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Pair production in the quantum Boltzmann equation
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A source term in the quantum Boltzrnann equation, which accounts for the spontaneous creation
of e+e pairs in external electric fields, is derived from first principles and evaluated numerically.
Careful analysis of time scales reveals that this source term is generally non-Markovian. This implies
in particular that there may be temporary violations of the H theorem.
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I- INTRODUCTION

The evolution of the quark-gluon plasma, believed to
be formed in the course of relativistic heavy-ion collisions,
is commonly described by means of a transport equa-
tion [1—4]. It is well understood how a transport equa-
tion can account for acceleration in external Belds, scat-
tering, or (hadro)chemical reactions of the microscopic
constituents. There is, however, another physical pro-
cess which becomes increasingly important at high ener-
gies: regions of very large chromoelectric Beld strength
may develop and subsequently decay by emitting quark-
antiquark pairs [5,6]. This gives rise to the fragmentation
of chromoelectric fiux tubes ("strings"), a mechanism fre-
quently invoked to model hadron production [7—10]. How
such spontaneous creation of particles can be incorpo-
rated into a transport equation is still not fully under-
stood.

Clearly, the transport equation has to be modified by
a source term. What is this source term? How can it
be derived from the underlying microscopic dynamics?
These issues have recently been approached in a Wigner
function formulation [11—15]. But, aside from the fact
that it lacks an intuitive probabilistic interpretation, this
approach seers &om several practical limitations. The
source term cannot be determined completely: it is not
known how the longitudinal momenta of the produced
particles are distributed. It has been suggested that the
distribution is a b function [7]; but while such an ansatz
may be useful for practical purposes [13—15], it is cer-
tainly not exact. Furthermore, an interplay of pair cre-
ation and collisions, possibly leading to a modification of
the source term, has not yet been considered. And Bnally,
the Wigner description is not suited for discussing the ap-
parent irreversibility of the particle creation process or
the associated generation of entropy. Since pair creation
in an external Beld is merely a single-particle problem

(see below), the Wigner function retains complete infor-
mation about the microscopic state of the system. Yet
irreversibility never manifests itself on the microscopic
level; it only emerges after a suitable coarse graining.

I choose a different approach. In collision experiments
one usually measures the momentum distribution of the
outgoing particles; i.e., one determines the occupation
n+(p, t):= (N+(p))(t) of the various momentum states,
with the number operators given by

N (p):=) at(p, m, )a(p, m, ),
TYL g

N+(p):= ) bt(p, m, )b(p, m, ).
mg

(Here a and b denote particle and antiparticle field op-
erators, respectively, p the momentum, and m, the spin
component. ) This suggests attempting to describe the
evolution of the occupation numbers (n+(p, t) ) directly
and to derive a kinetic equation for them, including the
source term, &om first principles. I will do so with the
help of a very powerful and broadly applicable tool: the
so-called projection method. This method, pioneered by
Nakajima [16], Zwanzig [17—19], and others [20—25], is
based on projecting the motion of the quantum system
onto a low-dimensional subspace (the "level of descrip-
tion") of the space of observables (Liouville space). It
allows for a clear definition of crucial concepts such as
the memory time or the coarse-grained entropy, making
it especially suited for an investigation of the irreversible
features of the dynamics.

II. MODEL

As in the works cited above, my investigation is based
on a simple model &om quantum electrodynamics. I con-
sider the creation of e+e pairs in a homogeneous, time-
independent electric 6eld E, a process often referred to
as the Schwinger mechanism [26—28]. The starting point
is the Dirac equation
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with The Liouvillian

+ = P ~+raP+qAo (3)
62=i bt(t2, tg)

t f
dt' e[p(t')]

n t
(4)

Ao(r) = —E . r (q = —iei for electrons). We
further define p(t):= p+ qEt, the transverse energy

gm +g, the total kinetic energy e[p(t)]

e& + p~~ (t), and the dynamical phase

may be written as the sum

& = &a- I+5
of a diagonal part, responsible for acceleration, and an
oH-diagonal part which is responsible for the mixture
of particle and antiparticle states, i.e., for pair creation.
With the definition Pqq .——P2q, the latter is given

"Longitudinal" and "transverse" refer to the direction of
the electric field.

The eigenstates ii, 6) = ip(t;), m„k), which corre-
spond to momentum p(t;), spin component m„and pos-
itive or negative energy +e[p(t;)], evolve according to

~ ) k pll 0 ) (b-~

III. SOURCE TERM

The evolution thus mixes positive and negative energy
eigenstates, with respective amplitudes ny, and Pf, ,

ipse;i equals the probability for having created an e+e
pair with (final) momenta kp(ty) during the time inter-
val [t;, tt]. The amplitudes are determined by the diff'er-

ential equation

((xy l qE e~

( p ' ) 2 e[p(tf)]

o —e-"«' & ( ay, )
0 iiP, *.

i

Starting from the above microscopic equations, we now
want to derive a kinetic equation for the occupation num-
bers n+(p, t). Let us assume that the homogeneous elec-
tric field is switched on at time to, and that the initial
state is the vacuum [31]

Since momentum and charge conservation dictate
rr+(p, t) = rr, ( —p, t) for all later times t, it suffices to
consider the evolution of only, say, the electron occupa-
tion numbers n (p, t). Their evolution equation must
have the structure

n (p, t) + qE Vpn (p, t) = n' "(p, t)

with initial conditions a;; = 1 and P;, = 0, and the
overdot indicating diH'erentiation with respect to tf.

