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Gluon bremsstrahlung from massive quarks in high energy collisions of polarized
electrons and positions
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The gluon bremsstrahlung cross section e+e —+ qqg, including efFects of Snite quark and anti-
quark masses, is calculated for arbitrarily spin-polarized electron-positron beams. Mass efFects and
polarization effects are given and are shown to have a sizable in8uence on the cross section. It is
shown, however, that for the left-right asymmetry Al, z the mass corrections and radiative correc-
tions vanish at the Z pole. The use of longitudinal polarized electrons in measurements of the
forward-backward asymmetry AFz may give sizeable enhancements.

PACS number(s): 13.65.+i, 13.87.—a, 13.88.+e

I. INTRODUCTION by

Technique of obtaining spin-polarized high-energy elec-
tron beams have improved over the last years. Linear po-
larizations with an average value of 22.4% have recently
been obtained at the SLAC Linear Collider [1] and at
the DESY electron storage ring HERA transverse elec-
tron polarizations up to nearly 60% have been obtained
[2]. Calculations of the gluon bremsstrahlung from mass-
less quarks in high-energy electron-positron annihilation
for arbitrary electron and positron polarizations [3] show
that beam polarizations affect cross sections and asym-
metries in distinct ways. It has been proposed [4] that
Savor separation may be obtained by means of transverse
electron and positron beam polarizations. Further, it has
been shown that gluon linear and circular polarizations
are in6uenced by electron-positron beam polarizations
[4,5].

In the present paper we take into account the finite
mass of the quark and antiquark. A calculation of
gluon bremsstrahlung from massive quarks for unpolar-
ized beams was made by Grunberg, Ng, and Tye [6] (pho-
ton exchange only) and by Jersak, Laermann, and Zer-
was [7] who included Zo exchange. Recent calculations
of cross sections and asymmetries for unpolarized elec-
trons and positrons are given by Djouadi [8], Djouadi,
Kiihn, and Zerwas [9], and Arbuzov, Bardin and Leike
[10]. Related /ED processes are y,-ts creation processes
for massive p, particles with emission of photons in coOi-
sions of polarized electrons and positrons [11].

de dqd ~ =
64 (2 ) COlOF r 8q r 8q r 8

Here the matrix elements for aavor f is

2
MI = — '

[ QIL"H„— f(e)L"H„], (2.2)
s

with the electron and quark charges —e and ega, respec-
tively, and g, the strong-coupling constant. T is the
color matrix normalized such that

) Tr(T Ts) = 4.
a, b

The leptonic currents for p exchange, L", and for Z
exchange, Lz, are given by

L,"= u(p+ s+)V"u(»- s-)
(2 3)

Lz = &(&+ s+)&"(& —o»)&(&- s-)

for specified momenta p+ and p and polarizations s+
and s

The hadronic matrix elements including emission of a
gluon with polarization e„are similarly given by

H„= uy(q, sq)
g+ tt+mI

2qg
7p

II. THE GLUON BREMSSTRAHLUNG CROSS
SECTION

The cross section for the process

e+ + e m p, Z -+ q+ q+ (g),

/+A+ I~ ( )

f g+ /+mtH,z =us(q s.) K
2qg

&~(&I —&I»)

(2.4)

where a quark q, an antiquark q, and a gluon g are created
in the collision of an electron e and a positron e+, with
a photon or a S boson in the intermediate state, is given

&r ("I of») — ~ "f(q ss)
g+ g+mf

qg
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for speci6ed qn~xk, q, sz, and antiquark, q, sq, moxIlcnta
and polarisations, respectively. In Eq. (2.2) my is the
mass of the quark of Savor f, and f (s) is proportional to
the ratio of Zo and the photon propagators:

gitudinal and tre~~verse polarizations in the rest system
of the particles, respectively. In the laboratory system
the polarization four-vectors are

1 8
s

4 sin228~ s Mz2 + iMzl ~zt

where 8~ is the weak mixing angle, M2; is the mass and
I'~&~ the total width of the Zo. The standard model cou-
pling constants are

S~ = (So, S)~ = P~,P~+ Py I,ii Ip+I
m

satisfying the invariant relation

(2.5)

= —1+4sin Hg, a = —1,
vy = 1 —3sin 8~, af = —1,

for d, s, b, vf ———1 + 3sin 8~,

for e, v

for u, c, t, =2Qy=-, ,
1ay= —1, Qy= —3.

