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The gluon bremsstrahlung cross section e*

e~

— ¢4g, including effects of finite quark and anti-

quark masses, is calculated for arbitrarily spin-polarized electron-positron beams. Mass effects and
polarization effects are given and are shown to have a sizable influence on the cross section. It is
shown, however, that for the left-right asymmetry ALr the mass corrections and radiative correc-
tions vanish at the Z° pole. The use of longitudinal polarized electrons in measurements of the
forward-backward asymmetry Arp may give sizeable enhancements.

PACS number(s): 13.65.+i, 13.87.—a, 13.88.+e

I. INTRODUCTION

Technique of obtaining spin-polarized high-energy elec-
tron beams have improved over the last years. Linear po-
larizations with an average value of 22.4% have recently
been obtained at the SLAC Linear Collider [1] and at
the DESY electron storage ring HERA transverse elec-
tron polarizations up to nearly 60% have been obtained
[2]. Calculations of the gluon bremsstrahlung from mass-
less quarks in high-energy electron-positron annihilation
for arbitrary electron and positron polarizations [3] show
that beam polarizations affect cross sections and asym-
metries in distinct ways. It has been proposed [4] that
flavor separation may be obtained by means of transverse
electron and positron beam polarizations. Further, it has
been shown that gluon linear and circular polarizations
are influenced by electron-positron beam polarizations
[4,5].

In the present paper we take into account the finite
mass of the quark and antiquark. A calculation of
gluon bremsstrahlung from massive quarks for unpolar-
ized beams was made by Grunberg, Ng, and Tye [6] (pho-
ton exchange only) and by Jersik, Laermann, and Zer-
was (7] who included Z° exchange. Recent calculations
of cross sections and asymmetries for unpolarized elec-
trons and positrons are given by Djouadi [8], Djouadi,
Kiihn, and Zerwas [9], and Arbuzov, Bardin and Leike
[10]. Related QED processes are u-i creation processes
for massive u particles with emission of photons in colli-
sions of polarized electrons and positrons [11].

II. THE GLUON BREMSSTRAHLUNG CROSS
SECTION

The cross section for the process
et +e” 27,2 2 9+7+(9),

where a quark ¢, an antiquark g, and a gluon g are created
in the collision of an electron e~ and a positron et, with
a photon or a Z° boson in the intermediate state, is given
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by
dc 1 1
= = f 2 . .

dQdxdzdz 64 (2m)5 . Z M7 (2-1)
color,s,,85,e
Here the matrix elements for flavor f is

_te’g,
Ml = 9T g pem] 4 f)ISHL) . (22

with the electron and quark charges —e and eQy, respec-
tively, and g, the strong-coupling constant. 7T, is the
color matrix normalized such that

S T(TLT) =4
a,b

The leptonic currents for vy exchange, L%, and for VA
exchange, L', are given by

LY = v(py, 84 )v*u(p-,s-) ,
(2.3)
L7 =0(p+,s+)7"(v — avs)u(p-,s-) ,

for specified momenta p, and p_ and polarizations s
and s_.

The hadronic matrix elements including emission of a
gluon with polarization e, are similarly given by

d+d+mf
Yu

H;{‘Y = uy(q, sq) |:¢ 249

_7Md+d+mf¢

zqu Uf (—q-? 36) ’

(2.4)

d+ 4 +my

2qg ’YI-‘('Uf —a'f’y5)

HI, =14(q,5,) [¢

i+4

+m _
—Yu(vy — GIVS)T 4 v£(3, s9) »
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for specified quark, g, s,, and antiquark, g, s;, momenta
and polarizations, respectively. In Eq. (2.2) my is the
mass of the quark of flavor f, and f(s) is proportional to
the ratio of Z, and the photon propagators:

1 s
4 sin®20w s — M2 + iM%’

f(s) =

where Oy is the weak mixing angle, Mz is the mass and
I'%*t the total width of the Z°. The standard model cou-

pling constants are

fore”, v=—1+4sin®0w, a=-1,
'_19 Qf =
vg=-—-1+ %Sinzow, af =—1, Qy

winy

for u,c,t, vle—%sinzew, ay =

for d, s, b,

b

Wi

In Eq. (2.1) we sum over quark, antiquark, and gluon
polarizations, while the electron and positron polariza-
tions are specified by the invariants

S48, = -PL = (PP +PL?Y),

where Plzlt and P31 are the positron and/or electron lon-

|

d®o
L**H!
dexdsz (271')2 s Z{ YRy

+ 2Ref(s)L'"' H‘{Zp.u + lf(S)‘zL HZZ‘AV} ’
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gitudinal and transverse polarizations in the rest system
of the particles, respectively. In the laboratory system
the polarization four-vectors are

_ _(pilPl pi Expi 2
S+ = (S0,8)+ = (Pi - TP+ mPi) ,  (2.5)

satisfying the invariant relation
Sipyr =0.

