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Model for qzqz systems, illustrated by an application to KK scattering
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Presented here is a lattice-gauge-theory —motivated four-body potential model for q q systems
which includes both the spin and Savor degrees of freedom, extending the formalism presented
already in the spin-independent situation. This allows an application to a realistic situation, which
is chosen to be KK scattering. It is seen that because of the gluonic eHects in this multiquark
system, the KK attraction resulting from the quark-exchange mechanism gets appreciably decreased
compared to that emerging through the naive two-body potential approach.

PACS number(s): 13.7S.Lb, 12.38.Lg, 12.39.Pn, 14.40.Aq

I. m TRODUCTIOX

With strong evidence in favor of quark confinement
both from experiment (failure to find free quarks) and
theory [1,2], we have some understanding of the quark-
quark interaction for large distances. Combining this
with the understanding of the short distance quark-quark
interaction obtained through perturbative /CD, difFer-
ent models of the quark-quark interaction have been used
such as the NIT bag model [3,4] and the constituent
quark potential model. In the constituent quark poten-
tial model the quark-antiquark interaction is represented
by a potential which is given by the one-gluon exchange
mechanism, but is modified so as to incorporate the con-
fining potential as the limit for large distances. More-
over, the current masses of the /CD Lagrangian are re-
placed by effective masses, termed conatituent maaaes,
which are fitted to experimentally known quantities. For
quarks of known (fitted) masses interacting through a
space-dependent potential, one can set up and solve a
Schrodinger equation for their dynamics. In this way the
constituent quark potential model explains in a consis-
tent and unified way most of the observed mesonic states
as quark-antiquark states with difFerent values of orbital
and radial quantiim numbers [5].

But that is not enough. A successful model of strong
interactions should be able to describe also possible sys-
tems having three or more quarks and/or antiquarks. It
is not clear yet how, if at all, the quark potential model
can be applied to multiquark systems. Perhaps the sim-
plest approach is to take the many-body Hamiltonian as
a so~ of Hamiltonians corresponding to all pairs of par-
ticles involved, the basic method used in [6—9]. But this
has many theoretical as well as phenomenological (such
as the van der Waals force problem [10]) Saws. Keeping
this in mind, a four body potenti-al model for a quark-
exchange mechanism in q2q2 systems was proposed in [11]
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in a spin-independent situation. This model takes into
account the efFects of the gluonic degrees of keedom in a
nontrivial way. Only for small distances does this agree
with the sum of two-body (F; Fs) potentials model. For
interquark distances greater than, roughly speaking, 0.5
fm it qualitatively agrees with the Sux tube model [12,13]
of the gluonic Beld.

In the present paper this model is extended to the real-
istic situation of spin and Savor dependence. These new
degrees of freedom are introduced in Sec. III, after a brief
review of the already published model of the gluonic Beld
in Sec. II. Then as a first application the model is ap-
plied to a physical meson-meson system, namely, KK, in
Sec. IV. The solution for the total wave function of the
system thus obtained gives us a condition for the exis-
tence of a bound state of the whole system, along with
numerical results for corresponding phase shifts. All this
is reported in Sec. V, followed by our conclusions in Sec.
VI.

II. THE MODEL OF THE GLUONIC FIELD

As shown in [12], there are three independent Sux tube
topologies for the gluonic field of the Nz ——Nz ——2 sys-
tem. Two of them [shown as (a) and (b) in Fig. 1] are
extensions of the usual ttvo-dimensional color basis [7]
used in the two-body model. The third state [shown as
(c) in Fig. 1] arises through a generalization of the three-
gluon-type mechanism in /CD. The gluonic field in this
state would be similar to that in a baryoninm (or in an in-
teracting baryon-antibaryon pair with a quark-antiquark
pair removed). The introduction of this state may be the
first (though not essential) step towards incorporation of
the gluonic efFects in q q systems. Thus needing a basis
containing at least three gluonic states for a good de-
scription of the corresponding gluonic field, a convenient
starting point for constructing a model for these sorts of
systems would be to write the two-body potential model
for them in a redundant color basis:
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1 4~,( ~x
finement, kinetic energy, and other (such as hyperfine)
parts. For the confinement term we take (as in [11])

V' = ) F, . F~V;~. , (2.2)

(a) (b)
with

v~ = Cr; +C. (2.3)

(c)

FIG. 1. Three difFerent top ologies of the diquark-
dia, ntiquark system.

This quadratic form of the two-body potential is used ba-
sically for computational convenience. It has been used
frequently in quark descriptions of NN scattering [14,15]
and also in pseudoscalar meson-meson scattering [16].
Similarly, for the kinetic energy part, the nonrelativis-
tic expression is used.

By simple calculations of color overlap factors, the
overlap matrix N in the above mentioned basis is ob-
tained as

I». = I11S124). I». = 11141»).

(2.1) (2.4)

I3). = Ii»Isa). .

These correspond to the three basic states in the Hux
tube model. The two-body potential model Hamiltonian
written in this redundant basis will have the usual con-

For the potential matrix, one has to calculate matrix el-
exnents of the F; Fi (or A A) operator. This can be
simplified by using the results of Appendix C of [7]. The
result is

(»+.;; l (-2(.,;+ 2)l )—
3 (V]3 + V24) S

—V13 V24 ' ~ +V14 + V23
—V) 4 —V23 —V12 —V34

V' (V14 + V23)

('2( --+"-.) l
+V/2 + V34

2

V24 Vl

(2.5)

symmetric
f 2(V12+ V34) l

+V13 + V24
1

+V14 + V23 )

The matrix element of the nonrelativistic kinetic energy
operator between any two color states is simply taken to
be proportional to their overlap: i.e.,

.(X'IXIX).= ) —— .(X'Ix).. (2.6)

More gluonic eKects in q q systems can be included
by multiplying the og-diagonal elements in the above ma-
trices (or even in the corresponding truncated 2 x 2 ma-
trices) by a space-dependent factor. This treatment of
the ofF-diagona1 elements of the two-body-model-based
matrices is motivated by the work presented in [17,1.8],
which show that in the Qux tube model the coupling of
the three gluonic states I1), I2), and I3) [correspond-
ing to the three-dimensional color basis ctefined in Eq.
(2.1)] decreases exponentially with interquark distances.

f = exp i

—k) r,
)

k = 6kb„ (2.7)

with k a numerical coefficient. This is the simplest cho1ce
fmm a computational point of view. An alternative
choice of f is suggested here to be

Moreover, we note that for large interquark distances
the space-dependence of the diagonal elements of the
K, V', and N matrices in both the two-body potential
and the flux tube model are similar, and use this form
for all distances, i.e., do not alter the diagonal elements
in the above matrices. For the space-dependent factor f
muhiplying the ofF-diagonal elements, the choice used in
[11]was
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f = exp( —b,EA), (2.8)

with E a numerical constant, and A the area bounded
by the four outer lines connecting the four particles 1, 2,
3, and4:

done in the present work, we have used the simpler s»m-
of-squares form [Eq. (2.7)].

The resulting expressions are used in this work as ma-
trix elements of the overlap, kinetic, and potential energy
operators. These are, respectively,

1 1

"*dy
I [»13+ (1 &)r42]

0 0
x [yr2g+ (1 —y)rg, ] I. (2.9) N(f) = (2.10)

For planar geometries this becomes what is proposed in
[19,20]. Both of these forms have been studied in [21—23],
which aim at extracting the gluon field overlap factor f
from a calculation using lattice Monte Carlo techniques.
This work is in progress and so far no definite conclusions
have been arrived at. For the dynamical calculations

&(f)x .x = N(f)x, x ) .— * N(f)x, x (2 11)
2m;~

( ( V12+V34
—

3 (V13 + V24) g V13 V24
—V14 —V23

(-2( ~+
2f +V14 + V25

—V12 —VM )

—
3 (V14 + V23)

(2(V14+ V») l2f +V12 + Vip

V24 —V13 (2.12)

symmetric

( 2(V12 + V34) l
+V13 + V24

+V14 + V23 )
+ 3Df(1 —f)

The basis now is actually Il)s, I2)s,rand I3)s,r instead
of ll), I2), and I3)„' the new subscript g refers to the
gluonic degree of freedom. Introduction of the additional
2Df(1 —f) term even in a diagonal (3,3) element of the
proposed potential matrix [Eq. (2.12)] guarantees that
our gluonic basis does not reduce for vanishing distances
to a redundant basis. Actually the third base state is D =
1.5 GeV higher than the other two for small distances.
See [11][from Eq. (4.18) to the end of Sec. IV] for details.

