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Two competing models for strong hadronic decays, the Po and Sz models, are currently in use.
Attempts to rule out one or the other have been hindered by a poor understanding of final state
interactions and by ambiguities in the treatment of relativistic effects. In this article we study meson
decays in both models, focusing on certain amplitude ratios for which the relativistic uncertainties
largely cancel out (notably the S/D ratios in bq -+ nu and aq -+ sp), and using a quark Born
formalism to estimate the final state interactions. We find that the Po model is strongly favored.
In addition, we predict a P/F amplitude ratio of 1.6 6 0.2 for the decay n'z ~ v'p. We also study
the parameter dependence of some individual amplitudes (as opposed to amplitude ratios) in an
attempt to identify a "best" version of the Ps model.

PACS number(s): 13.25.Jx, 12.39.Jh, 13.25.Cq

I. INTRODUCTION

Quark pair-creation models for the strong decays of
hadrons [1] have have been formulated and studied by a
number of authors, begi~~ing in about 1969. Le Yaouanc
et aL [2] developed Micu's original suggestion [3] that
strong decays proceed by simple quark rearrangement
following the creation of a Pp qq pair &om the vac-
uum. They applied this model with considerable suc-
cess to a number of baryon and meson decays. The
most extensive application to meson decays was made by
Kokoski and Isgur in 1987 [4], (KI). In addition to calcu-
lating over 400 different amplitudes (about 60 of which
have so far been measured) these authors also placed the
model on a firmer theoretical footing by showing how it
could be derived from a flux-tube picture based on lattice
QCD. Strong baryon decays were also studied in the sPo
model by Stancu and Stassart [5] and by Capstick and
Roberts [6].

Intriguingly, a quite different pair-creation model, also
rooted in a flux tube picture of confinement, was devel-
oped concurrently with the Po model. It is based on
the observation that the QCD interaction Hamiltonian,
H( t - j@pp A Ao@, when applied to an oriented chro-
moelectric flux tube, breaks the flux tube and creates a

Sq qq pair. Alcock et aL [7] have shown that this Sz
model provides a good description of J/4' and T decay
widths (as does the Po model). Kumano [8] studied
pion-nucleon couplings in both models, and found the
data unable to discriminate between them. A similarly
inconclusive situation exists in pp scattering, vrhere the
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3S~ and 3PO models appear to describe pp m AA equally
well [9].

It was pointed out by KI that S-wave decays of mesons
provide a good arena for contrasting the two models,
since the predicted rates for such decays tend to be much
larger in the Sq model. In fact, KI concluded that the
measured S/D amplitude ratio in bq -+ xur rules out
a significant S~ component in the decay operator: the
sSq model predicts S/D 20, whereas the measured ra-
tio (and the Po prediction) is about 4. (Note that it is
almost impossible to salvage the S~ prediction by tun-
ing the model, since amplitude ruti08 tend to be quite
parameter-independent. )

However, Kumano and Pandharipande [10] (KP), ar-
gued for a reprieve of the 3Sq model, because final state
interactions (FSI's) among the decay products (which
had not been considered in any of the previous studies)
can substantially alter the amplitude predictions. They
showed that, for example, a repulsive nonresonant back-
ground FSI in m&u (which they modeled by a hard-core
potential with a core radius of about 0.4 fm) significantly
reduces S-wave amplitudes and can lower the above S/D
prediction to the experimental value. Because of the
dearth of experimental and theoretical information on
short-range meson interactions, KP were unable to mo-
tivate their FSI potentials (which were tuned to fit the
measured decay amplitudes) and could only argue that
they were similar to empirical nucleon-nucleon potentials,
and hence not unreasonable.

In this paper we propose to employ the quark Born
formalism (QBF) introduced in Ref. [11,12] to calculate
meson-meson FSI's in various channels, and then to re-
examine the KP suppression mechanism using these cal-
culated FSI's. The quark Born formalism has been suc-
cessfully applied to mn [11,12], Kn [13], KN [14], and
NN [15] scattering so that we expect our FSI estimates
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to be reasonable. Since the quark Born formalism does
work for mvr scattering, one may also take the point of
view that we are fitting the known low-energy isoscalar
and isotensor phase shifts and using SU(6) symmetry to
extract related FSI strengths. While this may be a more
satisfying phenomenology, we prefer to employ the (well
tested) predictive powers of the QBF.

