3)
0.016(2)
0.017(2)
o.o23(7)
0.021(6)
0.018(5)

0.77
0.79
0.70
0.76
0.77
0.52
0.55
0.64

IV. COMPARISONS WITH EXPERIMENT

To compare our results with experiment we must con-
vert &om dimensionless lattice units to physical units by

tral values and statistical errors depend sometixnes on the
fitting procedure used (and on t;„/t ), and we have
tried to take that into account in Table IX. Only fits
with good Q values ( Q & 0.2 ) and effective amplitude
plots were included in these considerations. The reader
may want to compare earlier tables with the aM& ——1.71
column in Table IX.

There are several features worth noting in Table IX.
For instance, the splittings between 1 Sq and 1 Pq
(spin-averaged P state) as well as between 2sSq and
1 Sq levels are insensitive to M& within errors. This is
known to hold in the real world when one coxnpares split-
tings in the J/@ and T systems. Also, for spin-averaged
quantities the bH = 0 results are almost indistinguish-
able &om results with higher order corrections, except
maybe for a slight lowering of the 1S level. Consider-
ing next the spin dependent splittings, one sees that the

Sy- So splitting does depend on M&, as expected. More
striking is the sensitivity of spin splittings to tadpole-
improvement. The splittings are reduced by a factor of

z~ without tadpole-improvement (i.e. if uo ——1). As we
shall see, the tadpole-improved results agree well with ex-
periment. Tadpole-ixnprovexnent of the lattice action ap-
pears crucial if one wants to work with tree-level values
c; = 1. Otherwise spin splittings are badly underesti-
mated.

setting the scale a . Before doing so, it is worthwhile
reminding ourselves of systematic errors still contained
in our simulations. The largest source of systematic er-
rors, we believe, comes from the quenched approxima-
tion. One expects, among other things, corrections to
both the 1S-1P and the 1S-2S splittings, and inverse
lattice spacings obtained by fitting these splittings to ex-
perimental data should differ from each other. For in-
stance, a bootstrap estixnate for the ratio of splittings,
[E(2 Sq) —E(1 Sq)]/[E(1 Pq) —E(1 Sq)]:—R, gives
R = 1.41(7) for aM&~ ——1.71; R = 1.38(8) for aM&~ ——1.8;
and R = 1.35(8) for aM&o ——2.0. The experimental value
for this ratio is R,„~t ——1.28, and one sees a possible 1 to
2 o deviation in our simulations. Inverse lattice spacings
obtained &oxn matching the S-P splitting to experiment
will differ &om that obtained using the 1S-2S splittings
by 1 or 2 cr. Taking splittings &om Table IX that is indeed
what we find. Work is underway to repeat simulations of
the T system with unquenched gauge configurations. It
will be interesting to see how the ratio of splittings will
shift. From potential models one can argue that the 1S-
1P splitting will suffer a larger change than the 1S-2S
splitting, and that the ratio R defined above will decrease
as one goes &om the quenched to unquenched world. The
other two major sources of systematic error in our cal-
culation are fitting errors and the finite lattice spacing
and relativistic errors in the NRQCD propagators. Our
experience with fitting indicates that the results tend to
move around by about a standard deviation when dif-
ferent methods are used, in other words the systematic
fitting errors are probably about the same size as the
statistical errors, while we expect systematic errors in
the propagators to contribute at the 5 MeV level to the
spectrum.

In order to present dimensionful results we need to de-
fine one global ( or "average") a ~. We do so by calculat-
ing a bootstrap average based on the 1S-2S and 1S-1P
splittings. The results are shown in Table X. There we
give a 's, separately for the two splittings plus the boot-
strap values for averages and differences. We show results
for two different ensembles for the P states, the first ob-
tained using smeared-local fits and the second based on
matrix fits (see Table VI for spread in results due to
fitting procedure dependence). We use the bootstrap av-
erage plus its associated error to define a global a

TABLE IX. Fit results for dimensionless energies and splittings, aE and abE.

1 Sg
2 Sg
3 Sg
1'P~
2'P~
1'D,

Splittings:
3Sg — Sp1

3Pg — Pp3

3 3

aM~ ——1.71
0.4534(8)
0.695(10)
0.82(5)
0.626(8)
0.81(3)
0.76(3)

0.0123(2)
0.020(4)
0.008(2)

1.8
0.4505(10)
0.69(1)
0.83(4)
0.627(12)
0.80(4)

0.0116(2)
0.021(4)
0.008(3)

2.0
0.444(1)
0.68(1)
0.83(5)
0.619(10)
0.79(4)

0.0106(2)
0.018(4)
0.008(3)

1.8 (SH = 0)
0.448(1)
0.69(1)
0.84(5)
0.634(13)
0.81(4)

1.8 (uo ——1)
1.097(1)
1.335(8)
1.48(3)
1.27(1)
1.43(3)

