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Phenomenology of scalar and vector mesons in the linear tr model
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A generalization of the linear cr model that includes vector and axial vector mesons is presented.
The resulting effective Lagrangian incorporates some new features not previously considered. The
consistency of the model is successfully checked by applying it to a variety of processes, including
low-energy mx scattering and az decays. An interesting feature of this new effective Lagrangian is
that it provides a natural mechanism leading to a reduction of the n ~ xx decay width relative to
the expected value in the original linear a model. The generalization of the Wess-Zumino effective
action appropriate to the linear cr model is also considered.

PACS number(s): 12.39.Fe, 11.30.Rd, 12.40.Vv, 14.40.Cs

I. INTRODUCTION

The linear SU(2)L, x SU(2)R cr model, including the
pion and its isoscalar, scalar chiral partner the 0 meson,
provides a nice, explicit fieid theoretic realization of the
idea of broken chiral symmetry and gives a reasonable
quantitative description of the low energy interactions of
pions. However, the difficulty of identifying the o with
any one of the many scalar states found in the Particle
Data Group (PDG) compilation [1] (certainly, one finds
too many states below 2 GeV to fill just one Pp qq
nonet) has led to a relative neglect of this model as a
serious basis for phenomenology. The difficulty here is
to be traced directly to the expression for the 0 ~ xx
width, which is given by (including the pion mass as an
explicit chiral symmetry breaking effect)

This is unphysically large: with f = 93 MeV, one sees
that the width of the u equals its mass at m 600
MeV, and rises quickly thereafter. This is apparently
inconsistent with even the large width (500 —600 MeV)
of the broad scalar isoscalar state around 1 GeV that is
responsible for the I=O, S-wave zz interaction [2], which
is the clear candidate for the o meson, and which appears
in the 1994 PDG table [1] as the fc(1300).

The purpose of this paper is to extend the SU(2)L, x
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SU(2)R linear o model to include the vector xnesons p
and aq as chiral partners, including new elements not
present in previous work found in the old literature. As
an important consequence, we will find that the inclusion
of vector and axial vector mesons in a chirally invariant
way can lead to a drastic reduction of the mr decay width
of 0, alleviating the difficulty mentioned above.

Our aim is to provide a consistent phenomenological
picture of the known properties of the vector mesons p
and aq as well: for this purpose, the linear 0. model must
be extended to include nonrenormalizable higher dimen-
sion terms, as will be detailed below.

The plan of the paper is as follows: in Sec. IIA, vec-
tor and axial vector mesons (p and ai) are introduced
in the linear o model as gauge fields associated with the
local SU(2)L, x SU(2)R chiral syxnxnetry. This local chi-
ral symmetry is broken to the global symmetry by mass
terms for p and aq. In our model, vector and axial vec-
tor mesons get massive through both the bare mass and
spontaneous chiral symxnetry breaking [see Eqs. (2.20)
and (2.21)]. This feature is a new one compared to the
conventional approaches, where m~ = m, = mo in the
phase of unbroken chiral symmetry, and this degeneracy
is broken by f„g 0 and z-ax mixing. We consider two
dimension-6 operators in addition to the original gauged
linear u model in order to get better overall consequences
for p and aq phenomenology. In Sec. IIB, the electro-
magnetic field is introduced in a way consistent with
vector dominance hypothesis and U(1), gauge invari-
ance. In Sec. IIC, our model is compared with previ-
ous ones, with emphasis on the study of deviations from
the usually made ass»options such as complete vector
dominance, saturations of Weinberg's sum rules using
single pole approximations and Kawarabayashi-Suzuki-
Fayyazuddin-Riazuddin (KSFR) relation. In Secs. IIIA
and III B, we discuss the mm and the decay width of cr in
our model, with special attention to show how the low
energy theorem for mm scattering remains intact even in
the presence of vector and axial vector mesons. We also

0556-2821/94/50(11)/6877(18)/$06. 00 50 6877 1994 The American Physical Society



6878 PYUNGWON KO AND SERGE RUDAZ

find the o width can be substantially smaller than in
the case of the original linear 0 model, because of m-aq

mixing. In Sec. IVA, the decay modes aq m pn and
az -+ m+p are described. Our model reproduces the
result of current algebra and PCAC (partial conserva-
tion of axial vector current) on ai ~ pet. In Sec. IVB,
we consider a& ~ vr+p in our framework and compare
with other theoretical predictions as well as the data. In
Sec. IVC, it is found that the non-per contributions to
a~ —+ 3m can be vanishingly small. Generalization of the
Wess-Zumino anomaly in the linear o model is given in
Sec. V. Our predictions on various processes are sum-
marized in Sec. VI. Interaction Lagrangians relevant to
processes considered in this work are collected in Ap-
pendix A. Appendix B contains explicit expressions for
aq —+ 3x discussed in Sec. IVC.

II. THE cr MODEL WITH VECTOR
AND AXIAL VECTOR MESONS

L„—:L„ t = (p„+a„) (2.8)

(2.9)

which form adjoint representations of SU(2)g and
SU(2)~, respectively. The field strength tensors for L„
and r„are de6ned as usual:

—:L„ t = B„L„—B„L„—ig [L„,L„],

hypothesis. This can be achieved by regarding p and az
as phenomenological gauge fields associated with a local
chiral SU(2)~ x SU(2)~. Since the chiral symmetry in
QCD is a global symmetry, this local chiral symmetry
has to be broken, for example, by adding mass terms for
vector and axial vector mesons. A mass term yields the
correct form of the 6eld-current identity when we con-
struct vector and axial vector currents using the Noether
method [4,5].

Let us introduce left and right gauge 6elds,

A. Model Lagrangians
or

l„„= O„l„—0 l„ + g l„ x l ,

The linear a model [3] has the following particle
content: isotriplet pseudoscalars (vr ) and the isosin-
glet scalar (cr). They form a (2i, 2i) representation of
SU(2) r, x SU(2) R, and are grouped into

and similarly for r„„.We will use both types of notation
interchangeably in the following. The kinetic energy term
for these gauge 6elds are given by the usual Maxwell term

Z = o. + i7. m, (2 1) (2.10)

which transforms under SU(2)r, x SU(2)R as

Z: LZRt. (2.2)

v's are the Pauli spin matrices, and t—:v/2 are genera-
tors of the SU(2) Lie algebra.

The Gell-Mann —Levy linear o model [3] is defined by
the Lagrangian density

B„Z 8"Zt ——Tr (ZZt —fp) . (2.3)
4 . " .' 8

Zp is invariant under global SU(2)r, x SU(2)~ transfor-
mations, which leads to the conserved Noether currents:

(2 4)

(2.5)

The pion mass is introduced through a symmetry-
breaking potential, which can be chosen in the convenient
form

tn +(a —fp) ],2
(2 6)

which yields the usual form of PCAC:

B„A"=m f n (2.7)

[We have used fp ——f and p, = m in Eq. (2.7).]
Now, we add isotriplet vector and axial vector mesons

(p and ai) to the linear o model in a way consistent with
the current-6eld identity and vector meson dominance

Parity is conserved since we symmetrize our Lagrangian
under I ~ B.

To break the hypothetical local chiral symmetry into
the global chiral symmetry and make the vector and the
axial vector mesons massive, we add the mass-like terms

l: =
2 mp Tr [L„L"+ r„r")+ 4 bg Tr[ZZt]

x Tr [ L„L" + r„r" ]
—cg Tr t L"Zr„Zt . (2.11)

In earlier work using phenomenological massive Yang-
Mills gauge fields, only the mo term was kept in C~,
which generates equal masses for p and aq before chiral
symmetry breaking. (This degeneracy is lifted by sponta-
neous chiral symmetry breaking: this is the Higgs mech-
anism. ) For b = c = 0, we recover the usual current-field
identities [4,5].