We are able to take into account some effects not con-
sidered in KP, such as the difference in FSI s among dif-
ferent arm isospin channels. We shall find that our FSI po-
tentials have a much smaller effect on decay amplitudes
than the rather drastic hard-core potentials used in KP.
Moreover, many of our potentials are attractive rather
than repulsive. By focusing on amplitude ratios such as
the above-mentioned S/D ratio in bi ~ n'ur, as well as
the corresponding ratio in ai ~ imp (recently measured
by the ARGUS Collaboration [16]), we shall be able to
sidestep many of the uncertainties associated with nor-
malization and relativistic effects. This will enable us to
draw fairly firm conclusions regarding the validity of each
model.

The paper is organized as follows. In Sec. II we provide
descriptions of the decay models and of a brief review
of the quark Born formalism. Section III contains our
main results: effective potentials describing the mesonic
FSI's, amplitude ratios as a function of FSI strengths,
and a study of the parameter dependence of some indi-
vidual decay amplitudes. We summarize and conclude in
Sec. IV.

II. MODELS AND METHODS

A Bux-tube-breaking picture of meson decays under-

lies both the Po and Si models. In turn, the Bux-
tube picture is suggested by (the strong coupling limit

of) Hamiltonian lattice QCD. (References [4,17] discuss
these matters in detail; we shall only provide a brief re-

cap here. ) The lattice QCD Hamiltonian contains a flux-

tube-breaking term which creates a quark and antiquark
at neighboring lattice sites R and R+ an with the effec-

tive operator

C(R, fl) = 4t (R) a . fl 4(R+ afl)

H (R, n) = p @t(R) a n @(R) . (4)

We call the above operators "effective" because they are
built from quark fields only, with no explicit reference to
the Bux tubes that they break. Consider applying these
operators to a frozen" meson state lri, r2). (This ket
is meant to represent a quark at r& and an antiquark at
r2, joined by a ground-state Bux tube. Spin indices are
suppressed for the moment. ) We have

(R) Iri, r2) = ppF (r, w)@"(R)a V' e(R) Iri r2)

(5)

(R, fl) lri, r2)

= psF (r, vr)ilIt(R) a n iII(R) lri, r2), (6)

with n parallel to r q
—r2, the coordinates are defined in

Fig. 1. The flux-tube information is contained in the F's,
which give the overlap of an initial, unbroken Bux tube
with two final-state Bux tubes. In the Si model, because
the Bux tube is assumed to be essentially straight, I" is

usually taken to vanish unless the pair creation. point R
lies along the line joining rq and r2. In the Po model,
the oscillating Bux tube implies a more complicated form
for F+ Based o. n their analysis of an idealized (har
monic) flux tube, KI advocate the approximation Fp =

, where m~;„is the shortest distance from the
pair creation point to the line segment joining Q and Q in

Fig. 1, and b is the string tension in the Bux tube. Typ-
ically, one uses the spectroscopic value 6 —0.18 GeV,2

but it turns out that calculated decay widths are not very

sensitive to this parameter. In fact, in the original Po
model F was implicitly set equal to one [2]. For the
sake of completeness, our calculations in both the Po
and Si models were carried out with three kinds of Bux
tubes:

is a phenomenological constant representing the intrinsic
pair creation strength. It will be adjusted to fit decay
data. [Similar comments apply to ps in Eq. (4) below. ]

If, on the other hand, the Bux tube is essentially
straight then the first term in (2) survives and leads to
pair creation in a Sq state:

(where a is the lattice spacing). For the medium-to-small
lattice spacings relevant to hadron spectroscopy, this may
be expanded as

narrow Bux tube:
medium Bux tube:

wide Bux tube:

F = b(io;„),
—(6/2)m

F =1.
&(R, fl) = et(R) a. fl e(R)

+a 4't(R) a n n V@(R) (2)

The nonrelativistic limits of H and H are (keeping

only creation operators)

If the flux tube is "rough" at the scale a (i.e., if its zero-

point oscillations are so strong that the flux tube mean-
ders, with essentially random orientation at each point),
then one should average over n. Only the second term
in (2) survives such averaging, so that the efFective pair
creation operator becomes

q(R) (R)

H (R) = ~ @t(R) a. V 4(R)

and the qq pairs are created with Io quantum num-

bers. The parameter p~ introduced in this expression FIG. 1. Coordinates for meson decay by Bux-tube breaking.
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H (R) m py ) y„„bt,(R) V dt„(R),
Bg iS4

2b„,b„,

H (R, n) ~ ts ) g„„b~„(R)n dt, (R),
Sg, B4

where

—2b„,b„,
Decay amplitudes are given by (BC~Hi+ ' si ~A), where

~A), ~B), ~C) are quark-model meson states:

ld) = ).X."„,dy, t J d rrd rt s,te' "' '+' tte(rt —rs)frrstft,

restful),

etc.

Color indices have been suppressed. Our normalization is (g(p') ~g(p)) = bs(p —p').
The decay amplitude may be written as

where P is a fiavor overlap:

) - @faf~@fifd fifa '

f1 fifS f4

Z is a spin overlap which can be expressed in terms of the meson spin wave functions and y as

eB eC A
~SgSg~S1S4~S1Sg+BSB4 ~

S1 Sdl SSS4

(14)

and I is a spatial overlap:

I = drdm gr F rw r 2+ 2
— g —

2
(16)

for the sPs and sSi models, respectively. Equations (15)
and (16) are valid when all the quarks participating in
a decay have the same mass, as is the case for the pro-
cesses we consider here. (In deriving these expressions,
our convention is that meson B is the one which con-
tains the antiquark &om meson A. Of course the other
diagram must be included in all calculations. )

We calculate decay amplitudes using two distinct sets
of meson wave functions.

(i) Harmonic oscillator wave functions with a single
oscillator parameter, P = 0.4 GeV, for all mesons. Al-
though these cannot be regarded as reali'stic, they are a
de facto standard for many nonrelativistic quark model
calculations, and they lead to analytic results for many
of our calculations, thus providing a check on our com-
puter code. In addition, the quite good results obtained
with simple harmonic oscillator (SHO) wave functions
indicate that our 6ndings are not strongly tied to a par-
ticular choice of wave functions.

(ii) More realistic wave functions, obtained as eigen-
states of a nonrelativistic Hamiltonian that incorporates
Coulomb and linear-con6nement terms, and a "smeared"
magnetic hyperfine term. This Hamiltonian and its pa-
rameters (which were fitted to the low-lying meson spec-

lac(r) = jg(kr) Yr (0„) (17)

(where k is the decay momentum). When FSI's are
turned on, jg is replaced by ug, the solution of a ra-
dial Schrodinger equation in the presence of the effective
FSI potential V,g. This potential simulates the nonreso-
nant "background" contribution to the interaction of the
outgoing mesons. We calculate it using the quark Born
formalism [11,12], which involves computing the lowest-
order quark-level T matrix for a given scattering pro-
cess and equating it to an effective T matrix for point-
like mesons. At lowest order, a single t-channel gluon
is exchanged between quarks which have been placed in
mesonic bound state wave functions. Color neutrality
then necessitates the exchange of a pair of quarks; hence,
the effective potentials are of short range; we neglect long
range meson-exchange contributions. Nonlocality is in-

trum) are described fully in Ref. [12].
The final ingredient in Eqs. (15) and (16) is Q~c,

the relative wave function of the decay products. In the
absence of final state interactions Q~c is essentially just
a Bessel function:
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corporated by allowing for different potentials in different
partial waves.