III. THE SPIN AND FLAVOR DEPENDENCE

For the spin-dependent part of the basis we use states
arising through spin of the quarks only, and, being in-
terested in the ground state of the J = 0+ sector of
the system, we focus on spin states with the total spin of
the system as zero. In each of the three channels corre-
sponding to the three gluonic states Il)~s, I2)~s, and I3)~s,
the four particles can be grouped into two mesonic sub-
clusters. Each of these mesonic clusters may have a spin
of zero or 1 and hence the q2q2 system may be composed
of either two spin singlets or two triplets, meaning that
there may be two independent spin channels for each of
the three gluonic channels above. Thus, there are aix
independent states of the system in hand. The corre-

sponding six spin states are written in the notation of
Appendix D of [7] (see Appendix A of the present paper
for details) as follows.

In the first channel (with the gluonic part of the base
states for both spin configurations as Il)s),

I1S), = IP13P24), and I1T), = IV13 V24), . (3.1)

In the second channel,

12~). = IP14P23). »d I2T). = IV14 V2~)' (3 2)

In the third channel,

I») = l~»~34). »d I3T). = I&». A34) ' (33)

In this notation 8;~ and A;~ stand for the scalar and
axial vector spin wave functions, respectively, and the
pseudoscalar and vector spin wave functions P;~ and V;~
are defined in terms of their linear combinations.

For writing down the spin-dependent part of the
Hamiltonian we proceed as in the last section: first con-
sider the Hamiltonian in the two-body potential model
limit and then multiply the ofF-diagonal elements by the
space-dependent function f The spin-depen. dent part of
the Hamiltonian would be composed of the terms cor-
responding to hyperfine (contact as well as tensor) and
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spin-orbit iateractions, but because of our constraint to
the 8-wave ground states, only the hyper6ne contact in-
teraction has to be considered. For the hyperfine term
in the two-body potential model limit we take the ex-
pression (used, with some modiScations, in [7]) given by
one-gluon exchange and summed over aU the pairs:

g(«lV, ,l«) f —f(dd[V; l«)g = g(ddlV, ldd)g = ai,

x(«lV;;l»&f = f(dd[Vj lss)f v ~&9 ~

and

y(ss[V, lss)y = a,

in the corresponding flavor spaces. The mass {or flavor)
dependence shown here is in qualitative agreement with
that of the aiiiiihilation term H~ in [5]. In the above,
ai and a, are phenomenological parameters to be fitted
below to the masses and Bavor wave functions of x, g,
and g mesons.

We now write down the Hamiltonian (for s waves only)
of the q q systems, in a six-dimensional gluonic-spia ba-
sis [see Eqs. (3.1) —(3.3)], resulting from our model:

H = K(f)+V' (f)+V"" (f)+V +) m;. (36)
i=i

Apart &om a constant spia-overlap factor appearing in
Eq. (Al), the X', X element of K(f) is given by Eq.
(2.11) and V'r(f) is [compare with Eq. (2.2)]

V"(f) =).F' F~(f)~*& (3.7)

with v,~ given by Eq. (2.3); the F; . F~(f) operator is
de6ned, in our three-dimensional gluonic basis, to be the
sa~e as the F;-F~ operator resulting through the pertur-
bative approach, except for multiplication of oK-diagonal

Sam'~V'»=) V,.",.»=-)-F; F '
h (;.) S; S, .

i(j
(3.4)

The numerical values of a',~ will be taken in this work
as varying with the sum of the masses of the particles i
and j; thus each of them will eventually be replaced by
a, , at', or a", , L standing for a quark(antiquark) of light
mass and s for a strange one.

In the present paper the Bavor dependence is mostly
taken to be trivial, just giving rise to isospin-conserving
factors. Actually, Bavor changing is possible in any chan-
nel through pair a~~ihilation of quarks and antiquarks of
the same Savor, but we incorporate this only in the diago-
nal term corresponding to the pseudoscalar-pseudoscalar
sector of the second gluonic channel {see the next sec-
tion). Here the pair aiiiiihilation and creation efFects are
represented by a Hamiltonian term V operating in the
flavor space only. It is a sum of terms V;, one for ev-
ery pair i and j of the same-Bavor particles. The matrix
elements of each V; are de6ned to be

elements by the f factor and addition. of the &Df(1 —f )
term in its (3,3) element [i.e., the modi6cations changing
Eq. (2.5) to Eq. (2.12)]. V"»(f) is [compare with Eq.
(34)]

V"" (f) = —) F; F (f) ' b (;.) S; S., (3.8)
i(j

and the annihilation part V is a sum of terms given by
Eq. (3.5) above.

IV. KJC SCATTEMNG

V = V~4 + V23, (4.1)

with Vi4 and Vz& given by Eq. (3.5). A look at Eq.
(3.2) should now sufFice to tell why the 2S channel is sin-
gled out for the incorporation of annihilation effects; here
these eKects are supposed to be responsible for the mass
difFerence between (pseudoscalar) isoscalar and isovector
mesons, i.e., q, q', and x. The annihilation effects are
negligible in the vector-vector sector of the second chan-
nel (2T channel in our terminology), because of the small
difference in the masses of the spin-1 isoscalar and isovec-
tor mesons ~ and p.

With this labeling, the pair (1,4) is composed of a
light quark and a light antiquark, and (2, 3) of strange
ones. Their mass ratio, equal to that of the strange quark
mass m, to the up (or down) quark mass m, is denoted
by 8 in this paper. Antisymmetrization of the total wave
function is not necessary. in the present case since we do
not have any two identical fermions.

So far no quark position dependence of the wave func-
tion has been talked about because of our adiabatic
assumption (implicit in any potential model) that the
slower quark motion can be studied separately under the
inBuence of a potential simulating the "faster" motion of
the gluonic Geld. Having written down a potential thus
arising [see Eq. (3.6)], we can in principle write down and
solve a Schrodinger equation for KK systems. But keep-
ing in mind the complexity of the system (having nine
degrees of freedom belonging to three independent vec-
tors connecting four particles), we use an approxnnate
method familiar in nuclear physics [24], and used now
in particle physics as well [25]: the "resonating group
method". This corresponds to specifying parts of the
quark position-dependent wave function before solving
for the rest.

In the absence of aiiiiihilation efFects, we can write
down the total state vector of the whole system as a
sn~ of six terms, each having the form of a qusrk posi-
tion part, referred to as the "quark wave function" in
the following, multiplied by a gluonic-spin base state.

With quark contents of the q2q2 system such as that of
KK, the Savor wave function can be written generally as
lais, l standing for u or d (actual combinations depending
on isospin). We label these four particles 1, 3, 4, and 2,
respectively. In this way the two same-Bavor pairs in the
KK systems are 14 and 23. Thus we will have
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This quark wave function is a function of four vectors
ri, r2, rm, and r4. These can be replaced by their combi-
nations, with one of them as the center-of-mass coordi-
nate of the whole system R and three others which are
taken here to be AHerent in difFerent channels. These are
the following.

In the first channel (with the gluonic part of the wave
function as ll)s),

with

and

$g, (yg, ) = exp[ y—s/4dsi]
(2z.de, )

i

(4.6)

&y + s&3 —s&2 —Fg
Rg ——

1+s
yi ——ri —r3, and gi ——r2 —r4.

In the second channel,

&y + &g —&g —F3
Rg ——

2 )

y2 ——ri —rg, and s2 ——r2 —rg.

In the third channel,

(4.2)

(4.3)

4(») =, 3«exP[-s's/4d's. ].
(2zdss3) f

Neglecting a~~ihilation, the mesons represented by

(i, 1,'z, Q, and (3 have one light and one strange parti-
cle. On the other hand, that denoted by (3 has both
particles as light ones (up or down) and $3 has two heav-

ier particles. It follows thus &om the properties of the
solutions of a three-dimensional (3D) harmonic oscillator
that diaz, diaz, dsi, and d33 have a particular value, say, d',

d2i has a difFerent one d, and F2 difFers &om all these,
having a value denoted by d". Quantitatively

R3 ——
r& + sr2 —sr; —r4

1+s
y3 = ry —rz, and ss ——rs —r4. (4 4)

d' m(m, +m) 3+1
d2 2mm, 2s

Rq, Rq, and R3 are shown in Fig. 1. These are actually
the vectors connecting the centers of masses of respec-
tive mesonic clusters. Other vectors in the above three
equations connect particles inside the clusters.

In this paper the quark wave function in any channel
is written as a product of two factors, one a function
of Rg, and the other of yp and s~ only, for k = 1,2 or
3. The former is denoted by gal(Rs), with I telling the
spin state (singlet-singlet or triplet-triplet), and the lat-
ter by (s(ys)gs(s3, ). The spatial dependence of these on

ys and ss is taken to be Gaussian in consistency with
the choice of the quadratic form of the interquark poten-
tial in Eq. (2.3), but the ysi'3 are treated as variational
functions to be determined by solving the approximate
coupled Schrodinger equations.