The new b, c terms give additional contributions to the
Noether currents and current-6eld identities. After chi-
ral symmetry breaking, these terms generate additional
contributions to the masses of vector and axial vector
mesons, and play an important role in describing the
process ai ~ 0'~. [The b term was first considered in
the linear cr model with cu meson to study nuclear matter
saturation [6]. The c term was first introduced in Ref. [7]
in the nonlinear o. model with vector and axial vector
mesons in order to get the correct p ~ mm width when
one eliminates the aq meson. However, the effects of the
c term on m, and the KSFR relation were not studied
in detail. ] For example, one can imagine setting mp ——0,
since the b, c terms can provide the vector and the axial
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D„Z = O„Z —igl„Z+igZr„. (2.i2)

Using this covariant derivative, one can generalize
Eq. (2.3) into

vector with their masses after spontaneous chiral sym-
metry breaking, (o) = fp g 0.

Except for l:,the couplings of p and a to other matter
fields are assumed to be consistent with the gauge prin-
ciple. The ordinary derivative in Eq. (2.3) is replaced by
the covariant derivative

2

m =2Afp+p =2A +m Z,
Z

m =ms+(b —c) g fp,
m', = m', + (b+ c+ 1) g' f,',

gfp gfp

m,'+ (b+ c+1) g2f,' m.', '

g'f' 6 1z. =i— 1—
m2, g2c+ I)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
m2, )

'

= —Tr D Z D"Z ——Tr (ZZt —f )0 4 8
+C&;„(l,r) + 8 (2.13)

This Lagrangian with b = c = 0 and Zs~ (2.6) was
essentially known by the late sixties [5], and reproduces
the results based on current algebra and PCAC obtained
then. As we shall shortly see, the systematics of p decay
require the inclusion of an additional term, however.

We note that the Noether currents of this effective La-
grangian (2.13) are consistent with the current-field iden-
tities

net 2V„' = — mp+bg (o +w ) —cg o p„
—cg 2ow x a„+ (p„ww —w x (p„x w))

(2.i4)

Defining a = m2 /m2 and f~—:fp QZ = 93 MeV, we

get

m, —m =(a —1)m = g f,2 2 2 (2c+ 1) 2 2 (2.24)

so that

g'f.'
aZ (1 —Z )' (2.25)

This would be nothing but the KSFR relation [8], were
we to choose a = 2 (for which m, = i/2 m~
1090 MeV), Z = 1/2, and g~ = g.

However, the pwca coupling following from (2.13) has
a strong momentum dependence because of the m —aq
mixing, as given by Eq. (A12) with es ——(s ——0. The
corresponding pnx vertex is

n 1A„' = — mp+bg (o +n )+cg (x a„

+cg 2ow x p„+ (a„ww —w x (a„x n))
(2.15)

m2
F(o) (&2)

mQ

so that

g'f.'
m2 m2 (2.26)

In order to understand the dynamics of m, o, p, and
aq, using this gauged linear 0 model, it is necessary
to express the Lagrangian in terms of physical Gelds.
The ground state can be chosen as (o') = fp, (w) = 0.
This spontaneous symmetry breaking induces a mixing
between m and aq. Therefore, we have to make Geld
redeGnitions

O' M 0' + fp,
a„w a„+hD„m,

(2.16)
(2.17)

and choose the parameter h in such a way that there is no
mixing between m and a Gelds. Finally, we need to do a
wave function renormalization for m to get the canonical
form of the kinetic energy term for the renormalized pion
fields (m„): w = w„/QZ„. After this procedure, detailed
in Appendix A, we get the relations

2

(2.18)

gp
——Fool (m2) = —[1+Z ]. (2.27)

If we fix g = 5.04 from pP ~ e+e 2 and solve (2.23)
and g~„—:F~ (m2), we get Z„= 0.33, and m, = 1.0
GeV which is too small. On the other hand, if we Gx

m, = 1.26 GeV and solve (2.23) and g~—:F~il (m2),
we get Z = 0.20, g = 5.40, and c = —0.11. Thus, we
get I'(pP m e+e ) = 7.77 keV, which is 15% larger than
the measured value, (6.77 + 0.32) keV. Ass»ming this be
tolerable and studying aq decays, one gets too small a
decay rate for aq —+ ~,

I'(ai ~ ps') 88 MeV,

regardless of m0. So, we always end up with wrong
phenomenology with the above form of gauged linear n
model with dimension & 4. To cure this problem, we add
a dimension-6 operator

One could make a shift, a„~a„+h8~m, instead. When
coupled with electromagnetic Beld, however, this shift yields
a wrong seagull term. See the next subsection for details.

The introduction of electromagnetic interactions is dealt
with in the next subsection.

This term is essentially the same, in the language of eKec-
tive Lagrangians, as the b term introduced by Schnitzer and
Weinberg [9]. It is nothing but the s, term in Ref. [5].
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Tr [1„D"ZD"Zt + r„„D"ZtD"2] . (2.28)
mp

Then, the pmvr vertex is modified into

2gm
+ps~(g ) =

Z-m-
g2f2 g2 1 g2

1 — ——gK6 Z~

(2.29)

One can fix K6 demanding

2
gp~~ —=+p~~(m )

2gm

Z-m-',

g'f'
2z~m.'

1

2
——gKsZ~ = 6.05 (2.30)

to give the correct width for p + vrx. This will also
fix the problem of a small decay rate for aq —+ err, as
discussed in Sec. IV A.

From (2.29), one can write the expression

the pmvr vertex which is nominally of dimension 4 and
dimension 6. The choice of which operators should be
present in the model is dictated by the need for a consis-
tent phenomenology in leading order.

Summarizing, our model Lagrangian consists of (2.13),
(2.28), (2.44), and (2.38). [Relevant parts of our inodel
Lagrangian, the vector and the axial vector currents, and
symmetry relations analogous to (2.20)—(2.25) are given
in the Appendix in case of arbitrary (s which is defined in
Sec. II C.] In the limit of an infinitely heavy o meson, it
reduces into the nonlinear chiral Lagrangian with vector
and axial vector mesons considered in Ref. [11], except
for the b and c terms. Since these b and c terms have not
been considered in the literature, our model Lagrangian
leads to difFerent phenomenology of az meson. In the
nonlinear limit,

g ~ y
imt/fo

and the b term is absorbed into the bare mass term mak-
ing a shift, m2o-+ (m02 + bg2fo2). On the other hand, the
c term remains:

m2 2

ggp (m2) = P (1 —Z2) —g2KsZ (2.31) c Tr[t„Zr"Zt] m cfo Tr[l„Ur"Ut], (2.33)

m2
ggp (m2) = 2' (2.32)

to be compared with the original form of the KSFR re-
lation

contrary to previous models. Therefore, even in the ab-
sence of 0., our model predictions on aq —p —x system
are diferent &om previous models. Especially, one can
accomodate a large decay width of aq -+ pn even without

(s term. (In Ref. [11],this could not be achieved without
the (s term. )

where the ellipses means uncalculable or ignored contri-
butions from the Schwinger terms, higher-order terms in
pion momenta and the higher resonances, etc. Note that
our result (2.31) reduces into (2.32) in the unphysical
limit of Z ~ 0 and Z~m ~ const. In our approach,
we can evaluate these corrections to the original form of
the KSFR relation by the finite mass of aq resonance,
and get improved overall phenomenology.

