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Next-to-leading-order corrections to inclusive hadron photoproduction
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We present a complete calculation of next-to-leading-order corrections to inclusive hadron photo-
production. We take into account all contributions &om resolved and unresolved photons and apply
the results to m production at CERN LEP 2 as well as at the DESY ep collider HERA where we

study in detail the scale dependence of the cross section. In addition compact analytical expressions
for the matrix elements for all the direct contributions to both cross sections are presented. We also
make a comparison with existing single tag data on inclusive charged hadron production.

PACS number(s): 12.38.Bx, 13.60.Le, 13.60.Rj, 13.65.+i

I. INTRODUCTION

Recently, new experimental data on the photoproduc-
tion of hadrons have started to appear &om both the
KEK e+e collider at TRISTAN [1] and the DESY ep
collider HERA [2]. The current data exist at relatively
low pz only, but it is still both necessary and desir-
able that they be con&onted with next-to-leading-order
(NLO) calculations whenever possible in order to provide
quantitative tests of perturbative /CD. It is also antici-
pated that the range and quality of the data will soon be
extended and improved at both HERA and the CERN
e+e collider LEP 2. &furthermore, it is hoped that the
photoproduction of prompt photons will be studied at
HERA very soon [3—5] and no photoproduction will be
an important background to these processes. Inclusive
hadron production is also in itself interesting since it can
and has been used to tie down important /CD parame-
ters such as structure functions and the much neglected

fragmentation functions. With this in mind we have cal-
culated all the higher-order [O(o.,)] corrections to the
photoproduction of inclusive hadrons relevant for both
e+e and ep machines. The inclusive hadron photopro-
duction cross section in e+e collisions has been previ-
ously measured [6—8], but at rather low center-of-mass
(c.m. ) energies. Comparisons between theoretical pre-
dictions and some of these data have shown discrepancies
which have been attributed to various causes. We shall
discuss this point more extensively later.

It is customary when considering photoproduction pro-
cesses to separate those contributions to the cross section

where the photon interacts via its pointlike electromag-
netic coupling &om those where it does so via its par-
tonic constituents. This defines the so-called direct and
resolved processes [9]. When considering pp interactions,
for example, the labels direct and resolved are sufficient
to define the classes of processes, but in the case of pp
collisions there is the additional case where both pho-
tons interact via pointlike couplings. In this paper we
will adopt the convention whereby, when discussing pp
collisions, we identify the three following classes of con-
tributions to the inclusive hadron cross section: the di-
rect contributions where the photons couple directly to
the quarts produced in the hard scattering process [Fig.
1(a)], the once-resolved contributions where one photon
is resolved into its partonic constituents before interact-
ing with the other [Fig. 1(b)], and the twice-resolved con-
tributions where both photons interact via their partonic
constituents [Fig. 1(c)]. In the first case there are no
hadronic fragments or spectator jets &om either photon,
whereas in the latter two cases such fragments are pro-
duced in each event, in one or both beam directions, for
once- and twice-resolved processes, respectively. When
we discuss pp processes, we will use the usual labels of
direct and resolved contributions as defined in Fig. 2. As
much as possible, we wiQ keep the discussions of the two
reactions separate.

It may be possible for the photon &agments produced
in the reactions to be tagged, thereby providing a means
of separating the three classes of processes, but as has
been discussed elsewhere [10—13], this simple separation
is no longer so clear from a theoretical point of view

e+

FIG. 1. Examples of (a) direct, (b)
once-resolved, and (c) twice-resolved pro-
cesses in quasireal pp scattering at e+e ma-
chines.

a) b) c)
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a) b)

FIG. 2. Examples of (a) direct and (b) resolved processes
in quasireal pp scattering at HERA.

when higher-order (HO) corrections are taken into ac-
count, since a residual scale dependence is introduced
into each class of process which is only canceled by a
simi&ar dependence in one of the other classes. Neverthe-
less, the artificial separation can still be made as long as
care is taken that the scales are not mismatched when
the sum is taken for the full inclusive cross section. We
will discuss this point in more detail in Sec. II.

The relevant matrix elements to perform a complete
calculation, although all obtained before [14,16], to our
knowledge, are not all freely available. This applies
specifically to the case of one pointlike photon. We have
thus calculated all the matrix elements involving the di-
rect processes, i.e., one or two pointlike couplings of the
photon in the initial state, again and present the results
in a compact form in Appendixes A and 8 for the con-
venience of future users. We discuss the details of our
calculation in Sec. II. We will use the integrated matrix
elements of Ref. [16], which are available in a FoRTRAN
code, for the twice-resolved or resolved processes.

In the case of photoproduction of x at HERA, a calcu-
lation has been published recently [17] where the matrix

I

elements of Ref. [16] were also used to obtain the re-
solved contributions, but the direct contributions were
estimated in leading order (LO) only, and fragmenta-
tion functions evolved in LO only were used. Recently,
charged hadron production at HERA has been studied
by the same authors where the direct contributions are
also included using the matrix elements of Ref. [14], ob-
tained via a private communication [18]. In the case of

production at LEP 2, to our knowledge no calculation
has yet been performed, and the results presented here
should in any case be the first full NLO calculation.

At this stage a complete and consistent NLO calcula-
tion can be performed since recently parametrizations of
the &agmentation functions for partons into a x have,
for the first time, become available in NLO [19]. In this
calculation we make use of the proton distribution func-
tions of Ref. [20] and use parton distributions for the
photon from Refs. [21,22], which are available in both
LO and NLO.

The outline of this paper is as follows. In Sec. II we
develop the theoretical background to the calculation. In
Sec. III we discuss the details of our calculation of the
matrix elements. In Sec. IV we present our numerical
results and make a comparison with the Mark II single
tagged data, and finally in Appendixes A and 8 we list
the matrix elements.