With these forms of the quark wave functions, the total
state vector of the whole q q system is written as

l~(~i ~3 ~3 ~4 ~)& = ) II &gl»&. l»f4. (R.)

xXI.I(Rs)fa(ys)(a(si ), (4 5)

(4.7)

d" 2m
d2 2m,

It is to be noted that here we are neglecting the spin
dependence of the size of a cluster. For the absolute
magnitudes of the sizes, the equation dz = ~SR3/2 is
used relating the radius of a meson composed of the light
mesons to the rms charge radius R„=0.6 fm of a nu-

cleon whose qqq wave function is generated by the same
quadratic con6ning potential.

Where the a~~ihilation processes are incorporated,
things are a bit different: the Savor wave function gets
mixed with the quark position-dependent part. This
follows because the size of a mesonic cluster depends
upon the masses of the particles it contains. Thus in
the (pseudoscalar-pseudoscalar) 28 channel, where the
pairs (2, 3) and (1,4) become actually mixtures of sa,
uS, and dd resulting in g, g', or x, we have to use instead
of (3 and (3 their corresponding mixtures (termed quark-
Havor wave functions in the following). Depending upon
the physical mesons taking part in the scattering process,
these are

'
l&$4&fql~)3)fq
low)fql&33)fq

l2~&fq = & l&&&)fql hm)fq
l~i4&f qln33&fq
l~w&fq[~3~&fq

for g'g' mesons,
or lp )fq l&33)fq for gg' mesons,

for gg mesons,
for my' mesons,
for my mesons,

(4.8)
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with

dd+ uu&f
~7/lj )fq

——cos 9 Q (r;j) —sljl 8~88)f(2 (r;, ),
2

jdd + uu&f
~'glj&fq = »ne (2(r;j) + cos 8~88) f(2(r; )

(4.9)

1&(')=, „, p[—,';/4d'. .1,

where d2i ——d, d22 ——d", and 8 (= 34.7') is related to the
maiming angle 8~ = —20 of the Savor singlet and octet
resulting in g and g' (see pp. 111.68 and II1.69 of [26]).

Now we ferrite the Schrodinger equation for the system
in hand:

l~j4&fq = l~&fh(rj~) = l~&f&2(»). (4.1O) (H —&.)I@(e,e, es, e4, a)& = o (4.12)

Here

(2(r;, ) = 2«exp[ —r,', /4d»]
(2j(d22, )

(4.11)

where H is the total Ha~~ltonian and E is the total
center-of-mass energy of the qsq2 system. The above
equation also means that the overlap of (H —E,)~4'& with
an arbitrary variation [b4') of the state vector

~
ill) van-

ishes. In ~6%'& we consider, as in resonating group method
calculations, only the variations in Xsf [see Eq. (4.5)].
Thus are write

(~e(8-8.)e) = &.f ~'R.&'Ra&'ra~"ae. (R )»»(R~)4b')(~(»)
kIEJ
x f (k[ {kl[ &I( )H —&.[t& I~ J&.lt&f4. (R )&lJ(Rl)6(yl)«('l) (4.i3)

To do these four space integrations, any of the three sets
of vectors defined by Eqs. (4.2), (4.3), and (4.4) can be
used. The choice Rs, ys, and ss has, however, a clear
advantage. The arbitrary variations hgj, l(Rs)'s for dif-
ferent (but continuous) values of Rs are linearly indepen-
dent and hence their coefficients in Eq. (4.13) should be
zero. With the trivial R integration performed to give
a finite result using, say, box normalization, this leads to

(XIV (f)IX'& =).F' F'(f) (V'j)x. ,x.
i&j

(4.is)

By Eq. (3.6), H in the above is K(f) + V"(f) + V +
i m;, with V~(f) = V' (f) + V""~(f) U»ng Eqs

(3.7) and (3.6) for V'l(f) and V" r(jf), respectively, the
jnatrix elements of V"(f) in our spin basis are given by

f&*y~&"a4(.ra)4(~a)
EJ

Xf (k[,(kI[ 8(k)H —E,)l&8[/J&, (l&f

arith

Smo. ',~
(V")X.,X. = ' .(XIX'&. — '

& (r')
g

x.(x[s, sj[x'&.. (4.16)

xXlJ(Rl)(l(yj)(j(sl) = O, (4 14)

for k, L=l, 2, or 3 and I,J = 8 or T (except where anni-
hilation is considered).

In this form, ,(x[V"~x'), is very sijjjiiar to V'r ap-
pearing in Eq. (2.2). So its matrix elements between the
gluonic states are the same as those of V'f except for the
new spin-dependent coefficients Vj replacing j);j. Thus
V"(f) is [compare with Eq. (2.12)]

( &»+Vs' )
(Vis+ V24)i i 9

—Vjs —V24

( —Vi4 —V28

2 (V14 + V25)2,2

symmetric

( —2(VjS+ V24) )+&-+ V3
—Vi2 —V34 ), ,

t'2(Vj4+ V2S) )
+&i.2 + &34

( -V24 —VjS ), ,
( 2(Vj2 + V34) l

+Vip + V24

I, +Vi4+ V22 ) „
+2IDf(1 —f)

(4.17)
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(Vij)ss, ls (Vij)les, IT ~~

( (Vij )kT, IS (Vij )sT,IT )
(4.18)

for I(;, 1=1, 2, or 3. (Vj)sl Ig is given through Eq. (4.16)

in our six-dimensional gluonic-spin basis ~1)s ~1S)„
11&sl»). ". 13&sl3T')'

As written above, V~(f) has only rune elements, rather
than 36. Actually, every term in the above is meant to
stand for a 2 x 2 matrix defined by

and I multiplying the D term in the (3,3) element of
Eq. (4.17) is a 2 x 2 identity matrix. To determine the
overlap of any two spin states and the corresponding ma-
trix element of 8; - S~, the definitions given through Eqs.
(3.1), (3.2), and (3.3) have to be used. The results thus
obtained are reported in Appendix A.

As far as the spin dependence is concerned, the other
terms in the Ha~i&tonian are»~it operators. Using the
results &om Sec. II for the matrix elements between the
gluonic states, we write Eq. (4.14) as

& f'd Rr &u,u(Rr Rr)+'Cr, u(Ra Rr)+~r'r", rr( " ')
lJ

8, —).mi Al I,IJ(+Is Rl) XlJ(RI)
i=1

(4.19)

for l = 1, 2, and 3 along with J = S and T. This gives
six equations, for the same three values of k and two of
I. Here K@IIJ VI', l lJ VI,I IJ and JVii, u, are defined by

d RIKsr, lg(Rs, R', )XIj(RI)

d yad za a ya a za KIItJyiJ Rt t y«zt,
(4.20)

d RI'VI', I I~(Rs) RI)XIg(RI)

"Ftd zI a 7a a za +as, tJX~J R

for the diagonal (k = I) and ofF-diagonal (k g &) terms.
ln the former case, XIg(RI) is linearly independent of
the integration variables ya and za and thus was simply
taken out of the integrations. In the case of off-'diagonal

terms, the integration variables (ys and zs) were replaced
by their equivalent combinations with one identical to Rt,
and the other one independent of it. Integrating out the
vector independent of Rt and expressing the remaining
one on the RHS in terms of Ra and Rl, we got results

for Ksr, lg, VI',I I&, Vl, l I&, and JVgl Ig after comparing with
the LHS of the corresponding equation.

Where annihilation is considered, we have to use the
combined quark and aavor wave functions ~28& jv instead
of Q(2. Thus in the 28 channel diagonal term we have,
in place of the k = l = 2 and I = J = S term in Eq.
(4.14),

(4.21) d r~4d r2s jq(28~, (28~s(2~K+ V' + V""

( 4

8, —) m; ]2&II[28&,)28& fqX2S(R2)

d yad za a ya a za VaI tJ&tJ Rl l gt l zl + d r14d r23 fq 2S V 2S fq+2& R2 (4.24)

(4.22)

d yad za a yt a za NaI tJ+tJ Rt l yt

(4.23)

with KaI, tJ&+ar, tJ, and V&I,tJ as the matrix elements of
the K(f), V' (f), and V ~(f). Ngl Ig is the overlap of
the spin-gluonic states appearing in Eq. (4.14), calcu-
lated using the results mentioned in Sec. II along with
those in Appendix A for the spin overlap factor, (kI(/ J&,.