The method has proven surprisingly efFective in chan-
nels where meson exchange and resonance production
do not interfere with the quark-level interaction [11—15]
The method predicts a repulsive interaction for pions in
the isotensor channel and an attractive interaction in the
isosinglet channel, in agreement with 7rvr scattering data
(and in contrast with the use of isospin-independent arm

core interactions in Ref. [10]).
For the 6nal states we shall be considering here, the

efFective potential also receives contributions &om dia-
grams involving qq annihilation. The quark Born for-
malism has recently been extended to include such con-
tributions [18];the quark-level interaction is given by the
nonrelativistic limit of 8-channel one gluon exchange:

H „„=f '
~

—+ S; . S~
~

b(r;~) (A;/2) (A /2).m2 g4 ')
(18)

This operator connects the incoming two-meson state
to a qqg (hybrid) intermediate state. As discussed in
Ref. [18], a perturbative description of this intermediate
state is inadequate; color con6nement must at least raise
the qqg mass &om its perturbative value of 2m~ to the
physical hybrid mass. One simple way of modelling such
presently uncalculable con6nement efFects is to introduce
an effective gluon mass into the gluon propagator:

s ' -+ (s —p,') (19)

The parameter f in Eq. (18) is intended to incorporate
this modi6cation. It is fixed by comparison to I = 0 arm

scattering. Our conclusions will prove to be very insen-
sitive to the particular value of f.

An alternative, probably better, way to proceed would
be to calculate the meson-meson-hybrid couplings in a
more realistic model such as the fIux tube model of
Ref. [17]. However, such a calculation appears to be ex-
tremely dificult since it involves summing over many ex-
cited hybrid intermediate states (S-wave mesons decou-
ple from the lowest lying hybrids, and the excited hybrid
spectrum is quite dense [17,19].) One may expect that
the rather high hybrid masses will yield a small annihi-
lation coupling; however, for the purposes of this paper
we seek an upper bound on the coupling. Thus we adopt
the first method instead. Its successful application to 7r7r

scattering leads us to expect, on the basis of SU(6) sym-
metry, that it will provide a reasonable description of the
(mu and n.p) channels we shall need to consider.

Finally, an A ~ BC decay width is given by

we use are nonrelativistic, so it is perhaps most consistent
to use nonrelativistic phase space, PS = M~Mc/Md(.
However in many cases the decay momenta are quite
large so that the actual phase space, PS = E~Ec/MA,
is signi6cantly difFerent &om the nonrelativistic limit.
The authors of Ref. [4] employ a third option: PS
M~Mc/M~, where M; is the calculated mass of me-

son i in a spin-independent quark model. [This form is
intended to interpolate between the weak binding limit
where the model is exact, and the quite strongly bound
meson states that one must actually use in Eq. (20).]
Following the approach of Ref. [10], we perform our cal-
culations for all three types of phase space; the difFerences
in the results may be taken to indicate the inherent un-
certainty of the models. (Note that the S/D amplitude
ratios are of course completely independent of the choice
of phase space. )

III. RESULTS AND DISCUSSION

Like the decay amplitudes, the 6nal state interactions
are obtained as overlaps of meson wave functions. Thus
we have two cases to consider, corresponding to the SHO
and Coulomb-plus-linear wave functions described above.

The T matrices in the SHO case are as follows [20].
For xu scattering,

Thyp s
g

—x(l —p, ) —x(&+g)47ro. 16 -4~/S
27m2 3~S

~3/2
Tq„" = (3 —4z) e

3 2 m

s 3 x(1 p) x(1+.p}
9m

(22)

(23)

(24)

Thyp T confex ex

f ' 3 —~(~—
d ) + —~(~+d )

9m2
(26)

where m is the quark mass, x = k /4P2, p, is the cosine of
the center-of-mass scattering angle, and f is the parame-
ter discussed in Sec. II. T,"y& and T~„"~ are the hyperfine
and quadratic con6nement contributions to the t-channel
T matrix, respectively, while T

„„

is the 8-channel T ma-
trix. It is interesting to note that the confinement term
is comparable in strength to the hyper6ne term; in most
cases studied previously (such as NN scattering), the hy-

perfine term is dominant (see Ref. [12] for further com-
ments on this).