S~Sy „=—P~ ———(P~ + P~ ),
where P+ and P++ are the positron and/or electron lon-

In Eq. (2.1) we sum over quark, antiquark, and gluon
polarizations, while the electron and positron polariza-
tions are specified by the invariants

For a pure spin state S~S" = —P~~ ———1. Partial polar-
ized states P2+ ( 1 are described by the density matrices

p(p~, Sp) =
~ (1+ps/+)(P+ p m, ),

p(p+ S+) = -'[1+& (0+ +P+)]8+ (2.6)

The cross section Eq. (2.1) is obtained from the matrix
element, Eq. (2.2):

with S~ given by Eq. (2.5). For high electron-positron
energies p simpli6es to

5~ A —') (L""H~ „„+2Rf( )L""H~ „„+If( )I
"" ~ „„j,' f

(2.7)

where y is the azimuthal angle of p in the coordinate system with the z axis along g, and the leptonic tensors are
given by

L""= 4L"L~' = 4Trp"p(p, s )p"p(p+, s+) =:"I~"+ (L2" —Ls",
I"z ——4L"Lz' = —(v" —af)L~" —(v( —a=)L2" + vLs"" + aL4",

Lzz ——4L~&Lz' = [(v + a ):- —2va(]L~" + [(v + a )g —2va=]L2" —(v —a )Ls"",
(2 8)

with

L&" = 4(p+p" + p" pp —g""p+p )-
p& ~ pv a pL,, = —4ie pp+p

(2.9)

Ls" = 4(p+I )(P+ "P "+P-"P+")+ (P+P-)Li"

L,""=«..&, [P, p'g'"(P 'S" P "p') -(p+ -P, ~ p P)l- (2.10)

Here " = 1 —P+~~P and ( = P —P+ with the four-vectors P++ = (O, P++). The hadronic tensors are similarly given
by

colo''8 Sq Sq

H~ H~' = 8sQyH~~„„,

where

H,',„„=)H„,H„'z = 8sq, [v,Hv„„—a,H„'„„],

Hzz~ = ).Hi zH z = 8s[(vf + af)Hv pa
—2ayvyH&~ + 2a fm fHy ~ ),

(2.11)
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4 (,Qg&
~y „„= l Qq —~y [Qpq-+ Q-qp —gg (Qq)]

qg

— Q —2~f qpL +~f [(Qg)gp- g-pg-]+ (q ~ q)
2Qg

qg )

—4 ( QgH~„„= s„„p Qq —m] q Q —(q W q)
qg qg ( qg)

(2.12)

Zf 4 (
ev „„—— qq —m~ —g„„+g„g„+(q ~ q)

qg qg ~ qg&

The cross section may then be written in the form

d'0.

dOdydxdz
Ck C1 1

(2x)2 s (1 —z)(1 —z)

x ) (hy (a, P P+)Xo+ hy (a, P P~)YO+ h~ (a, P P+)Zo
f

+hy (s)X, + hyle(s)Y, +

he'll(a)Z.

),
where the coupling functions, depending on energy, Qavor and linear polarization are given by

(2.13)

h& (a, P P+) = Q&= —2Qy Ref(a) (v= —a()vy +
~ f(s)

~
[(v + a ):- —2va(](v& + a&),

h& (s, P P+) = —2Qy Ref(s)(a= —v()ay —2~f(s)~ [(v + a )( —2va=]vga',

h& (a) = Q&
—2Qy Ref(s)vvy + ~f(a)~ (v —a )(v&+ a&),

h&l (a) = 2Qy Imf(s)ave,

(2.14)

h& (a, P P+) = 2~f(s)~ [(v +a ):- —2va(]a&,

hy '(a) = —2lf(s) I'(v' —a')ay .