The spatial integrations appearing on the right-hand
side (RHS) of Eqs. (4.20) —(4.23) were done &W'erently

As Eq. (4.8) shows, the form of ~28) jv depends upon the
physical content of the 2S channel. This would result
in different expressions for each of K2s,2s, V2s 2s, V"s
and JV2s 2s for difFerent pairs of mesons in the channel.
In the following calculations we restrict ourselves to just
some lower channels: gg in the isoscalar, plus gx and
g'vr in the isovector sector. This is done because of our
special interest in the behavior of the KK system near
the threshold (see the next section).

The results thus obtained for the kernels appearing in
Eq. (4.19) are reported in Appendix B. Substitution of
these in Eq. (4.19) would give six coupled equations.
However, we neglect all connections to the third gluonic
chan~el. This is justified to some extent by the absence
of any significant eH'ect of removing the third channel in
the spinless case (see Fig. 4 of [llj), meaning that the
gluonic eKects represented by the third channel are small
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m = 277 Mev,
o, ', = 1.583,

a~ ——272 MeV,

s = 1.955, C = 456 MeV,

a,' = 1.561, o.,"= 1.501,
and a, = 67.4 MeV. (4.25)

compared with those incorporated through multiplying
the remaining off-diagonal elements (i.e., 1,2, and 2,1)
by the space-dependent f factor. This neglect leaves us
with just four equations [two of these are written below
as Eqs. (4.27) and (4.28)]. The ofF-diagonal terms in
these equations tend to zero for large intercluster dis-
tances. Thus for consistency with the observed meson
spectroscopy we require the constant term in each of the
diagonal parts to be equal to the sum of masses of the
corresponding mesons. Fitting in this way to the masses
of K, q, g', x, K', u (or p), and P mesons, we get the fol-
lowing values of the above mentioned &ee parameters:

For C [see Eq. (2.3)], the equality of kinetic and potential
energies of a harmonic oscillator is used, giving

1 3c=-
4d2 4 2 16md4

= —270 MeV/fm . (4.26)

pfter this parameter fit (except for k to be discussed in
the next section), we write down boo of the four coupled
equations mentioned above. The remaining two equa-
tions would involve vector mesons. These are not incor-
porated beyond this stage because of our above men-

tioned neglect of channels opening at energies signifi-

cantly higher than the KK threshold:

1
M~ + M~ — V'R, —E, yeas(Rg)

2I KE

+eP d R23 —]q„R', +q eRe+ qee)+C]Re) exp] —eeR', —eeR]] —G]Re Re]H IXee]Re) = »
2m 6

(4.27)

and

M. + M, — v„, —s. y2s(R2)
1 2

2pab

+ep d R1 — Q21R1 + 922R2 + g2p + C R1 exp e2R2 e1R1 G R1& R2 0 Xls R1
W

(4.28)

for KK ~ ab, where a and b are the two mesons in the second channel (gg, 'rl7r, or ]7'~). Here

g(R~) = —' (b~R~ + bo) —~ [E, + s C —2m(s + 1)]

G(Rq, R2) = lqoexp —(eq + e~ —lqq)R& —(e2 + lq2)R2] n", exp (lqsRq R2) + n", exp (—lqsRq R2)]

+l2o exp [
—(eq + e~ + l2q)R~ —e2R2 n", exp (l22R~) + sn,"exp (—l22R&)

+iso exp —(ez + eI + l&z)R& —(ez + l&2)R2 n", exp (l33R1 ' R2) + n exp ( 133R1 ' R2) e

H=—1 8m (2rc) si'

6 3m2s (2vrd2)s~2

(4.29)

(4.3O)

(4.31)

It should be noted that in the coefBcients of V'~ and V'~,
the reduced masses of the corresponding mesons now ap-
pear. This is done so as to ensure that the terms involving
VR or V'~, give the correct kinetic energy of the rela-
tive motion of the interacting physical mesons. Other
symbols appearing in the above equations are defined in
Appendix B at appropriate places.

The kernels in the oK-diagonal parts in the above cou-
pled equations contain nonseparable parts exp(lqsRq .

R2) . . exp(l33Rq R2). The presence of these "nonsep-
arable potentials" makes the solution of these equations
rather involved. To avoid that complication, we can solve

our problem after replacing these terms by their trun-
cated expansions. This would leave us with an inexact
but manageable form of the equations. With that strat-
egy in mind, the above equations were solved first for
the case of no hyperfine interaction. by setting H = 0 in
the above two coupled equations. The method used for
that is explained below for the full interaction case. The
resulting phase shifts for this no hyperfine case (some of
these are reported in the next section) are so small that
it would be a good approximation to take the variational
wave functions yzs(R&) and y2s(R2) in the absence of
hyperfine interaction as the wave functions correspond-
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ing to a freely propagating plane wave. Using, initially,
this approximation for mls (Rl) and y2s(R2) even in the
presence of hyperfine interaction, we looked for a reason-
able separable approximation to our nonseparable terms.
As far as exp(l13R1. R2) and exp( —l13R1.R2) are con-

I

cerned, it was seen to be a very good approximation to
just replace them with the exponential expansion up to
the second power in l&3R& -R2. But the terms multiplying
l30 are not so easy to manage. For them we used

t exp -(e, +.', +&31)R2, -(e2+l32)R2. (~"exp(-'33R1 R2)+~ '"'('" '

2 2
p( [ T (e +e' +t31+e2+l32 —&33)(R1+R2)]—[—Tl(el+el+ 31+ 2+ 32+43)( 1+ 2)1}

(4.32)

in Eq. (4.27), nl and Tl being two new (energy-
dependent) parameters. In Eq. (4.28) two similar pa-
rameters, denoted by n2 and ~2, were used.

To check how good this approximation is, both sides
of Eq. (4.32), multiplied by R2y23(R2) and integrated
over R2, were plotted as functions of Rq. This showed
that by adjusting nq and 7q even the worst discrepancy
could be reduced to less than 10% of the total hyperfine
coupling for that particular value of Rq and the on-shell
momentnfll p, (2). But that adjustment was done with a
rather poor (i.e., plane wave) approximation for g2s(R2).
Equation (4.28) was treated similarly. So when, after cal-
culating the T and S scattering matrices, the results were
checked for unitarity of the S matrix and symmetry of
the T matrix (required by "reciprocity" of inelastic scat-
tering; see, for example, p. 528 of [27]), the discrepancy
was for some cases as bad as 30%. This means that the
above approximation needs to be improved, for example,
by iterating it many times, before meaningful results for
phase shifts are obtained. This improvement remains to
be made, though this problem does not afFect our main
results. This is because this readjusting of the values of
nl f n2 Tl f and 72 [with improved functional dependences

I

of ply(R1) and y2s(R2)] is not needed for the range
of energy where our immediate interest lies (i.e., below
the KK threshold in the first channel). This follows be-
cause the momentuxn space solutions [see Eqs. (4.33)
and (4.34) below] of the above coupled equations for that
range of energy are of the form

1
y(p) = — x const.

Ap

Changing values of nq, wq, n2, and v2 in that situation
would just acct the constant coefficients of & (, and1(pl j

), leaving the momentum dependence of the solu-&.(p. ) ~

tions gag and y2g unchanged.
With the above replacement the integrands appearing

in Eqs. (4.27) and (4.28) are products of two factors,
each of them a function of Rq or R2. This means that
in this form the two coupled equations can be solved
exactly, using the method demonstrated in Appendix B
of [ll]. So we first wrote Eqs. (4.27) and (4.28), in
the approximate form [see Eq. (4.32)], in momentum
space. For incoming waves in the first channel, the formal
momentum space solution of these equations would be

Xls(pl) =
2 1

—
& Ql A2(e2) + Q2 B2(e2) + Q3 A2(e2+l12) + Q4 B2(e2+ l12)

b(pl —p. (1)) 1 (1) (~) (~) (~)
J c 1 Pl

+Qs A2(Tlel + el + 41 + e2 + 132 —l33) +Qs A2(Tlel + el + l31 + e2 + l32 + l33)
(~) I (~) I

g2s(p2) = —
& Ql Al(el) + Q2 Bl(el) + Q3 Al(el + el + t21 —l22) + Q4 Al(el + el + l21+ l22)

1 (2) (2) (2) I (2) I

&2 P2

+Qs Al(el + el —ill) + Qs Bl(el + el —ill) + Qr Al(T2el + el + l31+ e2 + l32 l33)
(2) (2) I (2)

+Qs Al(T2el + el + lsl + e2 + l32 + l33)
(2) I

(4.33)

(4.34)