The inclusion of higher dimensional operators in the
linear cr model is clearly consistent with the view taken
here that it should be seen as an effective theory: while
the model, in its original form [3] involving only o, vr, and
the nucleon, is perturbatively renormalizable (and in fact,
not unexpectedly for a strong-coupling problem, fails if
taken seriously in one-loop order [10]), it is clear that
this is not a physically limiting consideration. However,
in the context of the linear a-model, operator dimension-
ality is not an immediately useful organizing criterion,
unlike the case of the nonlinear cr model. This is due
to the fact that after the field redefinitions (2.16),(2.17),
a term in the Lagrangian of any given dimensionality d
will in general give rise to a number of terms of dimen-
sion d as well as d + 1, d 6 2, and so on. [Notice that
the field redefinition (2.16) lowers the dimension by one,
whereas (2.17) increases the dimension by one. ] This is
a necessary consequence of the physics of spontaneous
symmetry breaking as described by the linear 0. model.
For example, the dimension 4 operators involving b and
c provide a description of which part of the vector meson
masses (dimension 2) is due directly to chiral symmetry
breaking, while K6 contributes in an important way to

B. Electromagnetic interactions

bp = —O~Cl3)
0 1
p, P ) (2.34)

where p„= p„s and n is the SU(2) v gauge-
transformation parameter. If we introduce the
electromagnetic-gauge field B'~ which transforms as

1bB„= —O„o.3,
e

(2.35)

the combination

e
p ——Bp, P

is invariant under Eqs. (2.34) and (2.35). Since the
masslike terms are not invariant under Eq. (2.34), we
can replace the p„ in the masslike terms by

To describe electromagnetic processes such as p
e+e and aq ~ xp, we need to introduce the electro-
magnetic field in a gauge invariant way, implementing
the idea of CVC (conserved vector current) hypothesis.
This was studied in detail by Kroll, Lee, and Zumino [12],
and a brief review can be found in Ref. [5].

Let us first note that an SU(2) v gauge transformation
in the third direction, for the third component of the
isovector vector field, looks like a U(1)i gauge transfor-
mation
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0 0
pp r pp Bpo

g
(2.36) C. Comparison with previous work

ly;„(B) = —
4 B„„B"".

At the one-photon level, we recover

(2.37)

= -eV„B", (2.3S)

(Other terms with covariant derivatives are invariant by
themselves, so they do not change. ) We also add the
kinetic term for the photon field:

2
mp

~7K m2m1
(2.42)

Before studying the full contents of our model, let us
briefly consider the case 6 = c = 0, which is the same as
the model described in Ref. [5]. For c = 0, we get the
exact current-field identities and complete vector domi-
nance from (2.14) and (2.15). Also, the symmetry rela-
tions (2.23)—(2.25) become

R~ W R~ + hB~&. (2.39)

More specifically, the interaction of charged pions with
photon fields would have been given by

e2

eB„(~—+8"m„—m„B"m+) + B„B"vr+x„,

which is not gauge invariant, unless Z = 1. Thus, we
can justify the shift of a„by hD„m.

Now, one can consider po ~ e+e . From Eq. (2.38),
one can derive

+ 4~o.2 mpI'(p m e+e ) =
g 3

(2.40)

Using I'(po m e+e ) = (6.77 + 0.32) keV [1],

g
2—= (2.02 6 0.10) or g = (5.04 6 0.12). (2.41)4'

In the following, we always use this determination of g
for numerical analysis.

where V„ is the vector current of our model constructed
by the Noether method. At the two-photon level, our
prescription gives interactions of hadrons and photons in
a U(l), gauge invariant way. For example, we recover
the ordinary seagull term for electromagnetic coupling of
charged pions by replacing p„by p„+ eB„/g. However,
this would not be possible, if we had made a shift,

(2.43)

Therefore, in the case of Z = 1/2, we recover the usual
KSFR relation (with g = g~ ), and the results derived
&om Weinberg's sum rules in the single-pole approxima-
tions for Z = 1/2. However, one can easily convince
oneself that the above equations overdetermine mp, m „
and g. For example, we consider three difFerent cases
which seem reasonable.

Case I. Assume that g = gp = 6.05 determined &om

p ~ nw. Then, Z = 0.47 and m, = 1.12 GeV. (If we
fix g gp —5 04 &om p ~ e+e instead, we would
get m, = 0.970 GeV, which is too small. So, we discard
it.)

Case II. If we assume Z = 1/2, then m2 = 2m2

(Weinberg's sum rule) and g = 5.85.
Case III. If we use m, = 1.26 GeV (PDG value) as an

input, then g = 6.54.
For each case, one can choose e6 to get g~ = 6.05.

The rates for processes involving the u meson such as the
widths for u ~ vrx and aq ~ om depend on the value 6
as well. In Table I, we show various physical quantities
for each case with b = c = 0 (for which m~ = mo). The
results do not compare with the data very well, especially
for a~ —+ pm.

In previous work based on the nonlinear chiral La-
grangian with vector and axial vector mesons, this prob-
lem was avoided by including one more dimension-6 op-
erator [11]:

TABLE I. Predictions with the s6 term and b = c = 0 for m = 1 GeV (and 0.7 GeV in the parentheses). Three cases are
explained in the text. Inputs are marked with a dagger for each case. The parameter +6 is adjusted to get the correct g~ for
each case.

g
m, (GeV)

( g) 1/2

p' ~ e+e
Gy M P7f

fo/fs
Cy ~Kg

Case I
6.05t
1.12

0.63 fm
4.70 keV
23 MeV
—27%

0.477 MeV
310 MeV

(102 MeV)

Case II
5.85
1.09t

0.64 fm
5.03 keV
27 MeV
—19%

0.410 MeV
424 MeV

(139 MeV)

Case III
6.54
1.26t

0.61 fm
4.02 keV
57 MeV
—28%

0.245 MeV
168 MeV
(57 MeV)

Data
5.04

1.26 + 0.03
(0.66 + 0.01) fm

(6.77 6 0.32) keV
400 MeV

(—11.0 + 2.0)%
(0.640 + 0.280) MeV

(')
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Tr / „Er~"Zt
2m2

P

(2.44)

system.
For c g 0, there are two solutions of c (or, equivalently,

Z ) as can be seen from Eqs. (2.20)—(2.23). For example,
for g = 5.04 and m, = 1.26 GeV, the two solutions are

The analysis becomes more involved, since the (s term
induces wave function renormalizations of p and a fields.
The (s term does contribute to ai —i per and other pro-
cesses. Adjustment of (s generally improves the results
shown in Table I as discussed in [ll]. Most of the numer-
ical results presented in this paper in fact correspond to
the (s ——0 case, unless otherwise specified.

The importance of the +6 term can be seen &om Ta-
ble II, where various predictions with K6 ——0 are listed.
The cases I, II are for b = c = 0, whereas the cases
III and IV are for b = 0 and e g 0. Input assump-
tions are denoted by daggers, and symmetry relations,
Eqs. (2.18)—(2.23), are used as before. Basically, we get
too small g~, or equivalently, too small a decay rate for

p -+ mx. Also, the decay rate for a~ —+ xp is always zero,
since it is proportional to ~6 as discussed in Sec. IVB
[see Eq. (4.10)].

From Tables I and II we conclude that it is essential
to keep both c and e6 terms to improve the phenomenol-
ogy of m, p, a~ system. Processes involving the 0 meson
constrain b, or equivalently, mo, but give no hint as to
the necessity of the c and K6 terms. The results for non-
vanishing c, e6 are shown in Tables III—VI. We get bet-
ter and simpler overall results. Relegating the details
for each process to the following sections, we discuss the
more general aspects of our model here.

First of all, the current-field identities are modified into

(c, Z ) = (—0.12, 0.17) or (1.34, 0.83).

m2 1 2c22
~m

(2.47)

Thus, one gets

mp + 2cg fo] = 11 (2.48)

g2f 2 K6Z m, 6 g~~~
2 2

(2.49)

In the above equations, we have used the symmetry re-
lations, (2.20)—(2.24), and the definition of g~, (2.30).
Thus, we get

In Tables IV and V, we show predictions on the various
processes for these two sets of solutions. The smaller
solution for ~c~ gives overall better phenomenology, which
indicates that the vector dominance hypothesis is indeed
a good approximation. So, we choose the smaller (c, Z )
in the following sections.