II. THEORETICAL BACKGROUND

A. Inclusive m cross section at LEP 2 and HERA

We wish to study the reactions e (P1) + e+(P2) -+
m (Pp, ) + X and e (P1) + p(P2) + m' (Pg) + X at LEP
2 and HERA, respectively, where X includes all unob-
served reaction products including the scattered leptons.
At LEP 2 we can write the cross section as

1 1—(1—V)/z d 1

f (z1, M )f+(xz, M )"P &S . . 1—v+vw z vwy~ 1 v vwy» w
~te7$

2

xDP (z, MFs) — '
b(1 —w)+ '

K;~ i(s, v, w, p, M, MF)
v dv 2'

where S = (P1 + Pz), & = (P1 —Pa), U = (P2 —Pa),
x1 ——VW/vwz, xz ——(1 —V)/z(l —v), and s = xtxzS.
The Mandelstam variables are de6ned as usual with
uppercase letters defined for the electron-positron sys-
tem and lowercase letters for the parton-parton system.

f (x1,M ) and f+(x&, M2) represent the probability of
finding a parton, including a photon, in the electron and
positron with momentum &actions x~ and x2, respec-
tively, at scale M, i.e., the "electron structure func-

0
tions, " while D1 (z, M&s) is the usual fragmentation func-
tion for parton / into a vr . The variables V, R', v, and
m are de6ned in terms of the Mandelstam variables by
V = 1+ T/S, W = —U/(S+ T), v = 1+ t/s, and
w = —u/(s + t) The first term . in the square brackets
is the LO contribution to the hard subprocess scattering
cross section, while the second term in the NLO contri-
bution.

We make use of the Weiszacker-Williams approxima-

tion [23] to estimate the fiux of quasireal photons from
the electron and positron beams. In order to ensure that
the photons participating in the reaction are almost real,
thereby justifying the use of the real photon structure
functions, we restricted the angle for the scattered elec-
trons and positrons to be less than 8 = 5 in the formula

(2)

Here E, is the electron and/or positron beam energies,
m their masses, and a the electromagnetic coupling
constant. We present results for a 6xed beam energy
E, = 100 GeV, relevant for LEP 2. According to the
results of Ref. [24], the error introduced by using this
approximation at these small angles should not be greater
than a few percent.
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The structure functions for finding a particular parton
in the electron or positron, f ~+(z;, Q2), with momen-
t»~ &action x; is given in the Weiszacker-Williams ap-
proximation by a convolution with the function f~~ (y)
given in Eq. (2):

'dy
f'(** q') = f—,g.(y)f' —' Q'

y

where f f is the photon structure function. Thus the
photon structure functions are evaluated at z~ = z;/y;,
and in the parton-parton c.m. system the Mandelstam

I

variable 8 is given by

7 7s = 2:~z2yyy2S .

When one or both photons participate directly in the
hard scattering, then the appropriate structure func-
tion(s) must be modified. This is achieved by replac-
ing the photon structure function(s) by a delta func-
tion b(1 —z;/y) in Eq. (3). This replaces Eq. (3) by
f*(*' q') = fgy. (z').

The reaction we will study at HERA can be written in
a similar form to Eq. (1), but now we must replace the
"positron structure function" by the proton distribution
function f~(z, M2). The equation becomes

d0'

d3p

1 dz ~ d

1—V+VW z VW/s VW/esi,j,l

1 d&ij~l ~e(P ) - 2 2 2
XDp (z, MZ) — h(1 —u))+ K;,~i(&I&Iu), If IM IMQ) 'I

v dv 2'

and z2 is set to z„while y2 is set to 1 in Eq. (4).

B. Real photon in hard scattering processes

In this section we give an outline of the»pique behavior
of the photon in hard scattering reactions. In particular,
we explain why the separation of the cross section into
resolved and direct contributions is no longer well defined
when NLO corrections are taken into consideration. We
present the discussion for pp scattering, but note that
the ar~~»)ent is equal valid for p-hadron scattering,
although then the starting point is, conceptually at least,
equivalent to the once-resolved case.

The /CD factorization theorem [25] provides us with
a prescription for calculating the cross section for the
production of a hadron H from the high-energy colli-
sion of two incoming hadrons A and B starting with the
schematic parton model formula

d«"««» = ) J dz, f dzz J dz f"(z,)f (zz)
Cl) b2C

xdcr ' D, (z) .

The cross section is thus factorized into a short-distance
"hard" scattering cross section de which is calculable in
perturbative /CD and the long-distance structure and
fragrddentation functions f (zq) I f (z2), and Dray, (z),
respectively, which are not calculable in perturbative
/CD. The s»limation in Eq. (6) is to be taken over
all possible parton types, including in our case photons,

I

I

which may participate in the hard scattering reaction.
When radiative corrections are taken into account, the

structure and &agmentation functions acquire a scale de-
pendence, which is typically taken as approximately the
order of magnitude of the transverse moment»m squared
(p&2) of the produced hadron, but is not uniquely defined
in the theory. Given measured values for these functions
at some arbitrary scale Qsz, perturbative /CD can be
used, via the Altarelli-Parisi evolution equations [26], to
predict their values at any higher scale Q2. We thus
have a clear recipe for calculating the cross section which
consists of combining hard scattering cross sections with
evolved structure and kagmentation functions according
to Eq. (6).