In view of applying the projection method, the above
results have to be translated into the language of 6eld op-
erators. To do so, I will use t;he formulation of quantum
statistical mechanics in Liouville space [29]. There the
evolution of (Heisenberg picture) operators is determined
by the so-called superoperators l: ("Liouvillian") and bt;
these superoperators play a role analogous to that of 8
and U in Hilbert space. Employing the shorthand nota-
tion ai—:a(p(t~), m, ) and b ~—:b( —p(t~), —m, ) for
the particle and antiparticle 6eld operat;ors, and making
use of the general rule Ll(t2, tq)a (g) = a (U(t2, tq)@),
one 6nds

n' "(p, +e, t) = 2r(p) [n(p, —e, t) —n(p, +t))

(13)

r(p) being the respective transition rate. If this were
correct, the identifications n(p, +e, t) = n (p, t) and
n(p, —e, t):—2 —n+( —p, t) would then lead to

n' "(p, t) = r(p ) . S(p, t) (14)

with some source term n' "(p, t). Since we know that this
source term accounts for transitions between positive and
negative energy eigenstates, it is tempting to write down
a rate equation of the form

a
kb —1) 4 p21 ~21)

with

(' e+4'ix 0 ) ('

the evolution law for (a, bt) follows by Hermitian conju-
gation. Thus pair creation can be described by a time-
dependent Bogoliubov transformation [30].

Such a source term, however, can only be correct in the
Markovian limit, an approximation which is not always
justified. Careful investigation [32,33] reveals that the
above ansatz for the source term has to be modified: as-
suming the quasistationary limit (to -+ —oo) one finds
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(qE)2 ( nm )'""-"(p')=4.r ", r E)h3

(22)
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ormula: assuming
th da' t

the Schwinger orm
that the system is dilute (

6 in the limit af, —1, an
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QN = QN+ ——0 (i7) IV. MOMMENTUM DISTRIBUTION
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( 'b') =db', Q(b ) =b

With this definition one finds

b evaluated numerically.The source term
s stem to be dilute,I will take the system

t. It is
For simplicity

then no onge1 er depends on1; the source term
convenient to introduce

2a:= hqE/eq (23)
= —0 bZ exp(i Ql:Qr) bl:N (p )~0), 19

exp(i'Ql'Qr) ~ exp(iQl'gias r)

leading to

B(p, r) ( i

tea Geld strengths.
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replace

(2o)
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]je t
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FIG. 2. The rescaled production rate q
as a function of pll/e~ for a strong field

(a = 2.9).
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with p de6ned implicitly as the solution of the equation V. TIME SCALES

sinhpcoshp+ p = z+ (pll/ez) 1+ (pll/ez)

+arcsinh(pll/eg) (26)

I calculated g numerically, using a combination of
Filon's integration formula [36] with an efficient root-
finding algorithm. The results for weak fields (a & 1;
Fig. 1) may at first seem surprising. Clearly the momen-
tum distribution of the produced electrons is not nar-
rowly peaked around

p~~
——0; it is neither a b function

nor a thermal distribution. Rather, electrons are being
produced predominantly in the direction of the external
field (pll & 0). Electrons inoving in the opposite direction

(pll & 0) are being annihilated: for them, the production
rate is negative. Of course, such negative production
rates are sensible only if there are electrons available for
annihilation. In the quasistationary limit this is the case:
electrons which have been emitted with positive momen-
tum are subsequently being decelerated and may then, as
soon as pll & 0, be (partly) annihilated again; there re-
mains a small surplus which manifests itself as a positive
total production rate. As another surprising feature, g
displays (approximately) periodic oscillations whose pe-
riod scales with a. This may be understood qualitatively
if one views pair creation as a tunneling process from
the negative to the positive energy continuum [7]. The
barrier between these continua has a spatial width of
the order e~/qE, inducing a "momentum quantization"

pll hqE/e~ and thus A(pll/e&) a. Interference
of multiply refj.ected electron wave functions then leads
to the observed oscillations. For a strong field (a & 1;
Fig. 2), the naive tunneling picture breaks down; both
the oscillations and the annihilation of particles (nega-
tive rates) become less pronounced.

As we discussed previously, the source term is gener-
ally non-Markovian. It exhibits two characteristic time
scales: (i) the memory time r, (p), which corresponds
to the temporal extent of each individual creation process
and which indicates how far back into the past one has to
reach in order to predict future occupation numbers; and
(ii) the production interval wp, s(p), the inverse of the
production rate, which corresponds to the average time
that elapses between creation processes and thus consti-
tutes the typical time scale on which the occupation num-
bers change. Only if v &( w~, p can memory effects be
neglected and the evolution be considered approximately
Mar kovian.