The new symbols appearing in these equations are defined in Appendix C.
It is to be noted that in the above equations pz and p2 have been replaced everywhere by pz

and p2, respectively, utilizing the spherical symmetry of our problem. Multiplying Eq. (4.33) by
plF (pl, el), plF& (pl, el), plF (pl, el + el + l21 —l22), plF (pl, el + el + l21 + l22), plF (pl, el + el —ill),
prPs(pi, ei+ei —frr), prp pi, rsei+ei+lm+ei+lm —tss), nnd prF pi, ries+sr+fir+sr+les+iso) in

2 I 2 I

turn and integrating with respect to pl gives us eight equations (F (p1, 2:) and F3(p1, 2:) are the Fourier trans-
forms of exp [—2:Rl and Rl exp [—2:R21j, respectively). Similarly, multiplying Eq. (4.34) by the Fourier trans-
forms psp (ps, es), pspi(ps, ei), prp (ps, co+lie), prpi(pi, co+ile), psp (ps, riei+e', +fs, +sr+iso —In),

Iand p2+o
~
p2, ~&e~+ e, + l3$+ ~2+ l32+ l33 and integrating with respect to p2 gives us six more equations. These

14 equations can be written as a matrix equation
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QUi = U2 (4.35)

with

U, =4~

F- (p.(1),")
F~ (p.(1) ei)

F (p (1) ei + ei + l2i —l22)
F (p.(1), , + ', +l„+l„)

F (p, (1),ei + e', —lii)
Fs (p.(1),ei + e', —lii)

Fo(p.(1),hei + ei + l3i + e2 + l32 —l33)
F (p, (l), hei + ei + l3] + e2 + l32 + l33)

0
0
0
0
0
0

(4.36)

Q a 14 x 14 matrix containing many integrals, and Ui a vector containing

+2(e2) +2(e2) ~ ~ +2(riel + ei + l31 + e2 + l32 + l33)

and

+l(el) Bi(el) . ~1(r2el + ei + l31 + e2 + l32 + l33)

as its elements. Inverting the matrix Q gives these 14 elements of the Ui vector. With these values in hand, all the
quantities in the expressions for yis(pi) and y2s(p2) are known. So these can now simply be obtained by making in
Eqs. (4.33) and (4.34) the usual replacement of pi and p2 by their on-shell values p, (l) and p, (2), defined by Eqs.
(C9) and (C10).

From Eqs. (4.33) and (4.34) the two T matrix elements Ti 1 and T2 1 can be read oK as (apart &om a constant)
coeKcients of the nonrelativistic Green operators —

& ~ )
and —

& ( &. These are reported in Appendix D. Similarly,&1(P1) &i(p~) '

for incoming waves in channel 2, the use of U~ as

0
0
0

0
0
0
0

F-(p.(2) ")
F. (p. (2),")

F (p, (2), e2 + li2)
F, (p.(2)...+ li. )

F p, (2), 7-1ei + ei + l31 + e2 + l32 —l33

( F p (2), riei + ei + l31 + e2 + l32 + 33 )

(4.37)

gives the two T matrix elements Tq q and Tq q also re-
ported in Appendix D.

For the total energy in the center-of-mass frame above
the higher threshold, both of the channels would be open.
Thus for incoming waves in either of them, there would

be a loss of Hux in the incoming channel. Representing
this inelasticity by a factor eA, for k = 1 or 2, we can
write

~ 2ih1
Spy = 1 —2LTyy = f]c

2ibgS» ——1 —2xT~ ~ ——~~e

(4.38)

(4.39)

For elastic scattering, ~q or ~q would be unity for incom-

ing waves in channel 1 or 2, respectively.
Below the lower threshold the situation is qualitatively

diferent as, with both p, (l) and p, (2) being imaginary,
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TABLE I. Increases in the couplings necessary to get binding. BE denotes binding energy.

0
1/6

Increase to
get binding

1.926
3.00
6.43

Hyperfine coupling
BE in the
isovector
channel
(MeV)

(1
(1
&1

BE in the
isoscalar
channel
(MeV)

35
53
87

Increase
in the total
coupling to
get binding

2.715
4.26
8.89

Increase
without

hyperfine to
get binding

3.06
6.57

19.13

b(pi —p (1)) and b(p2 —p, (2)) do not contribute to the
integration over all the real values of pi and p2 performed
to arrive at Eq. (4.35). Thus all the terms collected in
the vector U2 would be absent, leaving us instead with

QUg ——0. (4.40)

A nontrivial solution of this equation for the elements of
the vector Ui requires

detQ=0, (4.41)

giving us a condition for the existence of a bound state
of the whole system.

V. RESULTS

The formalism. presented in this paper can describe a
member of meson-meson systems. Amongst these sys-
terns we have chosen KK, keeping in mind that it has
been investigated by other groups using difFerent models
for the quark-quark interaction. An important issue is
whether the whole KK system has a bound state just be-
low the KK threshold or not. According to our method,
this depends upon whether or not Eq. (4.41) is satisfied.
The Q matrix there is actually a complicated function
of the parameters of the formalism and the total energy
of the whole system. These parameters are fitted above,
except k [see Eq. (2.7)] which is the parameter of our
model of the gluonic efFects. Our numerical calculations
were done for three values of k in turn. The value k = 0
corresponds to a two-body potential model Hamiltonian.
On the other hand, k = 1/2 fm is emerging from the
lattice gauge theory calculations [22] for rectangular con-
figurations of quark positions. For other configurations,

indications [23] are that the spatial decrease of gluonic
topologies overlap may be slower, and thus we have also
used an intermediate value (k = 1/6 fm ). Which of
these, if any, would simulate the "experimental" (lattice-
gauge-theory-based) behavior of the gluonic overlap is
yet to be seen.

Our numerical calculations showed that, for any value
of k, the above condition for the existence of a bound
state [see Eq. (4.41)] is not satisfied for any value of en-

ergy below the KK threshold. This is the situation in
the isoscalar as well as in the isovector sector, whereas in
the latter case all connections to the mg channel are ne-
glected as those would not afFect the answer to the main
question being discussed here. On the other hand, using
a closely related model Weinstein and Isgur [7] get KK
bound states in both the isoscalar and the isovector sec-
tors, and conclude that the two scalar meson resonances
fo(975) and ao(980) can be explained as loosely bound
KK states. Their model corresponds, in some approxi-
mation (see the first paragraph of the next section), to
ours in the limit k = 0. Therefore it is interesting to see
if, in the corresponding limit, we can get their results by
varying our parameters. Our calculations showed that
for k = 0 we need to multiply our total couplings of the
two channels by a factor of 2.715 before we can get bound
states in both the isoscalar and isovector sectors. Alter-
natively, we can get these bound states by multiplying
only the hyper6ne couplings by a factor of 1.926. We get
bound states without hyperfine interaction as well, but
for that an increase by a factor of 3.06 in the remaining
couplings is needed. This is one of the indications in our
work that the hyper6ne coupling is the main interaction
arising through quark exchange, and that the hyperfine
and other couplings have opposite signs.

Our rnodi6cation to the two-body potential model pro-

TABLE II. Isovector phase shifts.

E,
(total c.m. energy)

(MeV)

k
(fm )

Full coupling

(deg)

Without hyperfine
b2

(deg) (deg)
b2

(deg)

1042.0

1142.0

0
1/6
1/2
0

1/6
1/2

91.49
17.10
1.96

91.74
30.84
4.15

0.719
0.972
1.00

155.94
179.46

1.25

3.05
0.59
0.06
3.94
0.83
0.10

1.00
1.00
1.00

1.35
0.27
0.03
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TABLE III. Isoscalar phase shifts.

(total c.m. energy)
(MeV)

k
(fm )

Full coupling
bI

(deg)

without hyperfine
b2 bI

(«g) («g)
b2

(deg)

1042.0

1142.0

1/6
1/2
0

1/6
1/2

125.92
50.39
4.18

112.10
86.34
9.28

0.804
0.821
0.998

142.78
151.52

3.83

6.56
1.18
0.12
9.26
1.86
0.21

1.00
1.00
1.00

4.38
0.90
0.10

posed in this paper (equivalent to using nonzero values of

k) implies a decrease in the KK coupling. That means

that we need to increase the couplings even more so as to
get binding. The factors so needed for the different values

of k are reported in Table I, along with the corresponding
energy values for the resulting binding.