One may worry that this c term would give a wrong
value for the pion charge radius deduced from the vector
form factor. We can easily verify that it is not the case.
The matrix element of the vector current (2.45) between
charged pions is given by

g mQ

2cgf~7r„x a~ + 0 ~ ~

Z
(2.45)

( 2)i]2 /6 x 1.20
69 f

m
(2.50)

A.~ —— ' a~ + f D~m„+
g

(2.46)

We note that c = 0 corresponds to the complete vector
meson dominance in the I = J = 1 channel of the mm

which compares well with the experimental value (0.66 +
0.01) fm. Note that the pure vector meson dominance

(i.e., the c = 0 case and g = g~~ ) leads to (r2)~2 l/2

~6/mp ——0.63 fm.
Also, we note that the K6 term has the same structure

TABLE II. Predictions without the es term (s6 ——0): the cases I, II are for b = c = 0, snd the cases III sud IV sre for

b = O, c g 0, for m = 1 GeV (and 0.7 GeV in the parentheses). Four cases are explained in the text Inputs s. re msrIMd with
a dagger for each case. The relevant data can be found in the last column of Table I.

g
m, (GeV)

gpmm

p M 7t 7k'

( g)ll2

p —+ e+e
Gy ~PA
fD/fs

CLI ~ KP
cr —+ urer

Case I
5.85
1.09t
4.39

80 MeV
0.55 fm

5.03 keV
171 MeV
—2.3'Fp

0.0 MeV
424 MeV

(139 MeV)

Case II
6.57
1.26~

4.50
84 MeV
0.52 fm
3.98 keV
335 MeV
—5.2'Fo

0.0 MeV
149 MeV
(50 MeV)

Case III
5.23
1 09t
6.05t

152 MeV
0.68 fm

6.29 keV
55 MeV
—2.3/0

0.0 MeV
2.8 MeV

(1.7 MeV)

Case IV
5.40
1.26f
6.05~

152 MeV
0.67 fm

5.90 keV
88 MeV
—5.2'Fo

0.0 MeV
4.5 MeV

(0.7 MeV)



PHENOMENOLOGY OF SCALAR AND VECTOR MESONS IN THE. . . 6883

TABLE III. The musca'ttering lengths (ai 's) and the linear coefBcients (5& ) in our model (with mo ——0), SU(2) xSU(2) chiral

perturbation theory to O(p ) and the experimental data. Our predictions are essentially independent of ms, m „and g, as
long as the symmetry relations (2.18)—(2.23) hold.

0
ap
gp

2
ap
$2

2ap —5ap
1

This vrork

0.16
0.20

—0.045
—0.092

0.55
0.034

SU(2) ChPT
0.20
0.24

—0.043
—0.069

0.60
0.038

Data
0.26 4 0.05
0.25 + 0.03

—0.028 + 0.012
—0.082 + 0.008
0.614 + 0.028
0.038 + 0.002

TABLE IV. Decay rates (in MeV) for ai and u for m, = 1.26 GeV, (c, Z„) = (—0.12,0.17) and m = 1.0 GeV, for four
diIFerent values of ms. ms/m = 0.0, 0.2, 0.5, 1.0, with (s = 0.0. The values in parentheses are for m = 0.7 GeV.

mp m&
2 2

ay MpK
folfs

ay MKp

0.0
483

7.8/p
0.670
528

(166)

0.2
483

7.8%
0.670
211
(ss)

0.5
483

7.8%
0.670
3.4

(1.s)

1.0
483

7.8%
0.670
373

(106)

Data
~ 400

—10.0%
(0.640 + 0.280)

(')

TABLE V. Decay rates (in MeV) for az and o for m, = 1.26 GeV, (c, Z ) = (1.34, 0.83) and m = 1.0 GeV, for four
difFerent values of ms. mo/m~ = 0.0, 0.2, 0.5, 1.0, with (s ——0.0. The values in the parentheses are for m = 0.7 GeV. [The
larger c (or, Z„) solution is chosen here. ]

mp mp
ay M p7f

fa/fs
ayMKf

0.0
410

—19%
1.31
2664
(837)

0.2
410

—19%
1.31
2586
(813)

0.5
410

—19%
1.31
2472
(77s)

1.0
410

—19%
1.31
2287
(721)

Data
~ 400

—10.0%
(0.640 + 0.280)

(')

TABLE VI. Predictions for ai -+ xp of various approaches and the data.

Reference
18]
19]
20]
21]

This work

[1,17]

I'(ag m sp)
2 MeV

1—1.4 MeV
1.4 MeV
0.3 MeV

0.670 MeV
0.640 + 0.246 MeV

Assumptions
CA, CVC, PCAC, VMD, Dispersion relation

Single quark transitions and VMD
Phenomenological approach and VMD

Hidden symmetry scheme
Effective Lagrangian and VMD

TABLE VII. Dependences of az ~ ps and az m sp on g. For each g, there are two values of (s which yield I'(az -+ p7r)
between 300 MeV and 500 MeV.

g
5.05
5.05
5.65
5.65
6.05
6.05

Zp
1.0
1.16
0.93
1.11
0.89
1.09

I'(ag m ps) (MeV)

342
414
366
450
348

I'(ag m sp) (MeV)
0.625
0.375
0.019
1.093
0.013
1.533
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as the L s term in the O(p4) nonlinear chiral Lagrangian.
In the chiral perturbation theory, the charge radius of a
pion is given by

0.50 ~

12
(r ) = —L9 + (chiral loops), (2.51)

0.25 I- L

so that our ~6 corresponds to I 9 ——7.3 x 10 neglecting
loops. The parameter 19 is determined essentially by the
ratio g~ /g, or equivalently, p ~ mm and p ~ e+e

Secondly, the syminetry relations for c = 0, (2.42) and
(2.43), are no longer true, and we have to go back to
the original ones, (2.23)—(2.25). In view of (2.45) and
(2.46), this would imply that saturation of Weinberg's
sum rules with x, p, and aq is not good approximation,
and that the contributions of mm and mp intermediate
states to the spectral densities of vector and axial cur-
rents should be included. Thus, one can study deviations
&om simple assumptions such as complete vector dom-
inance, saturation of Weinberg's sum rules using single
pole approximations, and KSFR relation by allowing for
nonzero c.

Furthermore, we have another &ee parameter 6 in
(2.20) and (2.21). Therefore, we can even consider the
case mo ——0, not considered in the earlier literature, in
which the p meson acquires its mass entirely &om the
0 vacuum expectation value, i.e., through spontaneous
chiral symmetry breaking. This case also gives vanishing
amplitude for aq —+ ovr for e6 ——0 independent of m
as discussed in Sec. IVC. We will occasionally exam-
ine the results of this interesting case below, although it
turns out not to be favored phenomenologically, when all
processes are considered.

For the purpose of numerical analysis, we use g = 5.04
as determined from po -+ e+e . Then, we solve (2.23) for
Z for given m, , and then solve for c. We shall choose
the value of Z which yields a c closer to 0, because
the vector meson dominance hypothesis is a good first
approximation. Then, we determine e6 to get the correct
g~~ . Finally, we can scan over mo &om 0 to m and
determine b using (2.20). The relations between b and
mo are shown in Fig. 1 for m 1 1 26 GeV and 1 09
GeV, respectively.

If one wants to use g g~ and determine g~ &om
KSFR relation or the p width, one necessarily has to
include another dimension-6 operator, the (s term. We
have scanned over (s to get a right order of magnitude for
aq ~ pn, and calculated the corresponding decay width
for ai ~ 7rp. There are two solutions of (s (or equiva-
lently, Z~, defined in Appendix A) for each g. The results
for three different values of g are shown in Table VII.
It becomes difFicult to correctly describe aq ~ 7rp, as

g gets larger. Therefore, it seems necessary to clearly
distinguish g and g~ when one considers the aq me-
son explicitly. This is a remnant of the modifications of
interactions of pions with other particles and the KSFR
relation as a result of the m-aq mixing and the finite mass
effect of m, .

In Sec. III A, we will find that the mm scattering lengths
are insensitive to mo as well as to the m, and m, as long
as they satisfy the symmetry relations Eqs. (2.18)—(2.25).