In LO in /CD the structure and fragmentation func-
tions are evolved from Qo using the LO Altarelli-Parisi
evolution equations and the hard scattering cross sec-
tion is calculated in the Born approximation; i.e., only
2 + 2 scattering is explicitly considered. The contri-
butions from gluon radiation off quarks and gluon (or
photon) splitting into quark-antiquark pairs are implic-
itly taken into account in the collinear limit only. This
procedure represents an all-orders calculation, but one
where only leading logarithms in the perturbation series
are retained and summed [27]. A consequence of this
treatment is that there is no factorization scheme depen-
dence in the cross section because no explicit factoriza-
tion procedure is carried out. Applied to the case of pp
scattering, the schematic formula [Eq. (6)] becomes

+ d~~ ~~, M' dk + dh2,' x I' do.7
C O)C b,c

+ ) .f dzzf (zz, M ) J dzzfz (zzM)dd D«I(,zM«)', ,
a,b,c
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The first term is the direct contribution, while the sec-
ond and third terms are the once- and twice-resolved
co~zibutions, respectively. It should be stressed that,
in leading order, Eq. (7) represents a calculation where
all the three contributions are O(a2 ). This is de-
spite the fact that the hard scattering cross sec-
tions for the three classes of processes are O(a2 ),
O(a, a, ), and O(a2) for the direct and once- and
twice-resolved processes, respectively (see Appendixes
A and B). The reason for this is the unique depen-
dence of the photon structure function on the cou-
pling constants [28]. It is proportional to cx, /a,
and can cancel one (two) powers of a, in the once-
(twice-) resolved processes. Note also that the direct pro-
cess is a pure /ED process involving only electromagnetic
couplings in LO. The presence of the /CD processes in
Eq. (7) is a direct consequence of the coupling of the pho-
ton to a qq pair befog interaction with the other photon.

One very important feature of the LO calculation as
outlined above is that the hard. subprocess cross sections,
except for the direct case, are only scale dependent via
the renormalization scale p2, through the LO /CD cou-
pling constant

(8)

do (LO) + o.,K(s, v, m, p, M, M~), (9)

where the explicit dependence on M in the second term
cancels to some extent the M dependence of the LO
cross section [Eq. (7)] as a result of the structure func-
tion dependences on M via the Altarelli-Parisi evolution
equations. A scale cancellation mechanism also exists
for the other scales, but since these are the same as for
hadron-hadron processes and we are mainly concerned
with the unique behavior of the photon, we do not dis-
cuss them here. As we shall see in the case of photopro-
duction processes, the simple separation into direct and
resolved photon contributions, which was well defi+e in
LO, is no longer so well defined.

Consider what happens when O(o.,) radiative gluon

where pe ——11—st, A is the /CD mass scale, and Ny is
the number of active quark Savors. The full cross section
is of course dependent on the choice of the scales M2 and
M&, where the collinear sing~~~arities, implicit in the LO
treatment, are absorbed into the structure and &agmen-
tation functions, respectively. This treatment, in which
only leading logaritbruic terms are retained in each part
of the factorized cross section, leads to a strong depen-
dence of the cross section on the choice of these arbitrary
scales. This is one of the main drawbacks of the LO
calculation. As we shall show below, performing the cal-
culation in NLO usually leads to a sigm&cant reduction
in this scale dependence as a result of a scale dependence
cancellation mechanism which works as follows. As in Eq.
(1), the hard scattering cross section in NLO is written
as

b)

c)

FIG. 3. (a) Lowest-order (Born) diagram contributing to
pp scattering. Examples of (b) virtual and (c) real emission
diagrams contributing to the 77 scattering process at O(a, ).

corrections are calculated for the direct contribution in
Eq. (7), where c is a quark. First of all, we have the
interference between the virtual diagrams in Fig. 3(b)
and the lowest-order Born diagrams in Fig. 3(a). The
calculation is performed in 4 —2e dimensions [29], where
all ultraviolet, collinear, and infrared (soft) singularities
encountered show up as poles in e. Singularities from
simultaneously soft and coL»near regions of phase space
are represented as double (1/es) poles. First, the ultra-
violet poles are subtracted ofF by choosing an appropri-
ate renormalization scheme. In our calculation we use
the modiSed minimal subtraction MS renormalisation
scheme, where the poles are subtracted along with at-
tendant Euler constant p@ and ln4x [30].

The next step is to calculate the real gluon emission
processes in Fig. 3(c). The method for performing this
will be outlined in the next section. Here we only consider
the structure of the results. Performing the calculation
in 4 —2e dimensions, all soft and co%near singularities
are exposed as poles in e. Adding the result to the virtual
corrections leads to a cancellation of all soft and double
poles. The remaining coiiiuear poles must now be fac-
tored into the structure and &agmentation functions at
scales M2 and MP (in the MS scheme in our case). This
procedure creates a dependence of the hard cross section
on the scales Ms and M&s, which are shown in Eq. (9)
in the second term.

One must recall that the process we are considering
here is the direct scattering of two photons and that the
scale M2 corresponds to the scale at which the photon
distribution function is tested. This clearly m~~ that
in NLO the direct processes are no longer independent of
the once-resolved processes. A s~~i&ar' argI~~ent wouM
show that the same situation is encountered between the
once- and twice-resolved processes.

To be more specific, we consider now in detail the can-
cellation mechanism for the scale dependence and show
explicitly the interdependences of the various contribut-
ing processes. In NLO we can rewrite the schematic pro-
cess in Eq. (7) in the form
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»-sBX d ) d"» + g» &(sv & M M )

CL~C

2)

b,c

+ ) dzgf~(zg, M ) dz2fq~(zg, M ) do ' + " 'E ' (i, v, m, p, M, Ms)
C)b)C

x DIES),(z, Mp), (io)

using the same notation as before. Note that, for brevity, we have not explicitly written out the dependences of
the hard subprocess cross sections on the couplings a,m and o.„but only the relative 0(a, ) dependences of the
HO processes with respect to their LO counterparts. As stated above, we consider dependence on the initial state
factorization scale M only since the dependence on p and M& is similar to the case for purely hadronic processes.