For a pure spin state S,S* = —P% = —1. Partial polar-
ized states P2 < 1 are described by the density matrices

p(p+,S+) = (1 + 75 84)(Br Tme)

with S1 given by Eq. (2.5). For high electron-positron

energies p simplifies to

1+ vs(8: F PL)]As - (2.6)

The cross section Eq. (2.1) is obtained from the matrix
element, Eq. (2.2):

p(p+,S+) ~

(2.7)

where x is the azimuthal angle of p_ in the coordinate system with the z axis along q, and the leptonic tensors are

given by
LAY = 4LELY* = 4Ty p(p—, s )Y p(p+,s+) = ELYY + €LY — L§”
LYy = 4L5L7 = —(vE — a€)LY” — (v€ — aZ)L4 +vL§” +aLy” (2.8)
LYy, = ALY Ly = [(v® + a®)E — 2va€] LYY + [(v* + a?)€ — 2vaE]LLY — (v? —a?)LY”
with
LY = a(php” + 2 — ¢"pip-)
(2.9)
LYY = —41’5"”(,31)‘_"_12’?_ ,
LL” = 4(p,p-)(PLAPE" + PX#PLY) + (PEPL)LY
(2.10)
LY = dieapys|PLoplg™ (Pp” — P2p’) — (py, Py & p—,P2)].
Here E=1- Pl',Pﬂ and ¢ = p! - P4“_ with the four-vectors Pi- = (0,P%). The hadronic tensors are similarly given
by

|

H'{wv - Z

colors,S,,Sg,e

f
H'Y
Hé Zpv

where

Zuu_sz HfZ—SsQf[UfHVpu afH.;fl ]
ZHfZHfE = 83[(vf + af)HVW 2affoA,w + 2a,fmeV‘w] ,

f g — 2rrf
H; HJZ =8sQ%Hj, v

(2.11)
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4
Hf,, = (29)@9) [(Q‘l - m?%) (Quar + Qv — 94 (Q9)]

- (Q’ - 2m§§—gg-) 9T, + m3(Q9) 9y — gug] + (¢ & ﬁ)] )

(2.12)
—4 Qg _
A = 7= Cuva, _m2__ anﬁ_ ] ’
4w~ (ag)(@g) *** [(Qq Tag ) (@e9)
HZ[ — 4 — 2 qg =
Var = W qq_mf% Guv +9ug + (@€ 7)| -
The cross section may then be written in the form
dSc _a? a, 1
dQdxdzdz =~ (27)2 s (1—-z)(1—-7%)
x S {1 (s, PIP]) Xo + B (s, P PlYYo + b (s, PI PY) 2, (2.13)
f
+h(5)X, + B ()Y, + 1 (5) 2.}
where the coupling functions, depending on energy, flavor and linear polarization are given by
h(fl)(s,PﬂPﬁ) = Q%2 — 2Q; Ref(s)(vE — af)vs + | £(3)|*[(v? + a?)E - 2va§](v§ + a?) ,
hf,z)(s,PﬂP_l,l_) = —2Qs Ref(s)(aZ — v€)ay — 2| f(s)|*[(v? + a?)€ — 2vaE]vsay ,
h{)(s) = Q% — 2Q¢ Ref(s)vvy + |f(s)*(v* — a®)(v? + a2), (2.14)
B (s) = 2Qs Imf (s)avy ,
h (s, PUP) = 2|f(s)]?[(v? + a*)E - 2vat]a?
R (s) = ~21f () (v? — a?)a} .
It is convenient to define h(fl)+ = h(fl), h.(fl)_ = h‘(fl) - h(fs) ,
h‘(fl)i(s,PﬂP_Ll) = Q%E — 2Qy Ref(s)(vE — al)vs + |f(s)|*[(v® + a?)E - 2vaf](v} £ a?) ,
and in the same way, hg,s)"‘ = hffs), h;a)— = hs,s) - hffs),
h{%(s) = Q2 — 2Q Ref(s)vvy + |f(5)|?(v? — a®) (v £ a2) . (2.15)

Here h(fl)(s)-h?)(s) are the same function as in Ref. [3]. The X, Y, and Z functions depending on angle and
particle energies and momenta and on transverse electron and positron polarizations are obtained as
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72
Xo = (1 - %r——)[mz(l+ﬂ2cos 0) + m3%] + [zz(l+coszgg) — 8z, + (z & 7,0 & 0),
Yo=2 m—m—z‘;—mi— zf, cosd — (z & Z,0 & 0)
0= 2 1—zx z ’ ’