0.00 I—

-0.50
0.00

I I I I I I i I I I ~~ I „l

0.25 0.50 0.75
m0 (GeV )

1.00

FIG. 1. The mo dependence of the parameter 6 for

m, = 1.26 GeV (solid line) and m, = 1.09 GeV (dashed
line).

This is due to the Nambu-Goldstone boson nature of pi-
ons, which basically determines the scattering lengths.
However, some other quantities such as the width of 0
and the decay rate for aq ~ err are sensitive to the mo,
as discussed in the following sections.

III. mm SCATTEMNG AND THE WIDTH OF e

In this section, we consider in detail the effects of p
and aq mesons on 7rvr scattering at low energy, and the
important modification of the 0 ~ arm width that can
result.

A. The mm scattering lengths

I et us first consider m~ scattering in our model:

7r (p ) + m (ps) -+ ~'(p, ) + or"(ps).

In general, the vr7r scattering amplitude can be written
as

M g, d = A(s, t, u) b sb,g+A(t, s, u) b bye

+A(u, t, s) b pbbs„ (3 1)

T (s, t, u) = 3A(s, t, u) + A(t, s, u) + A(u, t, s),
T (s, t, u) = A(t, s, u) —A(u, t, s),
T (s, t, u) = A(t, s, u) + A(u, t, s).

(3.2)

Each T can be expanded in terms of partial waves as

and it suffices to give the expression for A(s, t, u). It can
be further decomposed into amplitudes (T ) with deffnite
total isospin I = 0, 1,2 of the two incoming pions:
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TI(s, t, u) =32vr ) (21+1) ti(s) Pi(cos8),
L=O

(3 3)

where l is the relative orbital angular moment»~ of the
pions and 8 is the scattering angle in the center of mo-
ment»m &arne.

For each l and I, the phase shift is defined as

where

2q 2z
(3 4)

(3.5) D, P

is the magnitude of the three-velocity of a pion in the
center of momentum &arne. In the limit of q ~ 0, the
real part of t& becomes

Re t&(s) —
q a& +b&q +O(q ) (3.6)

(+ crossed channels )

2A fo2
A(a, t, u) = —2A 1—

m2 —8
(3.7)

which defines the vrz scattering length aiI and the linear
coefBcient b&. Both a& and b& are dimensionless in our
definitions.

The original linear e model gives the well known result
for the z'z scattering amplitude:

(b)
FIG. 2. Feynman diagrams contributing to the arm scatter-

ing: (a) s interaction and (b) o and p exchanges. Here, the
pvrx and cree vertices contain all the contributions from the
s-ai mixing and/or the ss term.

This by itself satisfies the Adler consistency condition,
A(mz, mz, mz) = 0 with Z = 1, by virtue of Eq. (2.19).

In our model, mx scattering occurs through the Feyn-
man diagrams shown in Fig. 2. Here, we have the p
meson exchanges, the x-aq mixing and the wave function
renormalization of the pion field in addition to the above

amplitude, Eq. (3.7). Evaluating the Feynman diagrams
in Figs. 2(a) and 2(b) using (A12)—(A14), we get

A(a, t, u) = A 4(a, t, u) + A (a, t, u) +A~(s, t, )u, (3.8)

where

1 g4f
A 4(s, t, u) = —2A+ ((1+2c) a —2(b —c) (s —2m ))

a ma1

( fo'
1l »—,

I
1+

A ( t ) = I, I
[F -(t)]' +(t++ ).

P

(3 9)

(3.10)

(3.11)

To obtain the scattering length and the linear coefB-
cient, we make the following substitutions in Eq. (3.2),
get ti(s) using Eq. (3.3), and then expand t&~ around
q=0:

a=4m' (q +1),
t = —2m q (1 —cos 8),
u = —2m q (1+cos8).

In Table III, we list the mz scattering lengths aii's and
the linear coeKcients b&

's in our model along with the
exeprimental data. The results from the SU(2) chiral
perturbation theory [13] are also shown for comparison.

Our results depend on mo, m, m „and g in general, but
not very much. The numbers shown in Table III are for
mo ——O, m = mz and g = 5.04. Therefore, mo ——0 is
as good as mo ——m &om the arm scattering data. This
is not altogether unexpected: the low-energy theorezns
for arm scattering follow &om current algebra and PCAC
only, which are not sensitive to the relative contributions
of mo, b, and c terms to the vector and axial vector meson
masses, or the particular choice of m, , as long as all
contributions to the amplitude are included and the full
set of symmetry relations (2.18)—(2.25) consistently taken
into account.
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B. The width of the cr

r(~ ~ ~~) = (2&f )
8m 2m2 ' (3.12)

Another important consequence of our model is that
it can lead to a sizable reduction of the o. m mm decay
width, as compared to original expectations. It is well
known that the original linear a model predicts

with m = 2Af .Thus, we would have I'(o -+ xm') =
1650 MeV and 760 MeV for m = 1 GeV and m = m~„
respectively. This width is, therefore, typically larger
than the mass, which makes it diflicult to identify the o.

meson with any known state.
In our model, the width of o. is altered by the x —az

mixing, and can be significantly smaller compared to the
original linear a model. Specifically, the amplitude for
o m x~ in our model is obtained &om (A14):

The relevant Feynman diagrams are shown in Fig. 3. This
is rather sensitive to g and mo, as well as m . The first
term in the above amplitude is the usual o+2 interaction
given by the potential in the linear o. model, whereas the
second term is induced by the x-az mixings in the kinetic
term for the x fields and in the b, c terms. These two
interfere destructively as indicated by the opposite signs
in (3.13), and the o width can be considerably smaller
than the one predicted by the original o model.

In Figs. 4(a) and 4(b) we show the mo dependence of
the 0 width for m = 1.0 GeV and m = 0.7 GeV, re-
spectively. We note that for g = 5.04, a width of 500 MeV
or so, with m 1 GeV ( as suggested in Ref. [2]) can cor-

1000 —- ~—~—~~

I-.

750 t-

500

CI

250--

(a) '

0 I I J.,

0.00 0.25 0.50 0.75 1.00
m, , (GeV )

1000-

750

500 I-

I ~ T t
I P/(b)"

/
/

250 .—

a (c)

0. 0.25 0.50
mo (Ge& )

0.75 1.00

FIG. 3. Feynman diagrams contributing to cr ~ ~x includ-
ing the s'-aI mixing: (a) from the potential oc )I, (b) from the
LI,;„(o),and (c) from the ZI,;„(m) and the b, c terms.

FIG. 4. The m, o dependence of I'(o ~ ss) for mo = 1

GeV (solid curve) and m = 0.7 GeV (dashed curve): (a)
m, = 1.26 GeV, and (b) m, = 1.09 GeV.
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respond to values for mo around mo 0 and m02 m .
We emphasize that the latter possiblility differs here from
previous treatments in the literature in that we have then
5 c g 0. We see that vr —aq mixing effects lead in this
case to a reduction in the cr —+ vrx width by a factor
of 3, as compared to the value that would be inferred
from the usual formula (3.12). Even more drastic reduc-
tions are possible, as seen in the figures. To determine
which values of mo are to be favored, we will examine in
Sec. IVC the magnitude of the non-px decay width of
the aq, known &om experiment to be rather small when
compared to the dominant aq -+ pn. process.

Finally, we comment on the previously considered case
mo ——mp, with b = c = 0 as an additional constraint: we
emphasize once again that this does not lead to a good
overall phenomenology. Still, we see &om Table I that
x —aq mixing effects on the cr width can be sizable: we
can also use g = 5.04 to fit p ~ e+e and then the
cr ~ mm is reduced to 812 MeV for m = 1 GeV.

interaction in the kinetic energy term in the non-Abehan
gauge theory and the vr-aq mixing. We note, however,
that the res term, missing from (4.4), is of crucial im-
portance in reproducing the correct p ~ m~ width and
aq -+ mp, as shown in Table II.

