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The high-energy behavior of vector-boson scattering amplitudes is examined within an effective
theory for nonstandard self-interactions of electroweak vector bosons. Irrespective of whether this
theory is brought into a gauge-invariant form by including nonstandard interactions of a Higgs
particle, I find that terms that grow particularly strongly with increasing scattering energy are
absent. Different theories are compared concerning their high-energy behavior and the appearance

of divergences at the one-loop level.
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I. INTRODUCTION

The standard electroweak theory [1] has been the most
promising candidate to describe the electroweak interac-
tions ever since it was proven that this theory is renor-
malizable [2] and that tree-level scattering amplitudes do
not exceed the unitarity bounds at high energies if the
mass of the Higgs boson is not too large [3-5]. The in-
clusion of a scalar (Higgs) sector and the generation of
the vector boson masses by the spontaneous breakdown
of an underlying linearly realized local SU(2)LxU(1)y
symmetry appears to be a necessary ingredient for a uni-
tary and renormalizable theory in which massive vector
particles interact with fermions.

In fact, the standard theory consistently describes all
currently known experimental data and the agreement
between theory and experiment is particularly remark-
able for the recent precision data from the CERN ete™
collider LEP 1, as these measurements test the theory at
the level of one-loop radiative corrections.

However, the scalar sector of the theory has been ac-
cessed only via its indirect, i.e., loop-induced, effects on
the current observables. Direct measurements of the
vector-boson self-couplings have up to now been per-
formed only with large uncertainties [6]. In view of near-
future measurements of the process ete™ — WTW— at
LEP 2 which will improve the sensitivity to the vector-
boson self-couplings [7], various models that can incorpo-
rate nonstandard vector-boson self-interactions but co-
incide with the standard model in the well-established
sector of the interactions of the vector bosons with the
leptons and quarks have been recently under considera-
tion. It is not clear whether such a theory is also, as in the
case with standard self-interactions, theoretically favored
if it incorporates a scalar sector and is gauge invariant.!
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Restricting ourselves to theories with the same par-
ticle content as of the standard model, we are dealing
with nonrenormalizable effective theories that must be
regularized by some ultraviolet cutoff A. At the tree
level these models give rise to some four-point amplitude
that will at high energies eventually exceed the unitarity
bound [8]. Above some scale, which is usually taken to
be the cutoff A, these theories have to be embedded into
some higher theory which would again be renormalizable
and unitary. Different approaches for constructing such
effective theories exist.

(1) Assuming that nonstandard physics already ap-
pears not far above the weak scale the scalar sector may
be omitted from the theory. These theories exhibit either
no SU(2)LxU(1)y symmetry [7,9-12] or this symmetry
is realized in a nonlinear way [13,14]. The two cases are
equivalent which can be seen by applying a Stueckelberg
transformation [15].

(2) The standard theory is adopted as the correct the-
ory for electroweak interactions up to a certain scale A
at which new degrees of freedom occur and which is
large compared to the mass of a Higgs particle. The
nonstandard interactions may manifest themselves at en-
ergies not too far above the weak scale as small devia-
tions from the standard interactions. The Lagrangian for
such a theory is an expansion in powers of 1/A around
the standard theory with gauge-invariant additional op-
erators [16]. Nonstandard vector-boson self-interactions
have been recently discussed in such theories [17-23].

An example of the first approach is the Kuroda-
Maalampi-Schildknecht-Schwarzer (KMSS) model [9]
in which trilinear and quadrilinear vector-boson self-
interactions are parametrized under a minimal set of
symmetry assumptions. A two-parameter reduction of
the KMSS model can be embedded? [23] into a gauge-

2If not explicitly stated otherwise, statements made in this
paper are only valid as far as terms linear in the deviations
from the standard model are concerned.

6713 ©1994 The American Physical Society



6714

invariant framework. In this way one obtains an example
of the second approach. The addition of a dimension-six
single-parameter quadrupole interaction (which contains
no scalar particles and is gauge invariant itself) to this
model leads to a model with nonstandard vector-boson
self-interactions, which has been obtained by adding
gauge-invariant dimension-six terms to the standard La-
grangian. This model is a general one provided some
reasonable additional assumptions on the new physics are
made.? I call this model the gauge-invariant dimension-
six (GIDS) model.