For isospin-1 harp scattering the results are

I' = 2mk (PS) f dBq~dd(k)~' (20) and, for mar scattering in the p channel,

where M is de6ned by

b (P~) M(k) = (B(k) C(—k)]H ' [A(P~)). (21)

As discussed in Refs. [4,10], the choice of phase space
[PS in Eq. (20)] is not entirely clear. The decay models

T"yP = T«"~ = 0ex ex (27)

T f S x(1 P) a(1+dd)
3m2

These T-matrix elements are to be simulated by efFec-
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TABLE I. Effective potential parameters.

Vex,hyp

Vex,conf
V "(E= even)
V~ (I = 1,t even)
V""(I= 1,t odd)

asHo (GeV)
0.32
0.16

-0.64
-2.56
-1.93

bsHo (GeV ')
1.37
2.28
1.25
1.25
1.25

ac+t (GeV)
0.29
0.11

-0.56
-2.24
-2.55

bc+& (GeV )
1.55
2.07
1.35
1.35
1.11

~2o., /' 16 )a,P E=O 2+
27~vrm2bs g 3~3) (29)

tive potentials of the forxn V,ir = a exp[—I/2(r/b)2]. The
Gaussian parameters c and b are obtained by equating
the low-momentum behavior of the actual and effective
T-matrices, partial wave by partial wave [21]. For mar,

so that we may graph S/D versus a single independent
variable. (Almost any other Ansatz for the D-wave po-
tentials could be used instead; the distortion induced in
higher waves by any reasonable V,tr is small. ) Figure 2
shows the S/D amplitude ratio for bi -+ war versus the
FSI strength a for various wave function and Bux-tube

1a~„" (/) = bt o,4pmb3 (30) 15

For xp one obtains

10--

(32)
3
p0

And for ~x,

a „„(E= odd) = v 2f~s
x3m2b3 (33)

-2

For the S-wave mu hyperfine potential, b 1.1/(2P); for
the un confinement potential b 0.9/P; in all other cases
b = 1/(2P). Table I shows the results of numerically
evaluating these expressions with typical quark model
parameters: P = 0.4 GeV (as in Ref. [4]), m = 0.33 GeV,
and o., = 0.6, and f = —2.6 (from Ref. [18]). Although
the value of f is reasonably well determined by the fit to
I = 0 mx scattering, we shall allow it to vary &om —3.0
to —2.0 to examine the sensitivity of our conclusions on
this parameter.

Also shown in Table I are the various T matrices eval-
uated with Coulomb-plus-linear wave functions. (The re-
sults for T,„were previously reported in Ref. [12].) The
quark potential parameters in this case were determined
by a fit to meson masses. Although there is some varia-
tion between the SHO and C+ 1 columns, these will have
only minor effects on the decay amplitudes. Observe that
the confinement effective potentials are very similar in
the SHO and C+l cases. This has also been noted in Ref.
[12] in the case of pp scattering; it seems that the specific
form of the confinement potential is unimportant —only
the fact that it confines with a strength determined by
the meson spectrum matters.

We now turn to the crucial S/D ratios in bi -+ n.ur and
az —+ mp. We isolate the dependence of these quantities
on the FSI strengths by fixing the Gaussian width pa-
rameters at 6 = 1.5 GeV . Also, the D-wave effective
potentials are set equal to the corresponding S-wave ones

a (GeV)

15

10--

P0

0

a(GeV)

FIG. 2. S/D amplitude ratios for bi ~ s'u. In the
top graph, SHO wave functions were used; in the bottom,
Coulomb-plus-linear wave functions. Dashed lines show nar-
row Qux-tube results, solid lines show medium Sux-tube re-
sults, dotted lines show wide Sux-tube results. (In the Si
model, there is negligible dependence on the type of nux tube,
so only a solid line is shown. ) The arrows indicate our esti-
mates of the actual FSI strengths while the bar shows the
variation in a when f is allowed to change as described in the
text. The shaded bands give the experimental ratios.
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-30

3
Po

-10 —™I, ~ '
Wk Y~~g~Rs~

I I s N. . I EÃi ssN M~

-3

a(GeV)

choices. The arrow indicates our "canonical" value of a,
based on the results in Table I. The brackets indicate the
variation in a in allowing f to vary between —3.0 and
—2.0. The experimental amplitude ratio is represented
by a shaded horizontal band [22]. Figure 3 shows the
corresponding results for ai ~ 7rp [23].