Neglecting the M -independent LO contribution to the direct process, as a result of factorization process, we can
rewrite the three contributions to the hard subprocess cross sections in the forms

2'

do'~ = f~ e der'~+ ' P ader'~+ 'P; *do~—~ ' ln +k'~(s, vm, y, , M ) (12)

and a similar form for do~~, plus

der'~ = fP f~ e* do'~+ ' P;s ado ~+ 'P~~ *do" —ln + k*~(s, v, m, p, M )s2' 21r 2 (13)

(P;~ s der*~ + P~~ *der~~)
8(do») a,
8 lnM2 2m

(i4)

and

BK'~+f7 g+„,

where Eq. (15) follows from the inhomogeneous evolution
equation for the photon structure function

where the general convolution is represented by +, the
terms k represent the HO contributions independent of
M2, and s»limation over repeated indices is implied. We
have written explicitly only the coupling constants con-
nected with the splitting functions and absorbed the oth-
ers into the structure functions and hard subprocess cross
sections.

To see the variation with M2, as an example, we dif-
ferentiate Eqs. (11) and (12) with respect to lnM2 and
obtain

~f; csem p ~s p (16)

Thus we see that the scale dependence of the direct con-
tribution is canceled by a corresponding dependence in
the once-resolved process, controlled by the inhomoge-
neous term in the evolution equation for the photon
structure function [first term in Eq. (16)]. We have
not explicitly shown the corresponding cancellation be-
tween the once- and twice-resolved processes which are
controlled by the homogeneous term in Eq. (16), but an
examination of Eqs. (12) and (13) will show that this
cancellation does indeed occur.

The scale dependence cancellation mechanism between
the once- and twice-resolved processes is of sinai&ar form
to that between the direct and resolved contributions in
p-hadron interactions and were considered in Ref's. [11]
and [13]. In the former reference it was shown explicitly
how the scale dependence of the NLO direct component
is canceled by a simi&ar dependence in the resolved con-
tribution to O(a o.2).

This concludes our discussion of the separation of di-
rect and resolved contributions to photoproduction where
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we have demonstrated the di8iculties involved in this
naive separation beyond the leading order. We now give
a brief discussion of the standard methods for integrating
the matrix elements.

III. INTEGRATION OF MATRIX ELEMENTS

We consider first the direct contributions to pp scatter-
ing. The virtual corrections can be obtained from many
sources [11,31—33] or even, in principle, from virtual cor-
rections to processes such as qq -+ pg which can be found
in the literature, but they are also quite simple to calcu-
late. We checked our results against those of Ref. [33] af-
ter removing non-Abelian couplings and adjusting color
factors and found complete agreement. We do not give
the results here since they were already presented in Ref.
[15]. All the relevant integrals needed to perform this
calculation can be found in Ref. [34].

The 2 ~ 3 process we need to consider is

The matrix element was obtained from Ref. [35], where it
was calculated for the process gg + qqp by first crossing
and then removing the non-Abelian couplings by settiag
N~ to zero and finally adjusting color factors. The next
step is to integrate over the phase space of the unobserved
final state partons. Thus we wish to calculate the cross
sections for the processes

pp m q+X,
pp -+ q+X,
pp w g+X.

Clearly, the first two processes wiH give identical results.
The method for performing the phase space integrals
for the matrix elements has been extensively discussed
elsewehere and can be found, for example, in [36].

The phase space integrals for pp m q(q) + X yield
results containing 1/e as well as 1/e poles, while for
pp ~ g + X only the latter are produced. The latter
process has no virtual contributions at O(o.,), and thus
integration of the 2 -+ 3 matrix elements and factoriza-
tion of the collinear singularities completes the calcula-
tion. For the inclusive (anti)quark production processes,
the virtual corrections are added to the 2 ~ 3 contri-
butions, in which case all 1/e poles immediately cancel

[

out. The remai~~ng collinear poles must now be factor-
ized as discussed in the previous section. As previously
stated, we perform aH factorizations in the MS scheme.

We take this opportunity to note that for a consis-
tent implementation of the MS scheme the spin averaging
for the incoming photons and gluons should be taken as
1/[2(1 —e)] and not 2 as was done in Ref. [14]. Through-
out our calculation we use the former choice and indicate
the difference between the two by the parameter A (Ap-
pendixes A and B).The choice A = 1 corresponds to the
MS scheme.

The remaining 2 m 3 processes calculated in this paper
all contribute to the once-resolved processes. They are

~q ~ g+g+q
vq ~ q+q+q

+q+q +q
vg ~ g+q+q

(19)

which are integrated to give the inclusive processes

pq w q+X,
vq ~ g+X
gwq+X,

wq~ qg

where calculated in Refs. [14] and [33], respectively. We
use these results in our calculation after checking that
crossing the results of the latter yields exactly the results
given in the former reference. The unintegrated 2 ~ 3
matrix elements calculated in Ref. [35] were again crossed
to obtain those for the processes in Eq. (19).