It is convenient to de6ne hf kf Af kf hf
(~)+ (~) (~)- (~) (5)

h& +(s, P P+) = Q&- —2Qy Ref(s)(v= —a()vy+ ~f(s)~ [(v +a ):- —2v+](v& + a&),

and in the same way, hf kf Af kf El'f
(3)+ (3) (3)- (3) (6)

h& (s) = Q&
—2Qy Ref (s)vvy +

~ f(s) ~
(v —a )(v& + a&) . (2.15)

Here h& (s)-h& (a) are the same function as in Ref. [3]. The X', Y, and Z functions depending on angle and(&) (4)

particle energies and momenta and on transverse electron and positron polarizations are obtained as
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X() —— 1 — [x (1+P cos 8) +my]+ [x (1+cos Hs) —8xs]+ (x w z, H m 8),

r
—2mf g

Yo ——2 x — xP cosH —(z m x, 8 m 8)
2 1 —x)

m~ ( r m~
Zo ——— 4 1 — —x (1 —cos Hg)

—4xs
4

~
2 1 —z

(2.16)

X, = P P+ 1 — ~ s z P sin Hcos(2(t) —P+ —(t) )2 1 —z)
—2

z sio Hs cos(28s —Hs —
Hi ) + (z so z, H so 8, 8 so 8)),g

—2

Y, = P P+ z sin Hs cos(24)s —(t)+ —P ),B — + 4 g

mf g
Z, = PP+ — 1 — z P sin 8 sin(2()t) —P+ —P )

—2

+ z siz Hs siz(28s —Ho —8) ) + (z cs z, H so 8, 8 so 8) .
4 g

Here P and P— are the quark and antiquark veloci-
ties, respectively, with xP, zP—the scaled momenta and
my = my/E the scaled quark mass of Savor f The.
polar angle Hs is the angle between p and the gluon
moment»m g; &om the q, q, g triangle it follows that

zscosHs = —xP cosH —zP-cosH .

zs sinHs cos()t)s = zP sinH c—os/ —zPz sinH cos(t),

zs sinHs sin(t)s = xP sinHs—inHt) —zP—sin8 sing .
(2.17)

The transverse polarizations are in the same way de-
scribed in a plane perpendicular to p

Py = Py(cosgy, sing~, 0) .

The azimuthal angles are related to p as polar axis,
defined in a right-handed sense; the q, q, g triangle gives

The cross-section differential in angles and energies for
initially arbritarily spin-polarized electrons and positrons
may then be written in the form

d'0.

dOdyde dz
A O.'B 1

(2)l') 2 8 (1 —x) (1 —z)

2 1 —x)

+P P~ z P sin 8[h~~ l+(s)cos(2$ —P+ —P ) —hf (s)sin(2$ —P+ —())) )]}
—2 —2

—2

+P+P++ ~ x sin Hs[h&~
l (s)cos(2$s —p+ —p ) —

h& (s)sin(2$s —Ht)+ —(t) )]+ 4 g

+(x ~ z, P. ~ P.—,8 ~ 8, P ~ P)

m~
~
zp cosH —(z ss z, 8 so 8)

2 1 —x) (2.1S)
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This way of presenting the gluon bremsstrahlung cross section shows clearly the relation to the cross section for
creating qq pairs &om a~~ihilation of polarized electrons and positrons, e+e -+ qq, which is easily obtained as

dO 4s= ——P) (h,""(a,PIIPII)(I+P'cos'8)+ h,"' (a, PIIP )m',
f

+P P+P sin 8[h& (a)cos(2$ —P+ —P ) —
h& (a)sin(2$ —P+ —P )]+2h& (a, P P+)Pcos8), (2.19)

where P is the velocity of the quark or the antiquark. It should be noted that P, P—and P in Eqs. (2.18) and
(2.19) always appear in the momentum components xP cos8, xP sin8 as compared to the case of massless quarks of
Ref. [3], where the P's are all unity.

The cross section as a function of the angle and energy of the quark and the energy of the antiquark is obtained
from Eq. (2.18) by integrating over the azimuth angle y of p with q the polar axis. The equations expressing the
antiquark emission angles 8 and P in terms of the quark angles 8, P, and y and of the angle between the quark and
antiquark momenta 8 are

sin8 cosP = (—cos8 cosy sin8 + sin8 cos8)cosP —sin8 sinysinP,
sin8 sing = (—cos8 cosy sin8 + sin8 cos8)ain't + sin8 sing cosP,

cos8 = cos8cos8+ sin8sin8cosy,
(2.20)

where 8 is given by

x P z P sin 8 = 4(1 —x)(1 —z)(1 —xa) —myz

xP zP-cos8 = —xz —2(1 —x —z) —m~ .