Here, I examine the behavior of vector-boson
scattering-amplitudes for large values of the center-of-
mass scattering energy s in the GIDS model. My calcu-
lation evidences that the amplitudes show a particularly
mild growth with increasing s. I further find that this
behavior is only due to the form of the vector-boson self-
couplings while the scalar sector plays no role.

One obvious requirement that a theory beyond the
standard model has to fulfill is that it agrees at the one-
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standard model since these would bring the model (in the
absence of cancellations) in conflict with present data.

II. THE MODELS

The KMSS model [9] describes nonstandard vector-
boson self-couplings by four free parameters. It has been
derived assuming that a global SU(2) weak isospin sym-
metry is broken only by electromagnetic interactions. In
particular, the symmetry is broken by a term that causes
mixing between the neutral vector bosons. In addition,
only dimensionless couplings and interactions that are P
and C even have been incorporated. The trilinear self-
couplings are described by two parameters, ., and §.
Two other parameters, § and §, describe the quadrilin-
ear interactions. A two parameter reduction of the KMSS
model, which I will henceforth simply call “the KMSS
model,” is obtained by imposing the conditions [23]

loop level with the present precision data. If a particu- 5 a2
lar model shows a dependence of one-loop radiative cor- ‘(f g (1)
rections on large positive powers of the cutoff, then it g=0.
can presumably not incorporate large deviations from the =~ The Lagrangian of the KMSS model is given by
|
Lxmss = —ieA, (W *W, — WHW, ) — ien A, WHW ™
. [ sinfw g - + + _
—_— - Z,(W HWW; —WTHW,
: (eCOSOW cos0w) u( v 2
. sin 0W f) — 2 - —_
—_— — Zy 2WHW ™ — 2(A,AWIW™ — A, A WHW™Y
+e (en.., cosbw  cos 0w) ® e*(Au © o )
i g 1
+2e(eS0W _ 3 A ZPWIW ™ — ZALZ,(WHW ™ + W HW )
cosOw  cosfw 2
(§ — e sinfw)? R pTrr—
- (Z,Z'WW Y - Z, ZWTEFW Y
C082 OW ( M v [ )
1, - —v - - v
+ 5_q’(W;rW,, WHW™ - WIw, W W) . (2)

In (2), W}, = 8, W} — 3, W}, etc., e is the electron
charge, and Ow is the weak mixing angle.

Nonstandard Higgs interactions can be added to the
KMSS Lagrangian in such a way that a gauge invariant
model results [23]. Adding to this model a dimension-
six quadrupole interaction term Lw, introduced in [17],
which is gauge invariant itself, one obtains the GIDS
model which has been thoroughly discussed in [23]. The
Lagrangian of the GIDS model is given by

Lgips = Lsm + 6w¢ﬁ-g2—ﬁwq>
w

g’ g
+€Ba M3, Lps + ew —M—ZWEW ) (3)

3This will be discussed in Sec. II.

f

where Lgy is the standard Lagrangian. The Lagrangian
(3) contains the three gauge invariant dimension-six
terms

Lws = itr[(D,®)'W*(D,®)], (4)
[:Bq, = _%itr[—rs(D“@)f(DVQ)]B“u ’ (5)
and
2. "
LW = —gztr(W#W;\Wf) . (6)

Here, ® denotes the standard complex scalar Higgs dou-
blet field:

1 .
® = ﬁ[(v + H)1 +i¢i7i] ,
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where H is a physical Higgs field, (v/v/2)1 is the vac-
uum expectation value of the Higgs doublet, the ¢; are
the would-be Goldstone bosons, 1 is the unity matrix in
two dimensions, and the 7; are the Pauli matrices. The
covariant derivative of ® is given by

D,® = 8,8 + igW,® — %g'qwsB,, : (7)
where
1
Wp = iwpi‘ri ) (8)

denotes the non-Abelian vector field, and

W“y = B“W,, - 3,,W‘. + zg[Wp)Wv] ’

(9)
By, = 8,B, —8,B,

are the field strength tensors. As usual, g denotes the
SU(2). and ¢’ the U(1)y coupling, ¢’ = e/ cosbw, Mw
is the mass of the charged vector bosons, and B,, is the
U(1)y gauge field. The traces are taken over the 2 x 2
matrices. The nonstandard couplings are described by
the parameters ews, €ps, and ew. In this paper, I call
these parameters collectively “the ¢;.” In the context
of an effective field theory, their order of magnitude is
€; = O(MZ,/A?) [16].