The procedure for integration of the matrix elements
and factorizing the collinear singularities is again the
same as outlined above, and our final results are pre-
sented in Appendixes A and 8, where they are given in
the form

pg -+ g+X,
pq —+ q+X,
pq -+ q'+ X,

where antiquarks are also implied. The first three pro-
cesses all have contributions &om virtual diagrams. The
virtual corrections to the processes

vvv

+O'soem

(~'l - (~' l (p'l
cg+ cg ln „+cg ln „+cgln —„b(1—vu)')

&
') &')

ln(1 —~)+ c2+ c2ln „+c2ln „+css ) 5
s ) 1 —ca+ 1 —tv

+cs ln v + cs ln(l —vm) + cy In(1 —v + vm) + cs ln(l —v) + cp ln tv

(Mvl = (Mvl 1v(1 —v+vw) law (v — )+cyp ln(l —m) + czar + czar ln + czar» + cz2 +cps +c&4 (2 )1 —m 1 —tD 1 —VD
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(ln(1 —m) ) (ln(1 —m) l
1 —tv ) ~

1 —m

+—ln (1 —A)b(l —m),
1

(22)

where the new distributions are defined by

f(~) d
' f(~) —f(1)d

A (1 —~)A A (1 —~) (23)

and sinai&arly for {ln(l—tu)/(1 —to) )+. Also, when the re-
versed processes, i.e., xz ~ x2, are required, for example,
qp -+ q + X', then the replacements

and expressions are given for the coefficients c;. The
FORTRAN code for these coefficients can be obtained upon
request [37]. We note here that the coefficients obtained
for the direct processes [Eq. (18)] are of identical form
to the corresponding ones for the once-resolved processes
involving a gluon in the initial state [the third and fourth
processes in Eq. (20)] once terms proportional to No are
eliminated. Since the matrix elements were integrated
separately, this serves as a check on both calculations.

A detailed comparison with the results published in
Ref. [15] for the direct processes [Eq. (18)] and those
contained in the FORTRAN code of Ref. [14] for the once-
resolved processes [Eq. (20)] revealed only (numerically
insignificant) differences traceable to the different con-
ventions for the spin averaging of the incoming photons
and gluons mentioned above. Since the results for the di-
rect processes can be obtained directly from Ref. [15] in a
similar form to those in Appendix A, we display these for
completeness only. In the case of the once-resolved pro-
cesses, the results in Appendix B cannot, except for the
coefficients multiplied by b'(1 —m) and the "plus" distri-
butions, be directly compared with those in the FORTRAN
code of Ref. [14], since they are cast in a slightly dHFer-

ent format. Any comparison has to be made before the
results are cast in the form given in Eq. (21). Note that
there is also a superfiuous factor of 2 present in the coef-
ficients of both Refs. [14] and [15],which is later canceled
out when the cross section is calculated.

The contributions from the twice-resolved processes
are exactly those relevant for hadron-hadron scattering,
and all higher corrections to these have been calculated
[16] and the results are generally available. We make use
of these matrix elements in our calculation.

Finally, a note on the use of the coefficients in a nu-
merical calculation. If, as in Eqs. (1) and (5), the lower
limit of the m integration is not zero, but has a value A,
then the "plus" distributions must be transformed via

1 1 + ln(1 —A)b(1 —m),
(1 —m) P (1 —m)A

IV. NUMERICAL RESULTS

2z Pg in[in(p /A )]
Po in(p2/A2) P ln(y2/A2)

for the strong coupling, where Pq
——102—38/3', and Ny

the number of active quark Savors is fixed to 4. The value
of the /CD scale parameter A is chosen to correspond to
the photon distributions in use, except at HERA, where
we always choose it to correspond with the proton dis-
tributions. Finally, unless otherwise stated, the scales
p, = M = M& ——pT, are always used.

A. m production at LEP 2

At LEP 2 we take the energy in e+e center-of-mass
system (c.m.s.) to be fixed at QS,+,— ——200 GeV. This
corresponds to a 100 GeV electron and/or positron beam
energy in Eq. (2).

In Fig. 4 we show the K factor for the full cross sec-
tion, i.e., the sum of direct and once- and twice-resolved
contributions, defined by

dye dy ) NLO (26)

In this section we present numerical results for m pho-
toproduction first at e+e colliders (LEP 2) and then at
the ep collider HERA. In both calculations we use the
Gliick-Reya-Vogt (GRV) [21] and Gordon-Storrow (GS)
[22] parametrizations of the photon distributions which
are available both in LO and NLO, and we use exclu-
sively the GRV proton distributions after checking that
the Martin-Roberts-Stirling set D' [MRS(D' )] [38] give
very similar results. We shall see that the GRV and GS
distributions represent steep and fiat distributions, re-
spectively, in the low-z region and between them should
bracket the extremes of reasonable estimates for these
functions. For the m &agmentation functions, we use
the recent NLO parametrizations of Ref. [19] which are
in the MS scheme and take set I as standard after check-
ing that set II gives essentially similar results. There are
no corresponding LO sets for these distributions.

Throughout this calculation we try to be consistent by
using only LO parameters in LO estimates of the cross
section and NLO parameters in NLO estimates. By NLO
we mean the full cross section of LO contributions plus
higher-order corrections as implied in Eqs. (1) and (5).
Thus, for example, when evaluating K factors the denom-
inators are evaluated using LO hard subprocess sections
with LO evolved parton distributions as well as the LO
expression [Eq. (8)] for the strong coupling. The only ex-
ceptions to this are, of course, the &agmention functions.
We use the approximation

1 —v
v M 1 —vtUq @7M

1 —vs
are necessary.

(24)

at rapidity y = 0 for the produced vr, as given by the GS
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and GRV distributions, as a function ofpT . This quantity
is usually taken to indicate the relative importance of the
higher-order corrections to a process and thus to deter-
mine the good behavior of the perturbation series if it is
reasonably small, i.e., less than about 1.5 (when the cor-
rections are positive). Clearly, the K factor is within this
region for both distributions, but shows the expected rise
at the extremes of phase space. The GRV distributions
give consistently larger K factors, but the two diverge
significantly only in the low-xT (xT ——2pz j~S & 0.1)
region. The explanation for this behavior is not clear
since the LO and NLO versions of both sets of distribu-
tions were consistently used.