For g = 5.04 and m 1 1 26 GeV, the width becomes

I'(aq ~ pn) 483 MeV. (4.5)

Hence, the width for aq ~ px for m, = 1.26 GeV comes
out right in our model. I'(aq -+ pn') is rather sensitive to
m, and the po —p coupling g, as shown in Fig. 5. The
solid, the dashed and the dotted curves are for g = 5.04
and 5.04+ 0.12, respectively. The main uncertainty in
our prediction comes from the value of g as well as from
the value of m, . For example, we get I'(aq -+ p7r) =
97 MeV for m, = ~2 m~ = 1090 MeV.

One can also write the above amplitude (4.1) in terms
of the S- and D- wave amplitudes for the final px system

IV. PHENOMENOLOGY OF Ag MESON

A~ GI W pF

The efFective Lagrangian constructed in the previous
sections can be shown to reproduce the current algebra
and PCAC result on aqpn coupling. Let us parametrize
the amplitude for aq(k, s) ~ p(k, s ) + z (p) as

M(agape)= f,p s s + g, p k sk s. (4.1)

The interaction Lagrangian (A15) yields the form factors
for aq M per (with (s ——0):

f, = (Ep+2m~) f,p +k m, g,~, (4.6)
mp

~8sf, = — (E~ —m~) f~,~~+ k m~, g~, ~~ . (4.7)
3mp

In our case, the (D/S) ratio is about +7%%us compared
to (—11.0 6 2.0)% [16]. The experimental value was ex-
tracted &om 7 m 3x decay ass»ming Isgur's Bux tube
model, which is quite difFerent &om ours. Therefore, this
disagreement may not be a serious one.

2
(k2 k') =-

m p
2

m'- mp

(4 2)

(4 3)

1000 I I I I
I

I I I I
~

I I I I

which agree with an expression given in Ref. [5] if we set
c = 0. For Ics ——0 and any c, the form factor f,~ can
be written as

750—

f,~(m, , m ) = (m, —m ), (4.4)

using Eqs. (2.23) and (2.24). This is nothing but the re-
sult derived by GefFen, and Brown and West using the
current algebra and PCAC technique [14]. We note that
Eq. (4.4) holds even for nonvanishing c in our model,
while the original derivations by GefFen, and Brown and
West were done with c = 0 (complete vector meson dom-
inance). The overall factor Z was obtained in Ref. [14]
by including pn contributions. In our approach with
the efFective Lagrangian based on the massive Yang-Mills
gauge theory, the Z factor results from the non-Abelian
nature of the p, aq interactions. More specifically, the Z
factor is derived by the triple gauge boson (p-az —aq)

250—

0 I I I I I I I I I I I I I I

1.00 1.10
m, l (GeV)

1.20 1.30

FIG. 5. The m, dependences of F(aq m ps ) for

y = 5.04 +0.12. The solid, the dashed, and the dotted curves
are for g = 5.04, 5.16,4.92, respectively.
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B. a+ m m+y

One can also study the radiative decay process a&
7r+p using the above form factors Eqs. (4.2) and (4.3) for

I

k 2 = 0 in conjunction with the idea of vector meson dom-
inance of hadronic electromagnetic current, Eq. (2.38).
This decay receives from both p —p mixing and the di-
rect coupling to the photon [&om the first and the last
terms in Eq. (2.45), respectively]. After adding these
two contributions, one finds that only the rs, (s terms in

f,~ form factor contribute to a~ m n +p:

M(a+~(k, e) m sr+(p)p(k, e ))

For (s ——0, the result is
(4 8)

JH(a~+(k, e) m x+(p)p(k, s )) = s e, p
P

(4.9)

so that the amplitude is proportional to K,6. For m, =
1.26 GeV, we then obtain

F(a~ m x+p) = 670 keV, (4.10)

which is consistent with the PDG value (640 + 246) keV
[1,17]. This serves to highlight the importance of the
zs term, as it allows for the observed decay aq -+ xp,
as well as increasing the pn decay width of the aq, and
accounting for the difference between gp and g. This
decay is also very sensitive to m, and g as shown in
Fig. 6. The m, dependence is mainly due to kinematical

reason, whereas the sensitivity on g comes kom implicit
dependence of rs on m, through (2.29). Had we used
m, = 1.20 GeV, the rate would be 367 keV with F(aq m
pir) = 276 MeV.

For coxnparison, we quote previous predictions on the
decay rate for aq —+ mp. Calculations based on cur-
rent algebra, CVC, and»~subtracted dispersion relation
[18] predict it to be about 2 MeV which may be too
large. A model [19] based on the single quark transition
along with the vector dominance hypothesis in az m mp
predict F(az m xp) = 1 —1.6 MeV, for m, = 1.2
GeV and F(aq -+ p7r) 300 MeV. Another group uses
the phenomenological Lagrangian for aq —p-m vertex
and the idea of vector meson dominance [20] to pre-
dict F(aq ~ vrp) = 1.42 MeV for m, = 1.26 GeV and
F(aq ~ pm) = 400 MeV. If aq meson is regarded as a
gauge boson in the extended hidden symmetry [21], one
finds that F(aq ~ pn) = 360 MeV and F(aq ~ mp) = 0.3
MeV for m, = ~2m~ = 1.09 GeV. Thus, our result is
at the lower range of magnitude compared to other pre-
dictions, and in better agreexnent with the data. This is
one of the 6rm predictions of our model as constructed
in Sec. II. Especially, our result manifestly respects all
the important properties such as spontaneously broken
chiral symmetry, chirally symmetric interactions among
particles under consideration, the idea of (nearly) com-
plete vector meson dominance. Also, it remains intact in
the limit of the nonlinear o model (i.e. , in the limit of
m m oo).

Although the above amplitude (4.8) does not look
gauge invariant, one can explicitly check that it actually
is. The most direct way to verify this is to go back to the
original Lagrangian, and replace p„by eB„/g [p —p mix-
ing given by (2.38)]. Then, the masslike b, c terms drop
out as before, and (A15) contains only B„„Thus, th.e
resulting ampitude is gauge invariant. More speci6cally,
we can derive the following for the on-shell photon (aq
can be either real or virtual),

1200
Kseg f~C(a,xp) = B„„(a""x m)s,

m p

(4.11)

by doing partial integration on (AI5) with (s = 0. This
is manifestly gauge invariant, and proportional to K6.

800—

600—
T

400—

C. ag —+ om -+ (mm), m

Another interesting consequence of our effective La-
grangian is that one can accommodate a rather small
partial width for the process aq -+ (ns), s, including a
contribution due to the process a~ —+ ere. In our model,
the amplitude for this process is given by Eq. (A16):

0 I

1.00 1.10 1.20 1.30

M(ag(k, s) + o.(p )s.(p ))

m„(GeV)

FIG. 6. The m, dependences of I'(aq -+ vrp) for

y = 5.04 +0.12. The solid, the dashed, aud the dotted curves
are for g = 5.04, 5.16,4.92, respectively.

Zg

gz, z
+CL1CT'1f ~ P7f '

m2
CL1

mp-2

(4.12)
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It is interesting to note that the amplitude for a~ -+ o.m
vanishes identically in the special case mos = ms ——0 (i.e.,
keeping only operators of dimension four or less), and
this, for any value of m, and m . We have argued,
however, that it is necessary to take res P 0.

With the +6 term and for arbitrary mo, one can get
the decay rate for aq —+ era. The result is sensitive to
m as well as mo, simply for kinexnatical reasons. For
m, = 1.26 GeV and m = 1 GeV, we get, for exaxnple,

1.50 I I I I

(
I I I I

)
I I I I

)
I I I I

1.25—

I'(ag m am) = 0.2 (3.5) MeV, (4.13)

for mo ——m~ (0 GeV), respectively: mo ——m~ corre-
sponds to 5 = c P 0.

However, a discussion of the non —pm decays of aq must
also include the direct decay aq ~ 3m. In our model, the
Bnal 3m state is reached by three independent interme-
diate states as shown in Figs. 7(a) and 7(b). If we use
narrow width approximation for p, the total width for
aq ~ 3s' can be approximated as [22]

I'(a~ m 3m) = I'(a~ m ps) + I'(a& m 3s)„„„,(4.14)

where the second part is due to the ere interxnediate state
and the direct aq ~ 3s transition given by (A17).