The vector-boson self-couplings of the GIDS model
with ey = 0 coincide with the ones of the KMSS model
(2) with the identifications

e

s 1
g sin0w( +ews)

(10)
Ky =1+ ¢€éws +€Bas -

The GIDS model is the general model for vector-boson
self-interactions that can be constructed from gauge in-
variant dimension-six terms, provided interactions that
violate the C, P, or CP symmetry or contain higher
derivatives are not considered. Also, terms that modify
the well-tested couplings of the vector-bosons to fermions
are not taken into account.? Under these constraints, the
three terms (4)—(6) are the only ones which one reads off
from a general listing [16] of gauge-invariant dimension-
six operators. The phenomenologically relevant parts of
the GIDS Lagrangian in terms of the physical fields have
been given in [23].

4One particular term, Lwp = —itr(@“W,‘,@Ts)B“", must
be omitted, because it causes mixing between the neutral
gauge bosons W3 and B and thus, after a suitable diagonaliza-
tion procedure, modifies the vector-boson—fermion couplings.
This has been thoroughly discussed in [23].
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I examine the tree-level scattering amplitudes for all
processes involving only massive vector bosons:

W-W+ - W-W+

WHW+ o> WHW+ (W-W- - W-W- )
W-W+ - ZZ ( 2z - W-W+ ) (11)
W2z —->W-2Z (WtZ - W*Z

zz ~ ZZ ,

Y > W-W+ (W Wt 5 4y )
YW= = AW~ (YW = AWT ) (12)
yZ > WWt (WWt o ~vZ )
Wy > W-Z (Wry - WtZ)

The amplitudes for the processes appearing in parenthe-
ses are related to the corresponding process to the left
of them as discussed in Appendix B. The relevant ver-
tices following from the GIDS Lagrangian (3) are given
in Appendix A. The Feynman diagrams can be classi-
fied according to the following scheme: diagrams with a
virtual vector boson (denoted by V in Fig. 1); diagrams
with a four-boson vertex (denoted by C); diagrams with
a virtual Higgs boson (denoted by H).

Since the calculations are performed in the unitary
gauge, there are no diagrams with would be Goldstone
bosons. For the process W-W+ — W~-WT, the dia-
grams are shown in Fig. 1. There and in the general
process V1 Vo — V3Vy, p; is the four-momentum of parti-
cle V; (i=1,2,3,4) and I use the Madelstam variables:

s=(p1+p2)% t=(p1—ps)% u=(pr—pe)?. (13)

In Fig. 1, incoming particle are to the left and outgoing
particles to the right.

For the general process an amplitude M is a sum of
contributions from the three sets of graphs:

M=My+Mc+Mpg. (14)

The M;, ¢ = V, C, or H, can in turn be written as
a product of polarization vectors and a part which is
independent of the particles’ polarizations:

M; = Afuﬁ—y&(l’hpzyPs,P4)€?(’\1)5‘2’(’\2)5::1(’\3)526(’\4) .
(15)

In (15), €;(A) is a polarization vector for particle j with
helicity A and a,~,3,0 are Lorentz indices. I use the
phase conventions of Jacob and Wick [24] for the helicity
eigenstates. The appropriate polarization vectors €;(A)
can be found in [25].