The figures show that extremely large FSI's are re-
quired to bring the Sz ratios down to the experimental
bands. On the other hand, the Po results are close to
the data for f = —2.6+0.4 (as indicated by the bar in the
figures). Indeed one may go to the extent of setting f = 0
(this corresponds to assuming that the mixing with all
hybrids is suppressed) or f = 1 (as it is for massless per-
turbative gluons). Then the maximum value of a would
be less than +1.0 GeV in all of the figures. Even in this
extreme case, one sees that the Po model is still strongly
preferred.

The Po ratios are not very sensitive to the assumed
form of the wave functions; however, the SHO wave
functions prefer a medium to wide Hux tube while the
Coulomb-plus-linear wave functions require a medium to
narrow Bux tube. Notice that the Po ratios are much
more sensitive to the Qux tube width than are the Sq

ratios. Our results for the P/F ratio in m2 -+ m p show
similar variation with respect to wave functions and Aux
tube geometry. In the region of parameter space that fits
the measured ratios best, P/F = 1.6. We (subjectively)
estimate the error on this prediction to be +0.2.

The ratio [I'(~2 m pz')/I'(ps m urn)] /, shown in
Fig. 4, is only slightly more model dependent. Because
of the near degeneracy of the masses in these two decays
(m~, = 1691 + 5 and m, = 1670 6 20 [22]), the three
phase space An8atze described earlier give results that
are equal to within 1%. The ps decay is an F-wave de-
cay, consequently it is almost completely insensitive to
FSI's. We therefore set V& ——0 and graph the ratio as
a function of the ps' potential. [The m2 ~ (prr) has P
and F-wave components; only the former are sensitive to
V,e .]

The situation for I'(ai -+ (per)s)/I (a2 -+ pn) shown in
Fig. 5 is similar, although here the various phase space
factors difFer by 10%. (The results shown were ob-
tained using the KI phase space prescription. )

The 3PO model is strongly favored by these results.
However, ambiguities remain in its application to indi-
vidual decay amplitudes. In particular the form of the
phase space to be used is unclear. This is especially true
for decays involving pions, where strong binding and rel-
ativistic efFects can be very large. Because of its chi-
ral nature, the pion is very light with respect to other
hadrons, yet it interacts with typical hadronic strength.
This combination of attributes is difBcult to obtain in
nonrelativistic models. For example the pion may be
made as light as one wishes by increasing the strength
of the hyperfine interaction, but only at the expense of
decreasing the pion radius (and it is the size of hadrons
which controls their interactions at low energy). Indeed,
it seems that one reason for the success of the simple
SHO wave functions is that they make the pion as large
as the p. Even so, special treatment must be given to
decays involving pions in order to obtain agreement with
measured widths. The Kokoski and Isgur phase space
convention discussed in Sec. II provides one (very suc-

10—

-20-

-10

3
P0

a {GeU)

FIG. 3. S/D amplitude ratios for aq —+ sp. See Fig. 2 for
key.

a {GeV)

FIG. 4. The (s'2 ~ p7r)/(ps ~ war) amplitude ratio (calcu-
lated with Coulomb-plus-linear wave functions). See Fig. 2
for key.
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10

3
Po

a (GeV)

FIG. 5. The [ai -+ (ps')s]/(ag -+ ps') amplitude ratio (cal-
culated with Coulomb-plus-linear wave functions). See Fig. 2

for key.