The cross-section difFerential in the angles 8 and P and in the energies z and z is found to be given by

(2.21)

d 0 o. o. ) Pg(z, z){h~ +(a, PIIP+II)(1+ cos 8)
dAdxdz 2z a (1 —z)(1 —z) -

(
' ~ ' +

f
+P P+ sin 8[h& +(a)cos(2$ —P+ —P ) —h~&)(a)sin(2$ —P+ —P )])—2

~&2(z, z)(h~& ) (a, P P+)cos 8+ P P+ sin 8[h& (a)cos(2$ —P+ —P )2
—

h& (a)sin(2$ —P+ —P )]j+2h~& (a, P P+)Xs(z, z)cos8+ h& +(a, P P+)%4(z, z)
—2

f h( )—
( PIIPII)~ (

—
)4 f (2.22)

where the quark and antiquark energies are contained in the functions

mf &g g 2 mf
Xg(x)z) = 1 — x P~+ 1 — z P—(1 —2sin 8) )

%2(x, Z) = x P + z P—(1 —2sin 8) + 2zP zP-cos8 = x —2x P—sin 8,

( m', x, ) m2~ x, ~
Es(x, z) = z — xP~ — z — xP~ cos'8,21 —x)~21—zi

x P~in 8 + m2 2 + z2 1—
2 1 —z) a

( 2(l —z)(1 —z) )
Xs(x, X) = X2P~2in28 —2(x2 + 4xa —4) —2m2

~(1 —x)(1 —x) '

(2.23)

with 8 given by Eq. (2.21).
It should be noted that polarization and quark mass effects are contained in dHFerent functions: h&i (a, P P+)

and h& (a, P P+) depend on a and the longitudinal polarizations only, while Xq(x, z) —Xs(x, x) depend on z, z only(2) II II

and contain the quark mass mf.
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Experimentally the most interesting case is at present one polarized bum. For longitudinally polarized electrons
to a degree P and unpolarized positrons the cross sections, Eq. (2.22) simpliSes to

d40- a' o, 1

dAdzdz 2z s (1 —z)(1 —z)

—2

x ) hy +(s, P )Xg(z, z)(1+cos 8) + h(y) (s, P ) ~%2(z, z)cos2t))
f

+Ihs (z, p )ps(z, z)sosI+hs +(s, p )%4(z, z)+hs (s, P ) Ps(z, z))4

with:" = 1 and (r = pll .

(3.1)

h +(s, P ) = Q&
—2Qy Ref(s)(v —aP )vy + (f(s) ) [(v + a ) —2vaP ](v& + a f)

h (s, P ) = —2Qy Ref(s)(a —vP )ay —
2~ f(s)~ [(v + a )P —2va]vga',

h (a, P ) = 2if(s)i [(v'+a') —2vaP ]ay .

(3.2)

A measure of the importance of the polarization may be obtained from the quantities

h( )(s Pll) h(*)(s Pll)
Ry' (E)P =

( ) ll ( ) ll, i = 125.
hy' (s, P )+hy' (s, P)— (3.3)

We show, in Fig. 1, R&' (E) for a range of energies. We use sin egr = 0.23 and Mz = 91.2 GeV, I'z = 2.48 GeV.~ (i)

In order to indicate the effect of the quark mass we give in Fig. 2 the functions Eq(z, z) and Ps(z, z) for z = z,
i.e., zs = 2(1 —z), (1 + m~&)/2 & z & 1, for mf = my/E = 0.0, 0.05, and 0.5.
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FIG. 1. The polarization asymmetries R(&') (E)I Eq. (3.3),
as function of the total e+e energy. The solid curves:
Qr =

3 quatks, u, c t. DasIhed curves: Qy = —— quarks,
d, s, b.