We next compare in Fig. 5 the various contributions
to the cross section in NLO at y = 0 using the GS dis-
tributions. As expected, the contributions involving the
photon distributions are significant in the lower-pT (& 5
GeV) region only when compared to the direct contribu-
tion. Sensitivity of the cross section to these functions
can therefore only be expected in this region In a. ddi-
tion, the cross section is small outside the lower-p~ re-
gion and thus may not be easily measurable. When the
GRV distributions are used instead, both the once- and
twice-resolved contributions are increased relative to the
direct. As can be seen &om Fig. 6, the full cross sec-
tion is increased by as much as 45%%up relative to the GS
prediction. This refiects the larger gluon distribution of
the GRV parametrisation, which, of course, also leads to
larger quark distributions in the low-z region.

Making the reasonable assumption that only the full
(the sum of the three contributions) cross section will
yield enough events to be of use for constraining the /CD
parameters, we show in Figs. 7(a) and 7(b) the pT distri-
butions for the full cross section using the GS and GRV
paremetrizations, respectively. The dashed curves show
the effect of neglecting completely the contributions for
gluons in the initial state, i.e., setting g = 0. Short of
evolving new distributions with diferent inputs for the
gluon, this is perhaps the best way of checking sensitiv-
ity to g~. We see, as expected, that sensitivity to g~ is
restricted to the low-p~ region only. The magnitude of
this sensitivity can be seen more clearly in Figs. 8(a)
and 8(b), where we show the rapidity distributions at for

L

100 e

10-1 ~

10—~r

10-3 ~

10-~ .
10-~ r

10-~ r

y=0
CS photon

I

10
I

15 ZO Z5
pg (cev)

30

FIG. 5. p~ distributioas for the various coatributioas to
the inclusive m cross section at LEP 2 and their sum, as
predicted by the GS photon distributions.

pT
——5 GeV. Clearly, measurement with good statistics

would be able to discriminate between the two curves in
each case and thereby determine the presence of a contri-
bution &om g~. Such measurements may quite possibly
also be able to discriminate between the GS and GRV
distributions, since, as can be easily seen, they give dif-
ferent predictions for the cross section.

To be certain of measuring g~, it would, of course, be
better to increase the c.m.s. energy in the e+e system.
Figure 9 shows the p~ distributions for all three contribu-
tions and their sum at y = 0 using the QRV distributions
for a c.m.s. energy of gS,+,— ——1000 GeV. The cross
section is obviously significantly larger than at LEP 2,
and furthermore the double-resolved contributions will
dominate the cross section for pT & 10 GeV. The single-
resolved contribution, which of course is also sensitive to
the photon distributions, is also increased relative to the
direct one in this pT region.

To summarize, measurement of the cross section of sin-

gle inclusive ~ photoproduction at LEP 2 could yield as
much information on the photon distribution functions
as the study of jet production at TRISTAN has [1],and
if in the future the c.m.s. energy could be increased at
e+e colliders, then there is no doubt that x photo-
production will yield quantitative information on these
functions and perhaps other /CD parameters.
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FIG. 4. K factor as dered in the text for the full inclusive
cross section for m production at LEP 2 at y = 0, as given by
the GRV (solid line) and GS (dashed lines) parametrisations
of the photon distributions.
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(sum) cross section given in Fig. 5.
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FIG. 7. Full inclusive m cross section at LEP 2 at
y = 0 with (solid lines) and without (dashed lines)
gluon-initiated processes included for (a) the GS and (b) the
GRV parametrisations of the photon distributions.
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FIG. 8. Same as Fig. 7, but for rapidity distributions at
pT ——5 GeV.

B. ~ production at HERA

The ep collider HERA overs at the present time the
best opport»~ity for the study of photoproduction pro-
cesses. The large c.m.s. energy QS,~ 300 GeV means
that an extended kinematic region may be probed as
compared to the situation at e+e machines. As far
as measurement of the photon distribution functions are
concerned, a possible drawback with a pp as opposed to
a 7p reaction is that it must be assumed that the pro-
ton distributions are known. For example, in processes
initiated by gg scattering, if g" is not known, then one
extra»~known is present as compared to the case of ini-
tial g~g~ scattering. Luckily, the parton distributions of
the proton are presently far more accurately known than
those for the photon, thus largely removing this potential
handicap.

In our numerical study we present results exclusively
for the GRV [20] proton distributions and fix the elec-
tron and proton beam energies at 30 and 820 GeV, re-
spectively. Negative rapidity is taken as the direction
in which the proton is traveling. As we shall see, this
last choice results in a boosting of the reaction products
toward negative rapidity as a result of the sign~6cantly
larger proton beam energy. In this region the photon
distributions are probed at smaller x, which can be a
positive feature since this is precisely the region where
they are least accurately- known. The exploitation of this
asymmetry in the rapidity distribution of the cross sec-
tion is of course restricted by detector design limitations,
which restricts the region where the cross section can be
measured to y & —2 to —3. It will nevertheless still aid in
mesauring the photon distributions since, as we shall see,
it means that the direct contributions will be suppressed
relative to the resolved ones at negative rapidity in the
low- to medium-pz region where the cross section will be
largest. The explanation for this efFect is quite simply
that the direct contributions involve a reaction with a
more energetic particle (the photon) moving toward pos-
itive rapidity than do the resolved contributions, where
the photon must first produce a parton with only some
fraction of its own moment»m, which then reacts with
the proton. Thus, as we shaD see, tagging of the pho-
ton &agments with all its attendant difhculties in order
to identify the resolved contributions will prove nnueces-
sary in certain interesting kinematic regions.