0.0049(1)
0.011(3)
0.0047(14)
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TABLE X. a ' from 1S-2S and 1S-1P splittings.

aMg
1.71

From Table IX
a (1S-2S)
2.33(11)

Bootstrap
a (1S-1P) a (1S-2S)
2.55(12) 2.34(8)

Results
a (1S-1P)
2.49(4)
2.58(14)

Average a
2.42(6)
2.46(9)

aa '
0.15(7)
0.23(13)

1.8 2.35(11) 2.49(17) 2.32(10) 2.49(11)
2.50(15)

2.41(9)
2.41(10)

0.17(10)
0.18(15)

2.0 2.39(11) 2.51(15) 2.39(12) 2.50(10)
2.52(14)

2.45(10)
2.45(11)

0.12(10)
0.13(14)

a = 2.4(1) GeV.

Using the central value a = 2.4 GeV, one can con-
vert Table IX into physical numbers. In Table XI we
do that for aM& ——1.71 and compare with experiment.
The agreement between simulation results and experi-
ment is excellent, with most entries agreeing within 10.
It is hoped that once unquenched calculations are com-
pleted, lattice /CD results will follow experiment even
more closely. Our experience with the present quenched
calculations tells us that unquenching effects are small
(this observation also follows &om potential model cal-
culations) and that high statistics data are required to
see them. The entries in Table XI that do not have a
corresponding experimental number attached are predic-
tions of the theory. We predict T D states with center
of mass at (10.20 + 0.07 + 0.03) GeV, where the second
error comes &om uncertainties in a . Our current sim-
ulations give an rig state at (9.431 + 0.005 + 0.001) GeV,
where now the first (and dominant) error is due to higher-
order relativistic and finite a corrections not included in
our action and the second error is due to a . The gt, en-

ergy is likely to change (decrease) when one goes beyond
the quenched approximation. Given the small statistical
errors on the )7s - T(1S) splitting this is one place where

2 Sg-1 Sg
3 Sg-1 Sg
1 Py-1 Sg
2 Pg-1 Sg
1 D2-1 Sg

3S 1S
3P 3P
3 3Pg- P&

3PcM- PI.1

Simulation Results [GeV]
0.580(26)
0.88(12)
0.414(22)
0.86(7)
0.74(7)
0.0295(5)
0.048(10)
0.019(5)
0.005(1)

Experiment [GeV]
0.563
0.895
0.440
0.800

0.053
0.021

TABLE XI. NRQCD spectrum results and comparison
with experiment. We use a ' = 2.4 GeV and aM& ——1.71.
Systematic errors due to quenching, higher order terms in
the NRQCD action and uncertainty in the scale a are not
included.

(0) =
(m ) gt(x)o, y~(~) 0),

X

(m]loc) ss„ (22)

where ]0) is the fock space vacuum, (m] is the quan-
tum state of an T(mS) polarized in the z direction, and
]loc)ss„ is the state created by our loc smearing func-
tion in the Siz channel. Examining Eq. (18), we see
that (in the limit of an infinite number of exponentials
in our fit ansatz) (m]loc)ss„measured in units of a
is just the fit parameter a(loc, m), which in turn is equal
to V b(loc, m). We extract b(loc, m) by fitting simulta-
neously to Gss, (loc, loc; t), Gss, (1,loc; t), Gss (2, loc; t),
and Gs (3s, 1 c;to). These are fits of the same form as
Eq. (19), but including n„=loc. In addition to obtain-
ing as~2(m]loc) directly &om our fits, it can be obtained
indirectly &om our separate fits to a and b.

3/2 b(n„, m) sj2 (n,~]m) (m]loc)
a n„,m n,„m

for any initial smearing function n„. In Table XII we

have tabulated measurements of as)'2 )I'I (0), &om direct
fits to b(loc, m) and &oin ratios of b(n„, m) and a(n„, m)

effects of quenching could be observable.
The spectrum results are shown in Figs. 1 and 2 of

Sec. I. The P-state fine structure is measured relative to
the center of mass of the triplet states. We first create
bootstrap ensembles of individual P-state energies. We
then calculate bootstrap estimates for the center of mass
and for energies relative to the center of mass. In Fig. 2
the energy of the iPi state (the hs) lies slightly below the
triplet center of mass. We note, however, that within our

5 MeV systematic errors the two levels are consistent
with each other.

One quantity of phenomenological interest is the
mesonic wave function at the origin (i.e. , zero separation
between quark and antiquark), which for the T(mS) is
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TABLE XII. Mesonic wave function at the origin, a ~ 4'(0). A dashed line means that no signal

could be extracted.