FIG. 2. The form factors Xq(z, z), and Xs{z,X) with z = z
for mg = my/E = 0.0 (solid curve), mr = 0.05 {dashed
curve), and mr = 0.5 (dot-dashed curve).
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IV. TRANSVERSELY POLARIZED ELECTRONS AND POSITRONS

6781

For electron and positron antiparallel transverse polarizations, (t[+ ——P + z', the cross section Eq. (2.22) becomes

d40. O.2 O., 1
d cos8d4 dzdz 2z s (1 —z)(l —z)

x ) Xi(z, z)(hy~ i+(s)(1+cos 8)

+P P+ sin 8[h& (s)cos2((t[ —4[ ) —
h& (s)sin2(P —4( )])—2mf+ ~&q(z, z)(h&~

l (s) cos 8+ P P+ sin 8[h&~ (s) cos2(P —P )

—hy~ l(s) sin2(4[ —P )]) —2

+2hy~ l(s)Ps(z, z) cos 8+ hy +(s)%4(z, z) + hy'l (s)Xg(z, z)
4 f (4.1)

where h& (s) = h&" (s, 0, 0) (:- = 1,( = 0) for transverse polarizations, and where the spin azimuthal angle P —P is(n) (n)

measured &om the p —q plane.

V. THE CROSS SECTION AT THE 2 POLE
VfITH LONGITUDINALLY POLARIZED ELECTRONS

We consider here specificly the cross section at the Ze pole. From Eq. (2.19) we obtain for the two jet cross section,

e+e -+ qq, for electron polarization PII and unpolarized positrons P+ ——0,

dO 4s ~ f(s)[ P (v + a —2vaP ) ) [1+P cos 8)(v&+ a&) + m&(v& —a&)]

(5 1)

Correspondingly, for three jets, e+e ~ qqg, from Eq. (3.1),

l f(s) I'
dOdzdz 2z s (1 —z)(1 —z)

xf (v +a —2vaP )) (1+cos 8)(v&+a&)Pz(z, z)+m&cos 8(v& —a&)Xq(z, z)

mf
+(vf + af)%4(z, z) + ~ (vf af)Pg(z, z)

—2[(v +a )P —2va]P cos8) vgayXs(aa) ) .
f

(5.2)

VI. ASYMMETRIES W'ITH LONGITUDINALLY
POLAMZED ELECTRONS AT THE Zo POLE

We discuss here the left-right, A and the forw'ard-
backward A asymmetries with longitudinally polarized
electrons. From Eqs. (5.1) and (5.2) follows that at the
Z(] pole the left-right asymmetry, A~R, for two and three
jets are equal:

II II

Ar.R 1 ~( P )n(P )--
Pll 0( PII) + ~(PII)

2va 2(l —4 sin2 8w)
+v 1+ (1 —4 sin 8w)2

where 0 (+P ) is the total cross section for two or three
jets. This implies that A is without gluon radiative
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d (F( PII )
da dÃ

d~o( —P )
da da

d cr(PI )
da de

d (PII )
dR dÃ

2VG

g2+p2 (6.2)

For the forward backward asymmetry AFn an enhance-
ment of the cross section may be obtained with the use
of polarized electrons. From Eq. (5.1) and (5.2) one finds
that, for AF at the Z pole,

and quark mass correction to first order in a, . The in-
dependence of the radiative corrections is a consequence
of the fact that the decay probability of the Zo parti-
cle, integrated over all final states, is independent of the
polarization of the created Zo, the left-right asymmetry
depends on the initial state only. The independence of
radiative corrections is therefore true to all orders in o,
Note, however, that also the asymmetry for differential
three-jets cross sections is given by the same result:

(Pll ) (Pll ) I gr.R Pll

(Pll) + ~ (Pll) A1R I Pll gr.n

xX"(Pll = 0),
where, as given in Eq. (6.1),

j R 2VQ

g2+ ~2

(6.3)

(6.4)

and A~+(P = 0) is the usual forward-backward asym-
metry for unpolarized electrons.

Equation (6.3) shows that considerable enhancement
of A may be obtained with polarized electrons with
polarization IPll

I » ALR. Note that Eq. (6.3) also is
correct for pure leptonic forward-backward asymmetries,
in which case AF+(Pll = 0) is particularly small. The
use of polarized electrons may therefore in this case be
particularly useful.
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