In the weak-field limit both time scales can be ex-
tracted from the source term (21). First the memory
time: The factor

je( )
( &/q )

(7 —pll/qE) + (e~/qE)
(27)

constitutes a I orentz distribution in 7., centered around

pll/qE with width e~/qE Significant . contributions to
the source term thus come &om times w which are smaller
than (pll+ez)/qE As the typica. l momentum scale is set
by b,pll

—hqE/e~, we may conclude

6
Tmem +

gE

The memory time combines two time scales of difFer-
ent origin. (i) The time h/e~ is proportional to h and
therefore of quantum mechanical origin. It corresponds
(via the time-energy uncertainty relation) to the time
needed to create a virtua/ particle-antiparticle pair, and
may thus be regarded as the "time between two pro-
duction attempts. " (ii) The time e~/qE, on the other
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hand, is independent of h and therefore classical. It can
be interpreted in various ways, depending on the pic-
ture employed to visualize the pair creation process. If
pair creation is viewed as a tunneling process, the classi-
cal memory time coincides with the time needed for the
wave function to traverse the barrier with the speed of
light [37]. Alternatively, pair creation may be viewed as a
nonadiabatic transition between the two time-dependent
energy levels +e[p(t)]. In that case the classical mem-

ory time corresponds to the width of the transition re-
gion, i.e., the region of closest approach of the two levels.
Finding the production interval is less straightforward.

Assuming p~~
——0 for simplicity, again invoking the weak-

field limit, and exploiting the fact that the source term
must be consistent with the Schwinger formula, one can
show that

Eg f 7I'eg
p,od(0)pg) - xp

I 2

As long as E « m /hq & &2&/hq, the particle creation
process is Markovian: v, && rp Q In the weak-field
limit, therefore, the entropy associated with the coarse-
grained level of description spanned by (N~(p)),

(p, t) (p,
(30)

obeys an H theorem. (0 denotes the volume. ) The
monotonous increase of the coarse-grained entropy ex-
plains why spontaneous pair creation is perceived as ir-
reversible. This apparent irreversibility is, of course, a
consequence of the coarse graining: inforxnation is being
transferred from accessible (slow) to inaccessible (fast)
degrees of freedom. The slow degrees of &eedom are
the occupation numbers of the various momentum states.
From these, information gradually "leaks" into unob-
served degrees of &eedom: correlations and rapidly os-
cillating phases which entangle the respective wave func-
tions of the members of a particle-antiparticle pair.

As soon as E & m2/hq, the situation changes. The
source term (21), which was derived in the weak-field
limit, is then only a rough estimate. Already this weak-
field estimate becomes non-Markovian: at E = m2/hq
the production interval and the memory time are of the
same order 7 h/m. This is a clear indication that
at this point conventional Markovian transport theories
must break down. There may be temporary violations
of the H theorem: the coarse-grained entropy, while still
increasing on average, may now oscillate (on the same
scale r Fe/m). Such oscillations have indeed been ob-
served in numerical simulations [15]. A systematic study
of these memory effects should proceed &om the general
equations (16) and (19). Although such an enterprise
is beyond the scope of this paper, we can already say
that (i) memory effects become significant at large-field
strengths; and (ii) the projection method can account for
these memory effects and thus appears to be a suitable
tool for their investigation.

The above analysis can be extended to include binary
collisions of the produced particles. This is done by re-
placing bl'. ~ bl:+ V, where V contains the two-body
interaction. To lowest order perturbation theory, pair
creation and collisions do not interfere [32]; the addi-
tional interaction gives rise to a separate collision term.
Like the source term, this collision term is generally

non-Markovian and must be subjected to a time-scale
analysis, leading again to a criterion for the validity of
the Markovian approximation. One finds that there are
two contributions to the memory time: the average time
needed for a particle to pass through an interaction range,
and the typical "off-'shell" time given by the time-energy
uncertainty relation. For the Markovian approximation
to be valid, these have to be smaller than the average time
that elapses between two successive collisions [32,38].

VI. SUMMARY

Let me summarize the main conclusions. (i) The
source term in the quantum Boltzmann equation can be
derived in an unambiguous fashion by employing the pro-
jection method. (ii) To lowest order, the source term
is not altered by the presence of collisions. (iii) In the
weak-field limit, E « m2/hq, the source term is given by
(21) or (25), respectively. It is then Markovian, and the
coarse-grained entropy increases monotonically. As infor-
mation is continuously being transferred to inaccessible
degrees of &eedom, spontaneous pair creation appears ir-
reversible. (iv) But as soon as E & m~/hq, there may
be sizable memory effects, leading to temporary viola-
tions of the H theorem. Their description is beyond the
scope of conventional Markovian transport theories. A
more suitable starting point appears to be the projection
method, in particular Eqs. (16) and (19).
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