The amplitude for a+& ~ (melar)+ can be
parametrized as

(4.15)

where p3 is the four-momentum of the odd pion. We
relegate explicit expressions for two-form factors G~Pz's

to Appendix B, except a remark that they depend on
mo. Thus, the non-pvr decay width for a~ —+ 3~ is a
sensitive function of mo, whereas a~ m pn. is not at all.

Now, it is straightforward to get the non —px decay
rate of aq ~ 3x &om the above amplitude. Combining
with the width for aq ~ per obtained in Sec. IVA, one
can calculate the branching ratio for aq -+ pn. . The re-
sult is a sensitive function of mo, as shown in Fig. 8 for
m, = 1.26 GeV. The solid and the dashed curves cor-

0.75—

0.50
0.00 0.25 0.50 0.75I (GeV 3

1.00

respond to two values of m: m = 1 GeV (the solid
curve) and 0.7 GeV (the dashed curve), respectively. Re-
cent data &om ARGUS Collaboration suggest that the
non —gnr contribution to the 3m final state is less than 6%
at the 95% CL.

Taking this observational constraint into account fur-
ther limits the possible values of mo. From Fig. 8, we

get, for m, = 1.26 GeV and m = 1 GeV,

0.17 GeV & mo 4 0.77 GeV'. (4.16)

Next, another look at Fig. 4(a) indicates that the low
values of m2o are probably excluded: we should bear in
mind, however, that the results in Fig. 8 are based on the
rather crude approximation (4.14) which should certainly
be improved. We note 6nally that for m, = 1.09 GeV,
the non-per contribution to the aq width as calculated
here always exceeds 10% for all values of m2o, which is
inconsistent with data.

FIG. 8. The mo dependence of the branching ratio of
a~ -+ p~ for m, = 1.26 GeV. The solid and the dashed
curves are for m = 1.0 GeV and 0.7 GeV, respectively.

V. THE WESS-ZUMINO ANOMALY
IN THE LINEAR cr MODEL

So far, we have considered only processes with
normality4 conservation. To describe anomalous pro-
cesses such as vr —+ pp or ~ —+ vr p ~ m p, we need
terms with the Levi-Civita tensor, a generalization of
the Wess-Zumino anomaly, with correct transformation

(a) (b)

FIG. 7. Feynman diagrams contributing to az ~ (ss),s':
(a) p, cr contribution and (b) direct transition. All the vertices
include the contributions kom the s. —aq annexing and/or the
~6 term.

Normality for a meson with J is defined to be P(—1)
Therefore, the photon, p, u, and cr have even normality, while

m, K, and aq are odd.
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properties under local chiral transformations. Since the
SU(2) group is anomaly-free, one has to extend the chi-
ral group to SU(3)L, x SU(3)~, and the ~ is included by
redefining l„,r„as

To maintain the conservation of the vector current, at
the expense of that of the axial vector current, we con-
sider Bardeen's form of the anomaly. Then, the corre-
sponding functional is obtained by

1l„m l„+—(u„,P»

1
rp M r~ + —4)~.

2

The ~ —p mixing is obtained by replacing

C——BP P 3 P

in the masslike terms, as in Sec. II8.
The anomaly is a manifestation of the fact that chi-

ral symmetry cannot be retained in the quantized the-
ory of fermions coupled to gauge fields. Under local
SU(3)L, x SU(3)~ chiral transformations, the effective ac-
tion transforms as

bI'I, R [K, l, r] = — '
d z

24@2 M4

x ~L, dl ——dl — L++ B

(5.1)

where N, is the number of colors and the right-hand side
of this equation is obtained at the quark level. The ex-
plicit form of I'L,~ can be conveniently written in terms
of difFerential forms:

I'L,n [Z, I, r] = 0 d x Tr[o, ] + (covariantization)
Ms

(5.2)

where we have defined

(5 3)

a=dZZ (5.4)

1
Um (5.5)

o. = dUU m K:—o. +
d8

O+8
(5.6)

which transforms as a ~ Lal t under global chiral trans-
formations. The functional I'L,~ can be constructed along
the same lines as followed in Refs. [23]. In fact, one
can make the following substitutions in the results of
Refs. [23]:

r, =r,„[Z,&, r] —r[Z = (f, +s), &, r]. (5.8)

We note that one can easily recover the results of Ref. [23]
(the gauged Wess-Zu~ino anomaly) by taking s = 0.

Thus, one can have the upper coupling in the linear o.

model, which would describe u -+ pro& and ~0 —+ pp upon
introducing a photon field through p-p and ~-p mixings
as usual. Proceeding as in previous work [23], we only
write down the ~pn. coupling

32
l ((dp7l') = — e~~~p 8 la) 8 p 7I'~,

8@2
(5.9)

which can be used in the old Gell-Mann —Sharp —Wagner
model [24] for meson decays. For example, we can de-
scribe the decay ~ + m p through p-p mixing:

3' 2

r(~ ~ ~'~) =, , ]p.]' = — 802 keV. (5.10)64~4f2 6

Thus, we get I'(ur ~ 7r p) = (566 6 27) keV using g =
(5.04+0.12), whereas the experimental data are (717+43)
keV.

VI. CONCLUSIONS

In this paper, we have studied the properties of m, p, ai,
and 0 mesons in an extended linear 0 model. The vector
and axial vector mesons were included, as usual, as phe-
nomenological gauge fields associated with the local chiral
symmetry, a technical device that leads to field-current
identities once this local chiral symmetry is explicitly bro-
ken down to the global symmetry by adding nongauge
invariant (but globally invariant) terms quadratic in the
vector fields to the Lagrangian. A novel feature of our
work is the inclusion of the b and c terms, in addition to
the usual bare mass term (mo2) for the vector and axial-
vector mesons.

Our results are presented in Tables III, IV, and VI
for the particular choice of m, = 1.26 GeV, and they
are in good agreement with the available data except for
the D/S ratio fD/fs in aq -+ pn' decay: we note, how-

ever, that the extraction of this parameter appears to be
unusually model dependent. In particular, we obtain cor-
rect vier low-energy scattering lengths, as a result of the
consistent inclusion of aB p and ai efFects, in a manner
respecting the global chiral symmetry. Our prediction
for the ai —+ per width is close to the experimental result,

P:—U 'dU m P = Z 'dZ = P+ 0+S (5.7)

These follow &om the fact that the left- and right-hand
sides have the same transformation properties under local
as well as global chiral transformations.

Note that @re distinguish g fram g~ . If ere used y g~
6.05 as usually doue, we would get I'(&ar ~ s p) = 815 keV.
This amounts to neglecting efFects induced by the az meson.
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even considering the various uncertainties involved in the
extraction of aq resonance parameters for ~ m 3mv de-
cay. The decay a& ~ m+p is successfully described in our
model, which is contrasted with other approaches in Ta-
ble VI. The fact that non —per contributions to aq —+ 3'
decay appear greatly suppressed can be accommodated
as a constraint on the acceptable range for the parameter
mo in our model. Most remarkably, the cr m arm width
can be considerably smaller than that predicted in the
original 0 model without vector mesons as a result of the
eH'ect of x—aq mixing, and given the range of possible val-
ues for mo. This result is important in that it addresses
the single most quoted objection to considering the linear
n model as a serious starting point for phenomenology,
namely, the difficulty of identifying the 0 meson with the
scalar isoscalar state around 1 GeV that appears in the
Particle Data Group [1] tables. It is clear, however, that
for the purposes of more detailed phenomenology, an ex-
tension of the present model to SU(3)~ x SU(3)~ and to

I

include a scalar glueball (in a manner consistent with the
/CD trace anomaly) will be required.
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APPENDIX A: INTERACTION LAGRANGIANS