Figure 10 shows the rapidity distribution of the re-
solved and direct contributions both in LO and NLO at
pT

——5 GeV for the GRV and GS distributions. The first
obvious feature of the results is that the higher-order cor-
rections to both contributions are relatively small in aD
the regions displayed (the GRV LO and NLO curves for
the resolved contributions must be compared). Thus the
perturbation stability of the predictions is immediately
established. It is also very clear that the GRV and GS
photon distributions give significantly different predic-
tions for the resolved contributions, indicating that the
cross section is sensitive to the photon distributions in
this region. Finally, as we anticipated above, the resolved
contributions totally dominate the cross section except in
the very extreme positive rapidity region shown.
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FIG. 9. p~ distributions for the various contributions to the
inclusive m cross section aad their sum at an e+e machine
with c.m.s. energy gS,+,—= 1000 GeV at rapidity y = 0 as
predicted by the GRV photon distributions.

In Fig. 11we see that the cross section is quite substan-
tial out to pT 25 GeV at y = —2, and thus there should
be many events accumulated here in the experiments. It
can also be seen that the resolved contributions still dom-
inate the cross sectioa out to this pT value, as predicted
by both the GRV and GS distributions. This is seen even
more clearly in Fig. 12, where we plot the ratio of direct
to resolved coatributioas vs p~ at the same rapidity for
both parametrizations of the photon distributions. Here
the difFerence between the GS aad GRV predictions show

up even more clearly. According to GRV, the direct con-
tributioas do not overtake the resolved until pT 40
GeV, whereas for GS the value is about 30 GeV.

In order to check for sensitivity to the photonic gluon
g~, we show in Figs. 13(a) and 13(b), for the GS aad
GRV parametrizations, respectively, the eEect on the re-
solved contributions of neglecting all gluon-initiated pro-
cesses by setting g~ = 0 in the calculation. In both cases
the effect is a very significant fall in the predicted cross
section which is most significaat, as may be expected, in
the low-pT region. For the GS distributioas at pT ——5
GeV, there is a 55'Fp fall in the cross section, while at
pT 40 GeV the reduction is only 1370. The corre-
spondiag figures for GRV are 50'%%uo aad 10%, respectively.
We can safely conclude &om these figures that the cross
section is quite sensitive to g~ in the lower-p~ region

T=5 GeVp
.r.r' ~r'

err.'
/rg

FIG. 11. pT distributions for the resolved and direct contri-
butions to the inclusive m' cross section at HERA ia NLO at
y = —2. In the case of the resolved contributions, results are
shown for the GS (short dashed lines) and GRV (long dashed
lines) photon distributions.

around y = —2.
Figure 14 shows the scale dependence of the cross sec-

tion (in NLO) at pT = 10 GeV. Included for comparison
are the separate scale dependences of the resolved and
direct contributions. In Fig. 14(a) we vary all the scales
in the cross sectioa; i.e., we set y, = M = M~ = (pr and
vary ( in the region 0.2 ( g & 2. It is quite obvious that
the direct and particularly the resolved contributions sep-
arately have very sig~cant dependences oa the scales,
but as can be seen adding the two together significantly
reduces this dependence. If we measure the scale de-
pendence by the ratio of the maximum to the minimum
value of the cross section obtained by varying ( betweea
the limits stated above, then the direct and resolved coa-
tributions have scale dependences of magnitude 6 and
12.6, respectively, whereas the sum has a dependence of
just 2.

Figure 14(b) shows the effect of varying the factoriza-
tion scale M only while holding the other scales fixed
at p = M~ ——pT. This demonstrates nicely the op-
eration of the scale compensation mechanism discussed
in Sec. IIB. The direct and resolved contributions have
separately scale dependences of magnitudes 3.2 aad 1.4,
respectively, while the sum has a value of less than 1.1,
as depicted by the almost Hat line in the figure.

Finally, in Fig. 15 we compare the scale dependence of
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FIG. 10. Rapidity distributions at yT = 5 GeV for resolved
and direct contributions to the inclusive vr differential cross
section at HERA in LO and NLO. For the GRV photon and
LO resolved contribution is included, while for the GS photon
only the NLO prediction is included.
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FIG. 12. Ratio of direct to resolved contributioas to the
cross sections as shovrn in FiN, . 11.
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FIG. 15. Comparison of the scale dependence of the full

inclusive x differential cross section at p~ ——40 GeV and

y = —2 at HERA as given in LO (dashed line) and NLO

(solid line).

the full LO and NLO predictions for the cross section at
pT ——40 GeV, where all scales are varied. As one mould

expect, the NLO prediction has a much weaker scale de-

pendence than the LO one. The magnitudes, as defined

above, are 4.6 for the LO and 1.6 for the NLO prediction.
We also see, as demonstrated in many places before, that
the LO and NLO predictions coincide at around ( 1,
indicating that the usual choice of scales corresponding
to this value for ( lead to maximuvo perturbative stability
for the predictions.
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FIG. 14. (a) Scale dependence of the inclusive z cross sec-
tion at HERA in NLO at pT ——10 GeV and y = —2, showing
the separate scale dependences of the direct and the resolved
contributions and that of the sum. All scales are varied in
(a). (b) same ss (a), but where only the fsctorization scale
M is varied.