2 mz:
Zy = —-Tf{4(1 - _2_fl——g—m — (1 — cos’,) — 4xg o (2.16)

m.f Tg

X,:PfPi‘{( ~ 3 1-2 )mzﬂ: sin® 0 cos(2¢ — ¢ — $_)

M3 2 2 h T e

+—4—:cgsm Ogcos(2¢g —dy —P_ )+ (z ©T,0 0,0 ¢)
2

PlPJ‘ a:gsmzo cos(2¢g — o+ — ) ,

=2
Z, = _P_lpj{ (1 - %1—"”_—’1;) 2262 sin® 0 sin(2¢ — ¢, — ¢_)

—2
+—4—:z: sin® 6, sin(2¢g4 — ¢+—¢_)+(w¢)§,0@9,¢®¢}.

Here (. and Bz are the quark and antiquark veloci- T4sinfy cos¢py = —z 3, sinf cosp — TPz sinf cos¢ ,
ties, respectively, with 3., T8z the scaled momenta and

my = mys/FE the scaled quark mass of flavor f. The . . _ Lo [
polar angle 6, is the angle between p_ and the gluon Zq sindy singg = —zf, sinfsing — 7z sind sing .
momentum g; from the q,q, g triangle it follows that

(2.17)

The transverse polarizations are in the same way de-
scribed in a plane perpendicular to p_:

zg4co80, = —xf3, cosl — TPz cos@ . P. = Pi(cos¢s,sing,0) .

The cross-section differential in angles and energies for
The azimuthal angles are related to p_ as polar axis, initially arbritarily spin-polarized electrons and positrons
defined in a right-handed sense; the q,q, g triangle gives may then be written in the form

dso _ o a, 1
dQdxdzdz = (27)2 s (1—:1:)(1—5)

+PfPim2ﬂ:sin20[h‘,3’+(s)cos(z¢ — 4+ — ¢-) — by (s)sin(2¢ - ¢+ — ¢}
+[2 (s, PLP]) — RV (s, Pﬂpll)]i";xg + R~ (s, PI Py T mgc0520
—[RM* (s, PV PY) + B9 (s, P Pl mie

+PLPt _%}mgsinzeg[h(fa)_(s)cos(2¢g — ¢y —¢-) — h{) (s)sin(2¢5 — 61 — ¢-)]

+(z & T,0: © B0 0,6 & ¢)

=52
+2h(f2)(s,PﬂP£) [(m — —? 1?x>zﬂ=c0s0 —-(ze7z7,0 5)] } . (2.18)
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This way of presenting the gluon bremsstrahlung cross section shows clearly the relation to the cross section for
creating g pairs from annihilation of polarized electrons and positrons, ete™ — qg, which is easily obtained as

2 2
‘i—s‘; = 29‘3—ﬂ SO {r* (s, P PY)(1 + 5% cos?6) + B (s, P! Py
¥
+ PP sin?0[hY) (s)cos(2 — b4 — ) — b (s)sin(2¢ — b4 — 6-)] + 20 (s, PL P])Bcost} ,  (2.19)

where B is the velocity of the quark or the antiquark. It should be noted that 3., Bz and 8 in Egs. (2.18) and
(2.19) always appear in the momentum components z3; cosf, =3, sind as compared to the case of massless quarks of
Ref. [3], where the §’s are all unity.

The cross section as a function of the angle and energy of the quark and the energy of the antiquark is obtained
from Eq. (2.18) by integrating over the azimuth angle x of p_ with q the polar axis. The equations expressing the
antiquark emission angles 6 and ¢ in terms of the quark angles 8, ¢, and x and of the angle between the quark and
antiquark momenta ¥ are

sinf cos@ = (—cos@ cosy sind + sinf cos?)cosg — sind sinxsing ,
sinf sing = (—cosf cosy sin? + sinf cos?)sing + sind siny cosd , (2.20)
cosf = cos® cosf + sind sinf cosy ,

where ¥ is given by

z?B2x? B2 sin®d = 4(1 — z)(1 — Z)(1 — z,) — M3,
(2.21)
zf,TPzcos¥ = —zT —2(l -z —F) —

The cross-section differential in the angles # and ¢ and in the energies = and T is found to be given by
d'o a?a 1 (+ I ol 2
- _ - @@ E F h P'P})(1+ (7]
dQdrdz 27 s (1—z)(1-7) r ( 1(z, 2){ f (s, PZP1)( cos“0)