In addition to these main results, we report below for
completeness (in Tables II and III) the KK elastic phase
shifts for the three values of k, for the center-of-mass en-

ergy 50 MeV above the threshold. Moreover, we mention

some values of inelastic phase shifts for incoming waves

in KK and in the second channel (i.e. , gg in the isoscalar
and sq' in the isovector one), along with all these phase
shifts in the absence of the hyperfine interaction (without
any increase in the remaining coupling). The full interac-
tion phase shifts reported here are for an interaction with
the hyperfine part increased by the above mentioned fac-
tor of 1.926. %'ith this increase we get bound states of
the whole KK system for k = 0 in both the isoscalar and
the isovector sectors, and what is explored here is just the
effect of our proposed modification to the potential. The
numerical procedure to get these phase shifts was based
on Eqs. (4.38) and (4.39). Each of them is a complex
equation and hence can be solved for the two quantities
eg (the inelasticity factor) and bg (the phase shift), with
k = 1 or 2, for each value of energy.

However, it must be emphasized that, because of the
various approximations which we have used, it would be
improper to take these phase shift values as the precise
results of our model. One of the indications of this inac-
curacy is the violation of unitarity resulting kom our sep-
arable approximation to the actual nonseparable terms in
the coupled equations (4.27) and (4.28). As mentioned in
the paragraph following Eq. (4.32), this approximation
badly affects our results for the phase shifts, although not
our main conclusions, i.e., those regarding KK binding.
For the elastic region this unitarity violation manifests it-
self in the reported (see Tables II and III) deviation from
unity of the inelasticity factor ~q. Keeping this in mind,
the phase shifts reported here are just meant to demon-
strate further the appreciable weakening of the interac-
tion because of the gluonic effects, but the only quanti-
tatively significant results of our model for this decrease
are those reported in Table I.

VI. CONCLUSIONS

In this paper a lattice-gauge-theory —motivated formal-
ism has been developed to deal with meson-meson sys-

tems with quark-exchange dynamics and applied, as a
first application to a realistic case, to KK systems. Here
we had to increase our resulting coupling by some nu-
merical factor before we could get a bound state of the
whole system, even in the two-body potential limit. The
variational calculations based on the two-body potential
reported in [7] claim to get bound states of the whole
KK system, concluding that the two scalar meson reso-
nances fo(975) and ao(980) can be explained as loosely
bound KK states in the isoscalar and the isovector sec-
tors, respectively. Our detailed model of meson-meson
dynamics, even in the two-body potential model limit,
is different to theirs, mainly because of our restricted
(i.e. , only in the 2S diagonal term) incorporation of the
annihilation effects. This neglect of the annihilation ef-
fects may have appreciably decreased the KK binding
arising through our model. This is expected because
the quark-antiquark annihilation, incorporating the pro-
cess KK ~ vrx, was [28] a major contribution towards
the KK binding reported in [7]. Moreover, we might
be underestimating the hyperfine interaction by treating
this interaction partially as a perturbation, although in
our work as well the hyperfine coupling turned out to be
the main interaction arising through the quark exchange
mechanism. It is dificult to say more about this problem
unless a more refined treatment of the hyperfine interac-
tion, along with the annihilation effects, is carried out.
On the other hand, the fitting of the model parameters
in [7] includes adjusting the ranges and normalization of
their effective meson-meson potentials in an ad hoc way,
and it is not clear how that affects their results.

Leaving these issues to some future work, we looked for
any possible change in one of our parameters so as to get
KK bound states in the k = 0 limit (where our model
would roughly correspond to that used in [7]) and then
determined the effects of going beyond that limit, i.e.,
of using our theoretically improved four body potent-ial.
This investigation showed the same trend as observed in
the spin-independent case reported in [11]:increasing k,
i.e., decreasing the gluonic states overlap, results in a sig-
nificantly weaker meson-meson interaction. This means
that, if we get a KK bound state in the two-body poten-
tial model limit, we do not necessarily get one with our
QGD-inspired refinement of the q q potential.

Much improvement in the calculations can be made by
going beyond the approximations we have used, giving
more precise results. But even without this being car-
ried out, this work clearly indicates that the theoretical
refinement of the four-body potential results in an ap-
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preciable decrease in a major part of the meson-meson
interaction "nough to cast doubt on any result based
on a naive two-body potential model.
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APPENDIX A: THE SPIN BASIS

In the main part of this paper, we use the spin basis given through the Eqs. (3.1), (3.2), and (3.3). The notation
used in these equations is that of the Appendix D of [7]. In this notation, an orthonormal spin basis is ~Sq2S34), and
~Aq2 Ag4)„de6ned through Eqs. (D3) and (D4) there. Our remaining spin base states are given in terms of these
by Eqs. (D5)—(DS) of the same. These equations give easily the overlaps of our spin base states, written as, (kI~/J),
in the results mentioned in Appendix B, as elements of the overlap matrix

t' 1

( symmetric

0 gl/4 —/3/4 gl/4 /3/4
1 —/3/4 —Ql/4 /3/4 —Ql/4

1 0 —Ql/4 /3/4
1 —/3/4 —Ql/4

1 0
1

(Ai)

in the basis ~1S)» (1T)».. . , (3T),.
For the matrix elements of the S; Sz operators, for difFerent values of the indices i and j, in our spin basis, we also

used the results expressed through Eqs. (D9)—(Dll) of the Appendix D of [7]. Some of the results obtained in this
way are reported here:

S1 S2
S1 S3
S1 S4
S2 S3
S2. S4
S3 ~ S4

)»). =.(P»&24~

S1 S2
S1 S3
S1 ~ S4
S, . S;
S2 S4
S3 S4

IPSE)&24)

0
3
4

0
0

3
4

0

(A2)

,(is[

S1 S2
S1 S3
S1 S4
S2 S3
S2 ~ S4
S3'S4

S1 S2
S1 S3
S1 S4
S2 S3
S2 S4
S3 S4

(A3)

S1-
S1 ~

S1 ~

S2 ~

S2 ~

S3 ~

S2
S3
S4
S3
S4
S4

(1&).=.(&is. &24I

S1.S2
S1 ~ S3
S1 ~ S4
S2 ~ S3
S2 ~ S4
S3 S4

l&is .&24)

1
2

+—14
1
2
1
2

+—14
1
2

(A4)

.(is[

S1- S2
S1 ~ S3
S1 ~ S4
S2- S3
S2 ~ S4
S3- S4

~2s). =.(2s(

S1 ~ S2
S1 ~ S3
S1 ~ S4
S2- S3
S2 ~ S4
S3 ~ S4

+3
8
3
8
3
8
3
8
3
8
3
8+—

(A5)
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.(2S]

SI . S2
SI ~ S3
SI - S4
S2 ~ S3
S2 ~ S4
S3- S4

]»).=.(P,4&»!

SI - S2
SI S-
SI S4
S2 ~ S3
S2 ~ S4

I pl4+23) s

0
3
4
3
4

0

(A6)

APPENDIX B:THE KERNELS OF THE
XNTEGRODXFFERENTXAL EQUATXONS

ga and
hA,

a2 =
2mCLg2

' (B3)

&ii,I J = he~(Rs —Rq)

for all values of k, I, and J and

(Bl)

~lsi, ieJ = hIJ~(RIs Rg) [~A,'1 + ~is2] XRs
I 3 fl

(B2)

The results for (in general, nonlocal) kernels appearing
in Eq. (4.19), calculated using the procedure outlined in
the two paragraphs following this equation, are

along with

2f3= 8+1
8+1

8
s+ 1

2 =
2s

g2=2,
2

62
S

gI —g3 —hI —h3—

for all values of k, I, and J, except those corresponding
to the 2S diagonal term. Here

dyI and dA, 2, for k = 1, 2, or 3, are the same ones which
appear in Eq. (4.6):

V,I,I ——bish(Rl —R, ) (—-C —4C[d„+ d,2]),

for I, J = S or T. Similarly,

(s —1)2)

[see the discussion before Eq. (4.7) for d'],

V'I, 2z = ~»~(R2 —R2) (——',C —4C[d2l + d22]) ~

Vsi 3I = 8IIb(R3 —R3)
2

x --,'C —-,'CR23 —6Cd" —2Cd"!is+ 1)

+-5 D [s+ l]3
2 (1+4kd' ) / [8kd' (a +1) + (a+1) ] /

4kd'2
x exp 4k(a —1) R3!(8kd' (a'+1)+(a+1)' (a —1) )

S D [a + 1]'
2 (1 + 8kd' )3/2 [16kd' (a + 1) + (a + 1)2]3/2

skd"
x exp 8k(s —1) R3!i16kd'2(s2+ 1) + (s+ l)2

(Bs)

(B6)

(B7)

Ck' ~24

3rn2s ( l) (2~d2 )3/2 (2~d2 )3/2

a 7hyp I w 7hyp
IT,IT 3 +IS,IS~

(B8)

