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+CD accurately predicts the induced pseudoscalar coupling constant
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Using chiral Ward identities of /CD, we derive a relation for the induced pseudoscalar coupling
constant which is accurate within a few percent, g~ = 8.44 + 0.23.
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The structure of the nucleon as probed by weak
charged currents is encoded in two form factors: the axial
and the induced pseudoscalar ones. While much atten-
tion has been focused on the first, the latter is gener-
ally believed to be understood well in terms of pion pole
dominance as indicated &om ordinary muon capture ex-
periments, p + p ~ v„+ n (see, e.g. , Refs. [1, 2]).
However, it now seems feasible to measure the induced
pseudoscalar coupling constant (the form factor evalu-
ated at t = —0.88M2) within a few percent accuracy via
new techniques which allow one to minimize the uncer-
tainty in the neutron detection [3]. We will demonstrate
here that one is also able to calculate this fundamental
quantity within a few percent accuracy by making use of
the chiral Ward identities of /CD.

To be specific, consider the matrix element of the
isovector axial-vector quark current A„= qp„ps(7 /2)q
between nucleon states [4]:

I

(&(p') I &; I&(p)) = &(p') &~ G~(t) +
~CL

xmas

—u(p),
2

with t = (p' —p)2 the invariant momentum transfer
squared and m the nucleon mass. The form of Eq. (1) fol-
lows &om Lorentz invariance, isospin conservation, and
the discrete symmetries C, P, and T. G&(t) is called the
nucleon axial form factor and Gp(t) the induced pseu-
doscalar form factor. Here, we are interested in the pseu-
doscalar coupling constant

as can be measured in ordinary muon capture. Our aim
is to give an accurate prediction for g~ in terms of well-
known physical parameters. For doing that, we exploit
the chiral Ward identity of /CD,

7.CL

8" qp„p5 —q = mqip5~ q,2 (3)

with m the average light quark mass [5]. Sandwiching
Eq. (3) between nucleon states, one obtains [6]

mG~(t) + Gp(t) = 2m Bm gz
t o o 1+h(t)

4m M2 —t ' (4)

m G~ g~~ ——g~N I"~M,2 (5)

with g N the strong pion-nucleon coupling constant. To
go further, we make use of heavy baryon chiral pertur-
bation theory (HBCHPT) as formulated in Ref. [8] and
detailed Ref. [9]. To order q4, we have

(
G~(t) = g~ 1+ t—

)
(6)

where the supersript zero denotes quantities in the chiral
limit, Q = Qo[1+ O(m)]. Here, B = —(0]6u]0)/F2 is
the order parameter of the spontaneous chiral symmetry
breaking and I' the weak pion decay constant deter-
mined &om the decay x+ ~ p,+ + v„. The pion pole in
Eq. (4) originates from the direct coupling of the pseu-
doscalar density to the pion, (O~qips7 q vr ) = h G [7].
The residue at the pion pole t = M„ is [6, 7]

gp = "Gp(t = —0.88M„), (2)
2V»

h(t) = const — t, (7)
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with g~ = G~(0) the axial-vector coupling constant, r&
the mean square axial radius of the nucleon, and bye a
low-energy constant [10]. The reason for the linear de-
pendence in Eqs. (6) and (7) is the following. The corre-
sponding form factors G~(t) and h(t) have a cut starting
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at t = (3M )2 which in the chiral expansion first shows
up at two-loop order O(qs) (q denotes a small external
momentum or a meson mass). Therefore, the contribu-
tion to order q must be polynomial in t,. Furthermore,
from chiral counting it follows that the t2 terms are re-
lated to order q of the full matrix elements. Putting the
pieces together, we arrive at

2

mg~+mg~ —t+ Gp(t) =
2 t+g NF

rz t g~w I'

4m " M2-~

2biiM~g~~
(8)

where we have used 2mBg&m = M~[g~~F„+ O(M )].
At t = 0, Eq. (8) reduces to the Goldberger-Treiman
discrepancy [6, 9]

g~ m = g.~ I"-
I
1+

Equation (9) clarifies the meaning of the low-energy con-
stant bii. Finally, G~(t) can be isolated &om Eq. (8),