+PLPLsin0[h 0 (s)cos(2¢ — ¢4 — ¢-) — B (s)sin(2¢ — ¢4 — ¢-)]}
=2
+T21f2(z,z){h<,”‘(s, P! Pll)cos?0 + P Psin?0[h{) ™ (s)cos(2¢ — ¢4 — ¢-)
—h$ (s)sin(2¢ — by — ¢-)]} + 2 (s, P! Pl) Fa(z, T)cosh + D (s, P PL)Fy(z,7)

+—m§h§})—(s, P!Pﬂ)fs(x,z)) , (2:22)
where the quark and antiquark energies are contained in the functions
= mﬁ Tg m oz, \_
Fi(z,Z) = (1 -5 1= ) 62 + ( Tfﬁ) z?B2(1 — 3sin?9) ,
Fa(z,z) = 2262 + Z242(1 — %sinz'ﬂ) + 2z03,ZF5 cos? = :1:3 - %Ezﬂgsinzﬂ

—2 =2
Fi(z,T) = (:c - :n—f—z_g—z)zﬁ, - (E— i wg_)iﬁicosﬂ , (2.23)

21 2 1-%

=2 2
=Y — _ My Ty 242 29, —2 2{q_ my
Fa(z,T) 2( 2 I—E)z Bzsin 19+mf|:2+a:g(1 2(1_1‘)(1_5))] ,

2
Zg

]:5(23,5) = Ezﬁ%sinz'ﬂ - 2(3: + 4179 - 4) 2mf—(l——$)(1-——x)—
with ¥ given by Eq. (2.21).
It should be noted that polarization and quark mass effects are contained in different functions: h(l)i(s P"P")

and h(z)(s p! Pll) depend on s and the longitudinal polarizations only, while F;(z,Z) — Fs(z,Z) depend on «,T only
and contam the quark mass 7.
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III. LONGITUDINALLY POLARIZED ELECTRON BEAM

S

Experimentally the most interesting case is at present one polarized beam. For longitudinally polarized electrons
to a degree P! and unpolarized positrons the cross sections, Eq. (2.22) simplifies to

do a?a, 1

dQdzdz 27 s (1—z)(1—-2)

=2
_ m
x ;{h;”*“(s,}aﬂ)fl(z,f)(l + cos? ) + A (s,pﬂ)Tffz(x,z) cos? 6

7-71“2
+2hff2)(z, Pﬂ)fs(m, T)cosf + hg}H(s, Pﬂ)}"l(z, T) + hffl)_ (s, Pl_l)—-4—f.7:5(a:, E)} )

with E=1and ¢ = P!:

R§* (s, Pl) = @} — 2Q5 Ref (s)(v — aPl)vs + |£(s)*[(v? + a?) — 20aPL](v} £ a}) ,

h(fz)(s,Pl_l) = —2QsRef(s)(a — 'UP_!)G.f - 2|f(s)*[(v® + az)Pﬂ — 2va)vsay ,
h (s, Pl) = 2| £(s)*[(v? + a?) — 2vaP!]a? .

A measure of the importance of the polarization may be obtained from the quantities

R (s, Py — h (s, -P!)

RO (E)P! =

h (s, Py + (s, —P1)

i=1,2,5.

(3.1)

(3.2)

(3.3)

We show, in Fig. 1, R(;) (E) for a range of energies. We use sin’fw = 0.23 and Mz = 91.2 GeV, 'z = 2.48 GeV.
In order to indicate the effect of the quark mass we give in Fig. 2 the functions F1(z,Z) and F3(z, %) for z = T,
e,z =2(1-1z), (1+m})/2<z <1, for my=mys/E = 0.0, 0.05, and 0.5.

0.6 ————T————T——T—"—T—"T—

| \
-1.0 PR YR I IS IO ST I N

20 40 60 80 100 120 140 160 180 200
2E [GeV]

FIG. 1. The polarization asymmetries Rs,i)(E), Eq. (3.3),
as function of the total e*e™ energy. The solid curves:
Qs = 3% quarks, u,c,t. Dashed curves: Q; = —1 quarks,
d,s,b.

| I B T I
2.0 | -
15 | Fs(x,x) n
) Fy(x.x)
10 | :
Fl(x,x) Fy(x,x)
05 - -
0.0 N 1 ] L 1
0.5 0.6 0.8 1.0
X

FIG. 2. The form factors F1(z, %), and F3(z, %) withz =
for my = my/E = 0.0 (solid curve), iy = 0.05 (dashed

curve), and My = 0.5 (dot-dashed curve).
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IV. TRANSVERSELY POLARIZED ELECTRONS AND POSITRONS