(B9)

hyp 1 8x I
V2T,2T =

33 2,~(R2 —R2)
8nI4 Cl'e e

(2~d2 )3/2 s(2~d2 )3/2 (Blo)

hyp 1 87' I i 1
3S,3S 2 3 2 ( 3 3) (2 dg2)3/2 os + o's (B11)
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R2 (s+ 1)2
2dI2 s2 + ]

...; (+1)'"'
2s

R2 (a+1)2 a
P

6 3m s (27rd'2)3&2

(a2 + 1)

R32 (3+1)2
exP 2d'2 2

R2 (s+ 1)2

W 2- 3/2
hyp hyp 1 87r I 1 t ]3 24 (s + 1)
3s,3T 3T,3s 4~~ 3~23 ( 3 3) (2~dl2)3/2 s s (s2 + 1)

23 (a + 1)2

8 2
(B12)

k=1 or 3,

l=l or 3,
- 3/2

,(kI!lJ),NkI s k,! 64 3 dp2(1 + 4kdi2)

s —1

(s+ 1) R3 (s+ 1)2 a23 (a+ 1)'
W

+kr, 2J —eo (kII2J),Nk 2 exp —eqRk —e2R2 for

N~r, lr = eo (2IllJ) N2texp —e~Ri e2R2 for

+lsr, lI =

R,2 (s + 1)2
2dI2 2

(B13)

(B14)

(B15)

(B16)

but with k g l. Here,

arith

eo —(a+1) ~ s ~ 2 ~ (~ifd )
1 &a+ 11 A~

1 28
e2 ——4k + s+1'

(B17)

(B18)

(B19)

e 2 0

kd2 +1+s
S2

a

8Id2 + ]
S2

R

+ 1+S
—3/2

S2

(s + 1)2 +1
/2(s+ 1)

s —12

1 7/2(a+ 1)

( -1)' +1
/2(s+ 1)

(B20)

(B21)

(B22)

(B23)

(B24)

32a (a+ 1)4 1+Skd'2
+

(s + 1)3 34 8d'2

Kkr 2I = — (kII2J).Nk 2 qzzRk + qi2R2 + qzo exp —ezRk —e2R2 for k = 1 or
2me

~2r, iz = — (2IllJ), N2, i q2~R, +q22R2+q20 exp eiR, —e—2R2 for l = 1
me

&kr, u = — ("IllJ).Nk, r

2 ) (s+ 1) i (s+ 1)3 (s —1)2 s 2d'2+

&s —1) 8(a —l)2 1 4 1 1+4kd'2'

(3+1)
~

(a+1) s (s —1) s 2d'2

32s (a+ 1) 1+8kd'2 1 (s+ 1)2+ (1+ s2)Skg2
+

(s + 1) s2 Sd'2 s2 Sd'2 !

, (8(s —1) 1 1+4kd' 32s 1 (a+1.) +(1+a )Skd12
+ R,' +

( (s+ 1) a 2d' (a+ 1) s 8d'2
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|'s+ 11 8(s —1) 4 ('1+ 4kd'2')

4 ) (s+ 1) (s —1) ( 2d'

22s 1 ((s+1)'+ (1+ss)6kd") (s+ 1) 14-4kd"

)+ (s+ 1) s ( 8d'2 ) ( 2s ) 2d'2

x exp ((s+ 1) t'1+8kd' ) s2+ 1 2 2
s2 —1

but with k g 1. Here,

for k, l = 1 or 3, (B25)

(s+ 1) 8(s —l)2 fs —'1) ( 8k 1+ +s l (A s —1) (2k 1
,+, , I

—
I

——
I I

—+ !2 ) (s+ 1)s (s+ 1) ((s —1)2 (s —1)2d2) (v s+ 1) ( s 2d2~s(l+ 2)s) )
32s t's —1) (2k 1 ) (A s —1) (- s2+ 1 a a~2 + 11+, !

—+ +(s+1)s I s+11 q s 2ds/~(1+ ss)) gs s+ 1) I ss 4ds

- 2(s+ 1) — 1 2s
+2d +1

3 (s+ 11 8(s —l)2 )(' 8k 1+ +s ) 32s ( s2+ 1 s s)'2+ 11ep=--!
I I

+
I

+
2 ( 2 ) (s+ 1) ((s —1) (s —1) d ) (s+ 1)s ) s2 4d2+

(B26)

(B27)

3d 2 8(s —1)2 f 2k 1 ) 32s ( s'+ 1 s s)" + 11
+ (a+1)'

l

—+
2e (s+ 1) ( s 2d ~s(1+ ~s)) (s+ 1) I s2 4d2

+ k

—6! !
2k

2s ) 2d2 a+1
1 )' (' P

' t'k ss/2~'
~» =2(s+1)'

I

l ——
I I k+, I +s! 1+ —

!
—+

K) ( 4d2) ( tc ( s2 4d2

2(s+ 1) „- 1 2s
q22

—4 2k+
2s ) 2d2 a+1

(B29)

(B30)

8 (
(s + l)2 !

8—6x (s+

s+ 1) 24d2 ( +
) K

!'+"!'!'k
1)' & »

) k

4d, I
+sl s, + 4d, )I

('k+s —+ —6! 2k+
4d ) (s2 4d2 )' ~ 2s ) 2d2

28

S+ ].
(B31)

with

) Q j 1J ++%j,l J +. (ki!tJ).&I4'(,

yf yf

ep[byRy + bp] exp [—eqR& —e2R&]

(s + 1)'
Cep (s + s + 1)——2(s —1)—+ (s —s + 1) Rs2

3~g 2s' K K

(s + a + 1) 24d2
+ 2 exp [—egRs —e2R22],a+12 r,

(B34)

yi",3 = y3,'g =—

(B35)

64ss sd*(14.4kd, s) 2ss l& 2 &lI
l(s+ ) s+(' — ) 'l +, +4kd„)

x exp ~
~

('s -t 1) (1+8kd'2 ) s2 + 1
R~+R2s +2 R~ Rs
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Here the new definitions used are

4 (s + 1)4 A a —1

g 482

8 /'a+1) ' d2
0 3 ( s ) K

(836)

(837)

hyp ~yp
3/2

2 2
V1s2S = V2S1S = —

6 3 2
( 2)2/2 [L11+L12+ L13]exp —(e1+ e1)R1 —e2R2

Qyp hyp eo 81r (2K)3/2
2 2

ls, 2T V2T 1S 3 2 d2 2/2 [ 3L11 + L12 + L12] exp —(e1 + e1)R1 —e2R233m2a 2nd»/2

],yp hyp eo 8m (2~)3/2
2 2

V1T,2s = V2s, 1T =
3 2 2 2/2 [L11 —3L12 + L12] exp —(e1+ e1)R1 —e2R233m28 2~&2 3/2

hyp gyp eo 8rr (2tc) 3/2
2 2

V1T,2T = V2T, 1T =
18 3 2

( 2)a/2 [L11+L12 + 5I12]exp —(e1+ e1)R1 —e2R2

h„p eo 8m (2~)3/2
2 2

Vas, 2s V2s, as ~3 2 ( 2)a/2 [L21 + 2L22 + L22] exp —(e1 + e1)Ra —e2R2

Qyp hyp eo 87c (2tc) 3/2

Vas 2T, ——V2z, as ————
2 2 2/2 [

—L21 —2L22+ 3L23] exp —(e, + e, )R3 2R22 2

12 3m2a 2md2 2/2

Qyp hyp eo 8m (2e) 3/2

VaT 2s ——V2s 2T
————

2 2 2/2 [L21 —6L22 + L23] exp —(e1 + e1)Ra —e2R2I 2 2

123m2s 2nd2 2/2

hyp gyp eo 8m (2e)3/2
I 2 2

V3T 2T V2T 3T 12 33m2s 2md2 2/22 2/2 [5L21+ 2L22 + L22] exp —(e1+ e1)R& —e2R2

1 8w 1 f' 2 l (s+ 1)s

4~g3m a (27rd' )2/2 d' 64a

x exp

12 3m2a (2nd'2)a/2 gmd'2) 64a

L

h„p gyp 1 8vr 1 / 2 ] (s + 1)
1T,3s 3s,1T 12 3m2a (2&di2)a/2 I 7rdi2 I 64aa [»» + »]

(a+ 11 f1+8kd'2l s2+ 1 2 2
s2 —1

x exp

V1T 3T V3T 1T 33m a 2nd'2 2/2 (md'2) 64sa [2L.1 + 5L- + L-]

xexp —
[ [ [ [

[R +R)+2 R .R~
~4"

(838)

(839)

(840)

(841)

(842)

(843)

(844)

(845)

(846)

(847)

(848)

(849)

Here

+ eee, exp [—4eR]]), (851)

L11 ——l1o exp Il11R1 —l12R2j {a, exp [l12R1 R2]