Ward identities. To stress it again, the main ingredient
to arrive at Eq. (11) in HBCHPT is the linear t depen-
dence in Eqs. (6), (7). Since we are interested here in a
very small momentum transfer t = —0.88M„—0.5M,
curvature terms of order t2 have to be negligible. If one
uses for example the dipole parametrization for the ax-
ial form factor, G~(t) = g~ (1 —t/M&), the t term
amounts to a 1.3% correction to the one linear in t. Con-
sequently, our results can also be used in radiative muon
capture off hydrogen where the four-momentum transfer
varies as —M . + M .2 2

P P
The masses m, M„, and M = M + are accurately

known and so are I' = 92.5 6 0.2 MeV and g~
1.2573 +0.0028 [14]. The situation concerning the strong
pion-nucleon coupling constant is less favorable. The
methodologically best determination based on dispersion
theory gave g ~/4m = 14.28 6 0.36 [15]; more recent
determinations seem to favor smaller values [16]. We
use here g ~ = 13.31 + 0.34 [17]. The most accurate
determinations of r~ stem from (anti)neutrino-nucleon
scattering, the world average being r~ ——0.65 + 0.03 fm.
This uncertainty plays, however, no role in the final re-
sult since the second term on the right-hand. side of Eq.
(11) is much smaller than the first one:

G~(t) = ——g~ m rA + O(t, M ).M2 —t 3
(1o)

g~ = (8.89 + 0.23) —(0.45 6 0.04) = 8.44 6 0.23. (12)

A few remarks are in order. First, notice that only phys-
ical and well-determined parameters enter in Eq. (10).
Second, while the first term on the right-hand. side of Eq.
(10) is of order q 2, the second one is O(qo) and the cor-
rections not calculated are of order q . For g~, this leads
to

2M„g ~I' 1 2
gy —— ——g~ M„mr~.M. + 0.88M„S

Indeed, the relation Eq. (11) was derived a long time ago
by Adler and Dothan [11]with the help of PCAC (partial
conservation of axial-vector current) and by Wolfenstein
[12] using a once-subtracted dispersion relation for the
right-hand side of Eq. (4) (weak PCAC). It is gratifying
that result of Refs. [11,12] can be firinly based on the
systematic chiral expansion of low-energy /CD Green
functions. In chiral perturbation theory, one could in
principle calculate the corrections to Eq. (11) by per-
forming a two-loop calculation while in the methods of
Adler and Dothan or %'olfenstein these either depend
(completely) on the PCAC assumption or could only be
estimated. It is important to realize the difference of
the HBCHPT derivation from the one of Ref. [11]. In
that paper, the pion field was expressed in terms of the
divergence of the axial-vector current. In CHPT, the
pion field (whose exact structure is unknown in /CD) is
merely an integration variable and plays no role in any
physical observable (i.e., quark current matrix elements).
Of course, in certain cases these methods can lead to the
same result, but this is not the case in general. As a
particular example we quote the failure of the method of
Ref. [11] to give the correct low-energy theorem for pion
electroproduction at threshold [13]. Consequently, the
procedure used here is fail-safe and only based on chiral

The uncertainties in Eq. (12) stem from the range of g ~
and kom the one for r~ for the first and second terms„
in order. For the final result on g~, we have added these
uncertainties in quadrature. A measurement with a 2%
accuracy of g~ could therefore cleanly separate between
the pion pole contribution and the improved CHPT re-
sult. This would mean a significant progress in our under-
standing of this fundamental low-energy parameter since
the presently available determinations have too large er-
ror bars to disentangle these values (see, e.g. , [1]). In fact,
one might turn the argument around and eventually use
a precise determination of gy to get an additional de-
termination of the strong pion-nucleon coupling constant
which has been at the center of much controversy over
the last years.

To summarize, we have shown that the chiral Ward
identities allow one to predict the induced pseudoscalar
coupling constant entirely in terms of well-determined
physical parameters within a few percent accuracy. As
already noted by Wolfenstein [12], an accurate empirical
determination of this quantity therefore poses a strin-
gent test of our understanding of the underlying dynam-
ics which is believed to be realized in the effective low-

energy field theory of /CD (i.e., chiral perturbation the-
ory). It is also important to stress that in comparison
to the original derivations in Refs. [11,12], the uncer-
tainties in many of the parameters entering Eq. (11)
have decreased and an accurate theoretical prediction is
of great importance for further experiments using ordi-
nary or radiative muon capture [3, 18] to determine the
induced pseudoscalar coupling constant.
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