Meson
(mS)

T(1S)
T(2S)
T(3S)
rib(1S)
rig(2S)
rig(3S)

Direct Fit
to b(loc, m)
0.153(2)
0.147(10)

0.161(2)
0.147(9)

nsc =1
0.154(2)
0.16(3)
0.32(10)
0.162(2)
0.17(4)

Using b(n.„m)/a(n„, m)
As+ 2
0.162(12)
0.127(10)

0.184(26)
0.132(10)

Axing 3
0.17(2)

0.14(4)

0.13(2)

taken &om Table IV and Table V. We also present re-
sults for gg. For ground states, values obtained using dif-
ferent initial smearing functions are consistent. In gen-
eral, we believe the diagonal entries in Table XII with
n„= m are the most reliable. Good smearing func-
tions imply that ofF-diagonal amplitudes are severely sup-
pressed. Signal to noise for the off-diagonal amplitudes
a(n, m) and b(n, m) and for their ratios is not as good as
for the diagonal amplitudes. The "direct fit" estimates
for @(0) suffer &om the fact that b(loc, m) comes &oxn

fitting the local-local meson correlation function. This
correlation has many more exponentials contributing out
to large t values than is the case for smeared-local cor-
relations (this is the reason why the local-local correla-
tion was not used in any of our fits to extract energies).
Hence, it has proven difficult to extract the amplitude for
any given excited state accurately using the local-local
correlation. The indirect method of Eq. (23) gets around
this problem and uses only smeared-local and smeared-
smeared correlations.

Care should be used in any attempt to relate these val-
ues of the wave function to predictions of physical pro-
cesses, such as the leptonic width of the T. A complete
calculation of such processes will involve large (10—20%
or more) corrections in relating the lattice current ap-
pearing in Eq. (22) to continuum currents. These correc-
tions arise both from relativistic (coming &om the small
components of the heavy Dirac spinors) and renormaliza-
tion efFects. In addition, ~4'(0) ~2 scales like a; mean-
ing that lattice spacing errors in the dimensionful value
of ]4'(0)] will be of order 13%. Quenching efFects are
likely to induce an additional systematic error on the
simulation results, which we have not attempted to esti-
mate quantitatively. If one nonetheless goes ahead and
combines the numbers in Table XII with a x = 2.4(1)
GeV and with the standard leading order Van Royen-
Weisskopf formula for a vector meson leptonic width [14],
one finds for the T(1S), I'„= (1.09 + 0.03 + 0.14)keV.
The experimental value is I','," (T) = (1.34 6 0.04)keV.
In the simulation result we only quote two errors corre-
sponding respectively to statistical errors and a uncer-
tainties. Quenching errors and relativistic and matching
corrections (corrections that are expected to dominate)
have not been included. Unquenching should increase
the theoretical estimate for I'„by enhancing ~@(0)[ .
Using the diagonal entries in Table XII, one finds for
the T 2S and 3S, I'„(2S) = (0.66 + 0.10 + 0.09)keV

V. T MASS AND LORENTZ INVARIANCE

As we have shown, NRQCD simulations give accurate
results for the splittings between bb states. These simula-
tions can also be used to compute the full mass of the T.
We use the T mass to determine the correct quark mass
for the simulation. We have investigated two different
methods for computing the T mass.

The first method is to add twice the renormalized mass
of the quark to the nonrelativistic energy ENR(T) ob-
tained &om the simulation:

Mg = 2(Z M& —Ep) + ENR(T) (24)

Here Z and Eo are renormalizations that are computed
using perturbation theory [5,15]. Our results are shown
in Table XIII. The uncertainties in this procedure are
due to uncalculated O(cr, ) corrections in the perturbative
expansions of the renormalizations, and to uncertainties
in a

The second method is to compute the nonrelativistic
energy for T's with nonzero three momenta. We did this
for momenta p = (0,0,1), (0,1,1), (l,l, l), and (0,0,2)
in units of 4vr/16a, and fxt the resulting energies to two
different parametrizations:

p2 (p2)2
~r(p) —ENR(T) =

M +x
2 Mkin 8Mgin

(25)

and I'„(3S)= (0.75 + 0.37+ 0.10)keV. The experimen-
tal nuxnbers are respectively (using the @+p branching

ratios), I'{'," )(2S) = (0.56 + 0.09)keV and I','," (3S)
= (0.44 + 0.04)keV. When one compares @(0) given in
Table XII for the ground and excited states one finds
that the ratios 4'2s(0)/4'xs{0) and @ss(0)/@xs(0) are
larger than one would expect from lattice potential cal-
culations. Our excited state leptonic widths lie above the
experimental numbers (although consistent within large
errors), whereas for T(1S) the simulation result lies be-
low experiment. Once corrections to the present calcula-
tion are included (e.g. , relativistic, quantum loop, lattice-
continuum matching, unquenching), it will be important
to monitor and understand how and whether these dis-
crepancies go away. At the same time, one also needs to
reduce the statistical errors, particularly for the excited
states. We hope to be reporting on more accurate results
in the future.
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TABLE XIII. The T mass as determined from the T's non-
relativistic rest energy in NRQCD. The last column assumes
a = 2.4(1).