C. Comparison with existing data

Recently, the Mark II Collaboration at the SLAC e+e
storage ring PEP has published single ta ged data for
inclusive charged hadron production at 8 = 29 GeV
[8]. A comparison with the theoretical predictions of
Aurenche et al. [15] has shown a significant discrepancy
between theory and data at larger p2 (& 1.5 GeV). In
the calculation of Ref. [15], the twice-resolved contribu-
tions were estimated in LO only, and simple vector me-
son dominance (VMD) estimates for the photon distri-
butions mere used throughout. Furthermore, the old LO
parametrizations for the ~+ and K+ &agmentation func-
tions [39]were used. Although the value of ~S = 29 GeV
is rather low and the data mere collected at lom pT, mak-

ing the application of a perturbative calculation question-
able to some, it is still interesting to see whether a full
NLO treatment using xnodern photon distributions and
fragmentation functions [40] will provide any improve-
ment in the agreement between theory and experiment.

In Fig. 16 we xnake a coxnparison with the Mark II data
using the GRV photon distributions. It is very clear that
although the NLO predictions show a marginal improve-
ment over the LO ones, this is not sufBcient to exp'. in the
data. We also show in Fig. 16, for comparison, contribu-
tions &om the direct once- and twice-resolved processes.
It is obvious that above about pz & 2 GeV, the direct
contribution is very much the dominant one. This mes~~
that, except for the &agmentation functions, there are
no significant nonperturbative inputs in the prediction.
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FIG. 16. Comparison of the LO and NLO predictions using
the GRV photon distributions and the new charged hadron
&agmentation functions of Ref. [40] with the Mark II data.

vided that important parameters such as structure and
fragmentation functions are accurately known.

The results of our study of inclusive s' production
at LEP 2 and HERA indicate sensitivity to the photon
distributions in kinematic regions which are accessible
for measurements. This means that measurement of the
cross sections mill yield useful information on these func-
tions. We have also shown that increasing the c.m.s. en-
ergy in the e+e system to 1000 GeV would signi6cantly
enhance the cross section, leading to easier measurement
of the cross section as mell as to increased sensitivity to
the photon distributions.

A comparison of the theoretical predictions with the
single tagged Mark II data on inclusive charged hadron
production fails to remove the discrepancy above p~ )
1.5 GeV.

In order to test the eEect of the &agmentation functions,
which are probed at z & 0.15 above ~ & 2 GeV, we &oze
these functions at qz = 2 GeV2. The effect is an increase
of 20—30 Fp above pT = 2 GeV, which is still far from suf-
ficient to fit the data in this region. The only way to fit
these data would be to radically increase the &agmenta-
tion functions in this region, but the freedom to do this
is not available since they are somewhat constrained by
other data [39,40]. The explanation for the discrepancy
is thus not clear, but in Ref. [8] the idea was advanced
that the excess of events above pT ) 1.5 GeV may be
partly due to multijet processes not taken into account
in the theoretical calculations. It will be very interesting
to see whether similar measurements at LEP 1 and LEP
2, where much higher c.m. s. energies are available, will
improve the situation.
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APPENDIX A: THE PROCESSES pp m c+ X

We list here our results for the integrated matrix ele-
ments for inclusive production of quarks and gluons &om
photon-photon collisions. We make use of the abbrevia-
tions

We have performed the first complete and consistent
calc~~&ation of inclusive hadron photoproduction at e+e
and ep niachines in NLO /CD. Our predictions show
the expected reduced sensitivity to variations in the fac-
torization and/or renormaiization scales over the cor-
responding LO ones, although for reasonable choice of
scales the sizes of the higher-order corrections are still
quite small, indicating the perturbative stability of the
cross sections. These results highlight the by now well-
known fact that beyond LO calcu»tions have the poten-
tial to allow for quantitative tests of /CD theory, pro-

Y= 1 —v+vm, X= 1 —vs,
v 1 —v)vq=l —v ) T~~= +

1 —v v

where i = 1,2, 3. A = 1 should be taken as discussed in
Sec. III. The LO Born cross section pp ~ qq is

gg 2~a2 N~e4

tgv s

~ ~~~a(e)+~
cg ——0, cg ——0, c2 ——0 ,

Cp.NcT„ ln v( —3+ 2v + 4v')
Cy = lnvyv 2 + v + ln v 3v +2vi

1 —288' 2

& 7
(1 —2vvi) + ln vi(l+ vi)

)
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APPENDIX B:THE PROCESSES pb -+ c+ X

Here we list the results for the case of one pointlike photon coupling in the initial state. For convenience we give the
contributions for the inclusive process pq ~ q+ X in three parts which we label (a), (b), and (c). These contributions
should be added to give the full cross section for the subprocess, but note that (c) is the part proportional to e'~

derived from the process pq -+ qq'q' (where q is the observed particle). The part proportional to e~, which also
contains distributions, has been absorbed into part (a). A similar modification of part (b) was also done. In addition
to being more convenient for programming purposes, this procedure also leads to a further shortening of the matrix
elements.

The abbreviations X, Y, and v; are already defined in Appendix A.
The relevant 2 -+ 2 Born cross sections are, for pq -+ qg,

for pq + gq,

and for pg ~ qq,

dO' 2&O's O'em&q (1)CFT
CEV S

2d0 2&o's ~em&q (2)CFT
CfV 8

do ~o'eo'em&q
7g

where
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(2) 1 + V

7q V
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We also define the constant
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(1 —4v + 5v ) + Nc ln(vq) vq + 2(2' —Nc ) ln(v) vq — (Qv + 14vq) + Cy ln (v)
NC~2 Nc ln (v) 2

6 2

x(llv + 18vi) + Cyn (1 —2vvi) — 7C~—2 2 (1 + v&) + (1 + v&) —bs ln(v)(1 + vf)
3 ) 3



50 NEXT-TO-LEADING-ORDER CORRECTIONS TO INCLUSIVE. . . 6767

C1 =—

10V3to l CFNc+ (2v V3to+ 4V to —4v to ),
v1 ) XYV1

(1)
c1 —— [—3 + 4 1n(v, ) —4 1n(v)],
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