For electron and positron antiparallel transverse polarizations, ¢4 = ¢_ + , the cross section Eq. (2.22) becomes

dio o? a, 1

d cos0d¢_ dzdzx = _2??(1 —z)(1-13%)

x zf: (.7-'1 (z,2){h{* (s)(1 + cos?0)

+PL P sin? 9[RS (s) cos 2(¢ — ¢-) — by () sin2(¢ — 4)]}

-2
m - . _
+-—2—f-.7:2(a:,5){h§¢1) (8) cos? 8 + P+ P sin? 0[h§¢3) (s)cos2(¢p — o)

—h$(s)sin2(¢ — 6-)]}

m: (1)—
+2h(fz)(s)]-'3(a:,§:') cos @ + h(f1)+(s)f4(a:,§) + Tfhffl) (s).7-'5(:c,§:’)> ,

(4.1)

where h;")(s) = h‘(f") (s,0,0) (E = 1,¢ = 0) for transverse polarizations, and where the spin azimuthal angle ¢_ — ¢ is

measured from the p_ — q plane.

V. THE CROSS SECTION AT THE Z° POLE
WITH LONGITUDINALLY POLARIZED ELECTRONS

We consider here specificly the cross section at the Z° pole. From Eq. (2.19) we obtain for the two jet cross section,
ete™ — qq, for electron polarization P! and unpolarized positrons P, = 0,

d?c 3a?

= Z_s_|f(3)|2ﬁ{(v2 +a? — 2vaP") S (1 + B2 cos? 6)(v] + aF) + M} (v — aF)]

—4[(v? + a2)Pﬂ — 2va]f cos b vaaf} . (5.1)

f

Correspondingly, for three jets, ete™ — ¢qg, from Eq. (3.1),

de  aa, |£(s)|2
dQdzdz  2r s (1—-2z)(1-1%)

X {(v2 +a? — 2vaP) Z [(1 + cos? 0) (v} + a%) Fi(z, T) + M} cos® 6(v? — a%) F2(z, T)

f

mz
+('u§ + a?)}}(m,i) + T‘f(v§ — a"})}'s(m,i)]

—2[(v? + aZ)Pl_I — 2va]f cos @ Z vrasFa(z, ?z:“)} . (5.2)

f

VI. ASYMMETRIES WITH LONGITUDINALLY
POLARIZED ELECTRONS AT THE Z° POLE

We discuss here the left-right, A'R and the forward-
backward AFB asymmetries with longitudinally polarized
electrons. From Egs. (5.1) and (5.2) follows that at the
Zo pole the left-right asymmetry, AR, for two and three
jets are equal:

i _ 1 o(=Ph)—o(Pl)
p! a(—Pﬂ) + U(Pl—l)z jets,3 jets
2va 2(1—4sin®6w)
1+(1—-4 sin? Ow)? ’

=ara= (6.1)

where a(:tPﬂ) is the total cross section for two or three
jets. This implies that A'R is without gluon radiative
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and quark mass correction to first order in a,. The in-
dependence of the radiative corrections is a consequence
of the fact that the decay probability of the Zp parti-
cle, integrated over all final states, is independent of the
polarization of the created Zj, the left-right asymmetry
depends on the initial state only. The independence of
radiative corrections is therefore true to all orders in ;.
Note, however, that also the asymmetry for differential
three-jets cross sections is given by the same result:

d*o(—Ply  d?o(p!)
~ ~dzds _ 2va

1 dz dz
Pl #o(-Pl)  doPl)  a?4u? (6.2)
T T dzdz dz dz

For the forward backward asymmetry AF® an enhance-
ment of the cross section may be obtained with the use
of polarized electrons. From Eq. (5.1) and (5.2) one finds
that, for AFB at the Z° pole,

HAAKON A. OLSEN AND JOHN B. STAV S0

AFB _ op(Pl)—op@ly 1 A®R_pl
op(P!) +op(Pl) A 1-plair

xAFB(Pl =0), (6.3)
where, as given in Eq. (6.1),
2va
AR — 6.4
a? + v? (6-4)

and AFB(Pﬂ = 0) is the usual forward-backward asym-
metry for unpolarized electrons.

Equation (6.3) shows that considerable enhancement
of A¥B may be obtained with polarized electrons with
polarization |P!| > ALR. Note that Eq. (6.3) also is
correct for pure leptonic forward-backward asymmetries,
in which case AFB(PH = 0) is particularly small. The
use of polarized electrons may therefore in this case be
particularly useful.
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