aMq
1.71
1.8
2.0

GENR Z AEO +MT
0.453(1) 1.20(4) 0.32(6) 3.92(18)
0.451(1) 1.18(4) 0.31(6) 4.08(18)
0.444(1) 1.16(3) 0.30(6) 4.48(17)

Mr (GeV)
9.4(6)
9.8(6)
10.8(6)

and

p 2

&r(p) —ENR(T) =
kjn

&(p) +&2 ). ps &.
kin A:=1,2,3

(26)

In a I orentz invariant theory, the kinetic mass Mk;„ is
equal to the rest mass of the upsilon; in our simulations
this should be true up to corrections of order v4, except
in the hH = 0 theory where the errors should be or-
der v2. The (p2)2 terms in our fits test for higher-order
relativistic eHects; we expect C1 ——1 up to corrections
of order O(v2, a2), except in the bH= 0 the'ory where
this parameter should almost vanish. The p4I, term in
the second fit tests for contributions that are not rota-
tionally invariant; we expect C2 ——0 up to corrections
of O(v2, a2). These expectations are confirmed by our
results which are shown in Table XIV.

Our two methods give identical T masses in lattice
units to better than l%%uo. Assuming a = 2.4(1),
our results indicate that the correct bare mass for a
b quark is M&o ——1.7(1)/a; among our simulations, the
set with a M& ——1.71 is the best.

The close agreement between our two determinations is
striking confirmation of the partial restoration of I.orentz
invariance due to the correction terms bK that we in-
clude in the quark evolution equation. The kinetic mass
is quite sensitive to these correction terms; it is too small
by almost 10% when we set bH = 0. This is what we ex-
pect since Mk;„equals twice the quark mass in a nonrel-
ativistic theory, while in a relativistic theory the binding
energy contributes as well. Note that tadpole improve-
ment is also essential; without it, Mkj„ is too large by
almost 25%%uc.

Each of the two methods we use to determine the
T mass has its strengths and weaknesses. Using Mk;„
is attractive because there is no need for perturbative
calculations, but it is only accurate if the 8K correction
terms are included in the quark propagators. The rest
energy of the meson is quite insensitive to bK, but can
only be used when combined with perturbative results for
the quark mass renormalizations. Ideally one uses both
methods and compares results, as we have done here.

VI. SUMMARY

We have investigated the T system using nonrelativis-
tic lattice /CD (NRQCD) and find that one can suc-
cessfully reproduce the general features of the known T
spectrum, including P-state fine structure and several ex-
cited states. We also make predictions for D states and
for gg. By reducing the statistical errors in the splittings
by a modest amount, one should, in the future, be able
to study eKects of quenching in a quantitative way.

We worked with an action correct through O(Msv )
and whose link variables had been divided by uo, the
fourth root of the plaquette value, i.e. , with a tadpole-
improved action. Because of tadpole improvement we
were able to get good results (e.g. , the correct P-state
fine structure splittings) with tree-level coefBcients for
the correction terms in the NRQCD action. Our pro-
gram should be viewed as a demonstration of a successful

TABLE XIV. The T mass determined from its kinetic mass Mg;„using two different Gts. The
parameters Ci and Cg are explained in the text. The last column assumes a ' = 2.4(1).

aMq
1.71

aMg;„
3.94(3)
3.94(3)

1.0(3)
0.20(37)

0.16
0.19

Mi, ; (GeV)
9.5(4)

1.8 4.09(3)
4.09(3)

1.1(3)
0.20(35)

0.60
0.62

9.8(4)

2.0 4.48(4)
4.48(4)

1.2(3)
0.24(36)

0.64
0.67

10.8(4)

1.8
(6H = 0)

3.82(3)
3.83(3)

0.23(32)
-0.45 (41)

0.06
0.006

9.2(4)

1.8
(uo = 1)

4.96(3)
4.97(3)

1.4(3)
0.60(35)

0.11
0.18
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implementation of perturbative improvement of a lattice
action. Our results underscore the utility of tree-level
improvement and the crucial importance of tadpole im-
provement.

We have put considerable effort into developing fitting
procedures that allow us to get not just ground state en-
ergies and energy splittings between levels with different
quantum numbers, but also (radially) excited energy lev-
els. We find that it is important to fit several correlations
simultaneously, and do multiexponential multicorrelation
fits.

Our calculations have systematic errors at the 5 MeV
level coming from higher-order relativistic and finite lat-
tice spacing effects. The largest source of uncertainty
comes, however, from the quenched approximation. Cal-
culations involving dynamical configurations are under-

way, and we will be reporting on them soon. Quenched
cc spectrum results will also appear shortly.
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