In this appendix, we give the full expressions for our
model Lagrangian constructed in Sec. II, and collect vari-
ous interaction Lagrangians relevant to processes we dis-
cuss in the text. They are obtained from Eqs. (2.13),
(2.28), and (2.44):

Z...= - T. D„ZD~Z' ——T (X&' fp)-
2

——Tr (Z —fp) (Zt
4

gg2

1—fp) ——Tr
4

--4 ~
l +r —cg Tr l Zr"Zt —i

P

where

x Tr l„„D4ZD"Zt + r„„D"D"Z — Tr l„„zr""Z )m P
(A1)

Z = 0+iv
t„= (p+ „) t,
"s = (pp a~) 't

and t's are the generators of the SU(2) algebra. Working out the traces, one can write the above Lagrangian in terms
of component fields:

2

stot = — (b o) + (6 m) —— 0 +m —f ——~ + (0 —fp)

p„„+g(p„x p„+a„xa„) —— [D„a„—D„a„] + — mp+bg (cr + m ) (p„+a„)

+—cg 0 (a„—p„) + 4crm (p„x a") —(p„m) + (a„m) —(a„x m) + (p„x m)

+ [(D„a„—D„a„) 6"mb, "rf + 2 (B„p„—B„p„+gp„x p„+ga„x a„) b,"rr x 6"m]
mp

(A2)

4m2 ([cr (p„„+gp„xp„+ga„x a„) —cr (D„a„—D„a„) +4crm (p„„+gp„xp„+ga„x a„)

x (D„a„—D„a„)+ 2[(p„„+gp„x p„+ga„x a„) . m] —2 ((D„a„—D„a„). m )
—n [(p „+gp„x p„+ga„x a„) —(D„a„—D„a„) ]),

where

4~0' = B~O + ga~ 7f

E~W = D~7f —gG'a~

= 8~m + gp„x m —goa~,
D„a„=B„a„+gp„x a„.

(A3)

After the cr field acquires a vacuum expectation value
(o.) = fp, one makes the shifts

CT MO'+fp,

a„w a„+hD„x.
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The quadratic pieces of the resulting Lagrangian are
given as

m2 = m2o+(b+c+1)g2fo].
a

(B„o)'+Z (D„2r)2 ——~ p„„

+—p„mo+ (b —c)g fo

——(D„a„—D„a~)

+—a„ms + (b+ c+ 1)g fo + a„.D"n

x(—gfo (1 —gfoh) + mo+ (b+ c)g fo h),
(A4)

and, hence,
Z-m-',

'

g2f 2

Z = 1 —ghfo ——1—
Z-m-',

( zm,'l
(2c+ ly ~

Z m2,
~

Removing the aq —m mixing term, we get

(A10)

(A11)

where

Z„= (1 —gh f,)'+ [m', + (b+ c)g' f,'] h',

Z =1+"',
p

Z 1 (sfo
2mp

(A5)

(A6)

(A7)

m = —mo+ (b —c)g fo
P

(AS)

By rescaling the 6elds m, p, and a to get the canonical
forms of kinetic energy terms, we get

First of all, the pvrs coupling is described by (2r =
m„/~z and similarly for p and a fields)

Z(pm+) x Z Qz~ = — ~ p„„(B"2r„x2r„)
gZpmp

Q m~
2

g 2 Z K6
P

P

xp„„„(8"2r„x8"2r„), (

&om which we get the momentum-dependent form factor
F~ (q2) given in Eq. (2.29). This also contributes to
Eq. (3.11) in the sw scattering.

The m4 interaction is described by

2h2
Z(7r4) = — n„+ ((2r„.8„2r„) + b ~„(8„2r„) + c[(n„8„2r„)2—(B„w„xm„) ]),4Z2 " 2Z2 (A13)

where the second term is induced via x-aq mixing. This contributes to Eq. (3.9) in the xx scattering. Note that the
e6 term does not contribute to the m4 vertex.

The arm coupling is described by

Z(neer) = — om„—Wf, 2 gh m2on„8 2r„+
~

1+
~

o(B„w„)
Z~m2 )

(A14)

The second line is induced via vr —aq mixing, and affects the mm scattering [Eq. (3.10)] and the width of o [Eq. (3.13)].
Note that the e6 term does not contribute to the 0+7t coupling.

The aqpa coupling is described by

g'f"~)=z gzz
( m,'

2c m„(p„„xa„")+ k™ pv
2 l ~~ +ryv XR~

1 I'Z,
+ (A15)

This interaction Lagrangian gives two form factors for aq m per, Eqs. (4.2) and (4.3) for (s ——0. Note that g, ~ = 0
if ~6 ——0.

The a&0.m. vertex is given by

Z(a, ox) =- g 2mo

gZ.Z. Z.m2,

m2

m p

(A16)

We note that the amplitude for aq —+ o.m vanishes, if mo ——~6 ——0.
The aq3m coupling is determined &om
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2hZ
Z(aim ) x QZ, Z3 = —g h(2b —c —1) a„„8"2r„2r„—cg ha, „x2r„8„2r„x2r„—

m

X ag iggc 8~%'g erg 8gg2rg + Zgg
I

1 —
I

ag ~ X 8gcwg - 8 ig%'„X 8gc1f~
( gfph)

The corresponding vertex for the usual nonlinear (T model can be obtained from (A17) by setting b = 0.
Finally, we present the vector and the axial vector currents in the presence of dimension-6 operators:

m Qz~ 2cgfph 2cgfpm„x a„„
z.gz. " " " " qz. z.

m.', z.gz.A„= ' a„„+fp/Z D„m„+
g

(A19)

For Z = Z~ = 1, we recover the expressions given in (2.14) and (2.15). From (A18), we can infer that the data on
pP ~ e+e actually constraint g/gz~ to be 5.04.

APPENDIX B:NON-gnr CONTRIBUTIONS TO A, g -+ 3m

In this section, we give explicit expressions for the form factors defined in (4.15). The relevant Feynman diagrams
are shown in Figs. 7(a) and 7(b). To get the non —ps contributions to ai -+ (3x)+, we ignore the p7r contribution.
We need to consider two distinct 6nal states:

ai(k e) ~ ~ (pl)~ (p2) ir (p3) g

m vr (pi)~ (p2)m+(p3).

Evaluating Figs. 7(a) and 7(b), we get

G(o) (+ + )

G( )(++ —) = —G,

G( )(00+) =—

G, G „(si3)
si3 —m + igsisl (si3)

Gn~~ (S23) G (Sis)
s23 —m~ + i/s231 n(323)'sis —m~ + iqslsl'&{313)

Ga, ~~ G~~~(si2)
si2 —m + i/si21 (si2)

(B1)

(B2)

(B3)

G2 (00+) = 0,

G( )(++ )

(B4)

2 m, 1 2 3 esghZ ( ghfp)
g h(gg —gc —I)+egg hg„+ —g h +, "

l
& —

l (ggl'gc+gl'gc))
Z.' m'

q Z

(B5)

G(3)( )
i 1 2hs g gg

I
1 g f()

I ( ).

G,' (00+) = —G(' (+ + —),
G( )(00+) = —G( )(++ —).

(B6)

(B7)

(B8)

Here, G, and G (s) are defined in (4.12) and (3.13), and s;~ = (p, + p~)2.
The non —)(m contributions to the decay ai -+ (3vr)+ can be obtained by integrating the following expression over

s = s12 and t:—s13.

dl' 1 1 1 (kp)
2(2~)3 32m2 3 I i I I»I + 2 + (gtotgtote + gtotegtoth P1 P3m 1 2 J 2 Pl P3

where

(B9)

Gi;2(oo+) = Gi,2(o0+) + Gi,2(00+).
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The integration limits for s, t are given by

with

4m &s&(m., —m),
t;„&t&t

E, =2 /spaz,
2 2
a Sy2 —m7f3—

2 sy2

tmin, max —(@g + @3)

- 2

Finally, the above expression must be summed over distinct 6nal states.
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