all the widths.
The final two cases illustrate that it is possible to fit the

decays using the Po model with relativistic (case C) or
nonrelativistic (case D) phase space. Case C corresponds
to Coulomb plus linear wave functions with a narrow Bux
tube. The final state interactions have had their ranges
increased by a factor of = ~2 for each pion in the final
state (Weinstein and Isgur have used a procedure sim-
ilar to this in their study of the mm and KK systems
[25]; the idea is to compensate for the small pion radius.
For an alternative viewpoint see Ref. [11]).In case D, a
somewhat stronger msgr interaction (with a depth of 3.0
GeV; everything else as in case C) allows the nonrela-
tivistic phase space to work well. Finally, it should be
pointed out that the good fit to the amplitude ratios was

maintained in all (sPo) cases.
Thus, we are unable to pin down a best set of param-

eters for the Pp model; there are several combinations
of phase space, aux tube width, and FSI strengths which
fit the data with comparable accuracy.

cessful) method for enhancing pionic decay amplitudes;
however, it is of interest to check whether final state inter-
actions can also provide the required enhancements. To
this end, we have calculated the couplings necessary to
reproduce experimental widths for a range of situations.
The results are presented in Table II [24). Case A cor-
responds to the "standard" sPo model, with SHO wave
functions, no final state interactions, and no Bux tube.
It is apparent that the KI prescription gives the best re-
sults here. For comparison, case B shows the couplings in
the Sq model with no final state interactions, SHO wave
functions, and no Qux tube. Here the required couplings
are quite uniform except for ps (p ~ m s'). Without FSI's,
there is no single value of ps which correctly reproduces

IV. SUMMARY AND CONCLUSIONS

We have studied several meson decay amplitude ratios
in the Sq and Po models, using the quark Born for-
malism to calculate final state interactions between the
decay products. These ratios, in which relativistic uncer-
tainties cancel out almost completely, show a clear pref-
erence for the Po model; the Sq model cannot repro-
duce the experimental data without unreasonably strong
FSI's. This conclusion remains valid even when allowing
for wide variations in the strength of the FSI's. A mea-
surement of the P/F amplitude ratio in vr2 ~ mp would
further test this conclusion; we predict P/F = 1.6 + 0.2

TABLE II. Coupling constants (7z or ps) required to fit various decay widths.

Phase space aq Map Ãg MKp

mBmc m
mgmQ mg
EnEc/mg

0.37
1.94
0.71

Case A: Po model, SHO, No FSI's, No fiux tube
0.42 0.37 0.37 0.38
0.91 0.79 0.81 1.1
0.53 0.46 0.42 0.53

0.07
0.50
0.24

mgmg mg
mgmg mg
EsEc/m~

0.89
4.8
1.7

Case B: S~ model, SHO, No FSI's, No Bux tube
0.23 0.19 0.23 0.39
0.49 0.42 0.51 1.56
0.28 0.25 0.26 0.62

0.86
1.39
1.16

mgmg mg
mgmQ mg
EsEc/m~

2.8
15.4
5.5

Case C: Po model, C+L, wide FSI's, Narrow Bux tube
4.4 4.8 4.5 4.1
9.5 10.4 10.0 11.3
5.5 6.0 5.1 5.5

0.22
0.24
0.07

mgmg mg
mgmg mg
Egg Ec/mg

2.0
10.9
3.9

Case D: Po model, C+L, deep FSI's, Narrow Hux tube
4.4 4.8 4.5 3.9
9.5 10.4 10.0 10.2
5.5 6.0 5.1 4.9

0.33
0.06
0.24

ps has units of GeV
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using the Pp model.
In addition, we have examined the parameter depen-

dence of some individual decay amplitudes in the Pp
model. We found that there is no unique prescription for
dealing with the above-mentioned relativistic ambigui-
ties. That is, equally good results can be obtained using
any of several prescriptions for the decay phase space.

Further progress will probably require a more funda-
mental description of the hadronic states and their cou-
plings. A relativistic model which treats the decay and
final state processes on an equal footing, and accommo-

dates the special nature of the pion, would be extremely
useful.
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