+~1,"exp [—l13R1 R2]), (850)

Lze = iee exp [—4eR]] (ee, exp [4eR]]

+~."exp [l3eRe Re[),

Iee = lee exp [
—lnRe —4eRe] (ee, exp[—leeRe . Re]

+ ee, exp [lseKe .Re]),

(852)

(853)

I e = ieeexp [—lmR, —4eRe] (a.'*exp[—4eR, . Re]
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L» = l» exl ]
—l»R.*] {a."exp ]4sRs]

+ ea,* exp [
—4sRs ),

L» lse exp IlssRs —l»Rs (a, exp]lj3R3 ' Rs]

+a, exp[ —lssRs. Rs]),

(854)

(855)

(856)

(857)

(858)

(s+ 1) 1+4kd'
+ 0! exp

1682

(s —1 Ix
] ]

Rs+Rs
I, s+ 1)

di2
- 3j2

L32 = 7l 2 14

1+ 4Qg'2 8+ 1
aa, b(Ri + Rs)

+ assb(Rs —Rs)),
(s+ 1)4 1+4kd'I =, +n, xp 1682

(a —1)
x Rs+ I I

Rs ),I a+1)

( s

s+1)
a (s —1 ]

I, a+1
~20—

8

r. (s+ 1) '

(a+11'

(tao=
I

&s —1)

4d2 I, 2 ) (s —1)

d2 (s —1)

(863)

(865)

(866)

(a+11—2A+ r"
I

I s -1).
(868)

with

1 (a+ 11
)I

—„
( s

s2 —1 (s —11
2A —r

16d2 Es+ 1)

(860)

(861)

~29,2S = b(R2 —R2) (871)

(irrespective of the physical pseudoscalar inesons
present),

2d2 I, s —1) (a —1)
As mentioned in the text, in the case of the diagonal

term corresponding to the 2S channel, the expressions
depend upon the physical content of this channel. Thus
we have

iC2s 2s(rJg) = b(R2 —R2)(4[((d2i+ 4/22) cos 8+ ((d2, + ~22) sin 8]

(f2" cos 8+ 2f2'cos 8sin 8+ f2" sin 8)V'R, ),
2m

with

[Here

I.
g2

2ml2 1

2md21

I
g2

2md

h2

2m'

g2 g2

h2
and (d22 22md22

h2

2m'"

(873)

(874)

f" =1, f' = —,'(1+ lls) f" = »s
g2 = h2 = 2, and g2 = h2 = 2/s]. (875)

iC2s2s(m]]i) = b(R2 —R2) —[u)2~+ ~22cos 8+ w22sin 8] — (f2 cos 8+ f2'sin 8)]7R,
7 2m

iC2s2s(~q') = b(R2 —R2) —[(u2i+]d22sin 8+(u22cos 8] — (f2 sin 8+ f2'cos 8)V'n
7 2m
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&is,is(m)
&is,is(~&)

&is,is (arrl')

&is, iis (&&)

hyp~isis(~& ) =

&is,is (rlrl)

&2s,is (~rl)

&is,is (~ll')

= b(R2 —Ri) ([—3t —2 x 4C[dzi cos 8+ dii sin 8]),
= b(R2 —Ri) (—3C —4C[dzi + dil cos 8+ dii sin 8]),

3mis (2mdi )3/2 s(2vrd ) )'

8~ ao, an cos 8 o.
' sin 8

8m &R R, aa, ao', sin 8 a, 'cos 8

= 2 x h(R2 —Ri) 2a~ cos 8 —2+2aia, cos 8 sin 8 + a, sin 8

= b(R2 —Ri) 2ai cos 8 —2/2aia, cos8sin8+ a, sin 8

= b(R2 —Ri) 2aisin 8+2/2a~a, cos8sin8+ a, cos 8

(B78)

(B79)

(B80)

(B81)

(B82)

(B83)

(B84)

(B85)

(B86)

APPENDIX C: THE DEFINITIONS USED IN THE MOMENTUM SPACE SOLUTIONS

The following definitions are used in writing the momentum space solutions (4.33) and (4.34) of the coupled
equations.

1 q11 b1 1 q10 b0 E,
2m 6 2

' 2m 6 2 6
+ —Fs(pi el)+ — + ———' Fo(pi ei)

—Ha", &20F (pl el + el+ lil l22) Hsc l20Fo(pl el + el+ lil + l22),

(1) ~ q12
Qi = — F (Ji, ei),

2m 6

Q3 —— 2Hcd, lioFa—(pi, ei + el —ill),(1) ls

Q4 ———3Ho(, lloli3F3(pl, ei + ei —ill),(1) 1 ls 2

(1)Q, = —Hnla", 40Fo(pi riel+ el+ lsi+ ei+ l32 l33),
(1)

Qs ——Hnicx, 'l30F (pi, riel + el + lsi + ei + lsi + l33). (Cl)

Qi
(2)

(2) q22 ~ q20 b0 E
Qi =- Fs(pi, ei)+ — + ———' F.(pi. ei),2m 6 '

2m 6 2 6
1 q21 b1+ —Fa(p2~ e2),2m 6

Q3 = Ho(, lioF (pi, —ei),(2)

(2)
Q4 —— Hsa,"l20Fa (pi, ei—),

(2)
Q5 2H~ lioFa(p2 e2 + lli),
Qs 3 Ha, lloli3Fj (pi, ei + lii)

(2) 1 ls 2

~(2) ls IQr = —Hnio, 4oFo(pi, &2ei + e, + l» + ei + l32 l33),

Qs Hni~ l30Fa(p2 72el + ei + lsi + ei + l32 + l33).
(2) I

(C2)

E,' = E, + 31 —2m(s+ 1),

de(z) = ee/d Reexp [—zRej gee(Re),

Be(z) =ee J d Reexp —zRee Recvee(Re)

d3Rg,
Xis(pa) =

( ) &
exp [ipse, . Ri,] gl, s(R&),

(C3)

(C4)

(C5)
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for k = 1, 2. F (p1„x) and Fs(pg, z) are similar Fourier transforms of exp [
—zR2&] and R2& exp [—xR&], respectively.

Moreover,

= pb, l(pl) = +M~+ Mg —E, —is,
2pKK

2

b,2(P2) = +M +My —E, —iE:,
2pab

p, (1) = /2PIcJf (E,™Ic™JI),

p, (2) = /2p g(E, —M —Mg).

(C8)

(C9)

(C10)

APPENDIX D: THE ELEMENTS OF THE T MATRIX

Consistent with our definition of the T matrix [see Eqs. (4.38) and (4.39)], the four elements of the 2 x 2 T matrix
are [these can be read off from Eqs. (4.33) and (4.34)]

Tl, l 2I1a gp(1') Ql +2(e2) + Q2 +2( 2) + Q3 +2( 2 + ~12) + Q4 +2( 2 + ~12)
(y) (~) (~) (~)

2
'

+Qs A2(71el + el + l31 + e2 + l32 —l33) +Qs A2(71el + el + 131 + e2 + l32 + l33)(1) I (~) I

T2 1 ——2y, 3—p, (l) —Q, Al(el) + Q2 Bl(el)
7C Vg (2)
2 vy

+Q3 +1(el + el + ~21 ~22) + Q4 ~l(el + el + f21 + I22)
(2) I (2) I

+Qs +1(el + el ~11) + QS +l(el + el ~11)

+Q7 +1(72el + el + t31 + e2 + ~32 I33) +Qs ~1(&2e1 + el + f31 + e2 + f32 + f33)(2) I (2) I

T2, 2 2pob p (2) Ql +1(el) + Q2 Bl (el) + Q3 +1(el + el + I21 I22) + Q4 +1(el + el + ~21 + t22)
7C (2) (2) (2) I (2} I

2

+Qs +1(el + el ~11) + QS +1(el + el ~11) + Q7 ~1(&2el + e1 + t31 + e2 + ~32 ~33)

+Qs Al (72el + el + l31 + e2 + l32 + l33)
(2) I

T1,2 2Pa+ p (1) Ql +2(e2) + Q2 +2(e2) + Q3 +2(e2 + f12) + Q4 +2(e2 + f12)
v] (y) (~) (&) (~)

2 V2

+Qs A2(71el + el + l31+ e2+ l32 —l33) +Qs A2(71el + el + l31+ e2+ l32+ l33)(~) I (~) I

(D2)

(&4)

with pl and p2 in Ql Qs [see Eqs. (Cl) and (C2)] replaced by p, (1) and p, (2), respectively. It was checked
numerically that Tl 2 ——T2 1, satisfying the requirement of "reciprocity" in an inelastic scattering (see p. 528 of [27]).
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