The high-energy amplitudes are listed in Appendix C.
Concerning the terms bilinear in the ¢;, which are not
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W=(p1) W-(ps)

W=(p1) W~ (p3)

7.Z° t ‘7,Z0

W+(p2) W*(ps)

C W+(p2) W+ (ps)
W-(p1) W= (p3)

W+(p2) WH(p4)

W(p1) W~ (p3)

H
W(m) W~ (p3)

5

W+(p2) W+(ps)

W(p2) WH(ps)

FIG. 1. Feynman diagrams for W™W* — W~-W in the
tree approximation.

listed, one observes that they grow at most as O(s?).°
To be specific, the following terms appear:

M= 0(32)(53"’ E%V{ﬂ 6%4,, ewews) + 0(33/2) )

while the combinations egsew and eggews do not con-
tribute to the s? terms.®

I turn to an investigation of the cancellations that take
place among the sets of diagrams (14) (compare [4] for a
similar analysis in the standard model). I have analyzed
all amplitudes for the processes (11) and (12) and find
that the sum of the vector-exchange diagrams for any
amplitude grows at most as

My = 82 + 6W§82 + €3S + ews2 ,

where s? is to be understood as O(s?) etc. All of these
powers typically appear when all external particles are in
the longitudinal polarization state.

The contact graphs get no contribution from egs, since
Lps does not contain quartic interactions. I find a
growth as

5The €;€;0(s% /My, ) terms are suppressed by a factor of s/A®
with respect to the €;0(s/M3) terms.

8This behavior is unchanged if the Higgs diagrams are
omitted.
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Mc = % + ewss® + ews?
or a more decent growth for particular amplitudes. The
sum of vector-exchange and contact diagrams is found to
grow as

My +Mc=8+ewss+€gss+ ews ,

or more decent. The most important result can be stated
here: All the s2 powers vanish already in the sum of vec-
tor exchange and contact diagrams. This fact holds for
all three ¢; and in all amplitudes. If all external parti-
cles are in the longitudinal polarization state, there is for
many amplitudes a cancellation in this sum of one power
of s in the standard term (see [4]). Simultaneously there
is a cancellation of one power of s in the ew s and the ew
terms, which demonstrates the special form of Lw ¢ and
Lw as far as vector-boson self-couplings are concerned.

Finally, the Higgs diagrams do not depend on ew and
grow at most as

My =38+ ewss + €Bss,

and frequently they are only O(s°).

Adding the Higgs graphs to My + Mc¢ in order to ob-
tain the complete amplitude, the residual positive powers
of s in the standard terms are canceled, so that the uni-
tarity limit for partial wave amplitudes is not exceeded
in the standard theory at energies large compared to the
Higgs boson mass. This cancellation only takes place for
amplitudes in which all external particles are in the lon-
gitudinal polarization state, because in the other ampli-
tudes the standard terms are already O(s®). All other ef-
fects of adding the Higgs contribution are nonsystematic:
Sometimes powers of ewsSs, €pes, Ewa\/3, OF €gs+/S are
introduced again, while sometimes the terms growing as
epgs disappear.

One thus obtains the result

M =ewss+ €pss+ ews , (16)
or a more decent growth. Concluding this analysis, the
€;0(s) behavior is entirely due to the form of the non-
standard vector-boson self-interactions. The nonstan-
dard Higgs interactions yield terms of ¢0(s) but do
not change the high-energy behavior. The inclusion of
a scalar sector in nonstandard interactions is thus of no
relevance as far as the high-energy behavior of the theory
is concerned.

I compare my result to an analysis [10] of vector-
boson scattering amplitudes in the four-parameter KMSS
model in which the authors did not restrict themselves to
small values of the ¢;. It has been shown there that a one-
parameter reduction of this model, the Bilchak-Kuroda-
Schildknecht (BKS) model, exists, in which terms that
grow with O(s?) or stronger are absent in the amplitudes.
The Lagrangian of the BKS model can be obtained from
(2) by eliminating § in favor of k. by the relation

e

Jg = . 17
9 sin ew Ry ( )
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I note that from (10) and (17) one sees that the BKS
model is equivalent to the GIDS model (3) with

ews =ky—1 and egs =ew =0, (18)

as far as the vector-boson self-couplings are concerned.
Thus, the model with only ews should yield only am-
plitudes that grow at most as O(s) if the Higgs interac-
tions are turned off. My calculations show that the terms
e€w$0(s) remain if the Higgs interactions are added. For
the processes W—W* — ZZ and vZ - W W+, I ex-
pected this latter fact from a result in [10]. The authors
of this reference showed for these processes that in the
BKS model unitarity is violated in partial waves with
angular momentum J > 0. Since an additional neutral
scalar particle can only be exchanged in the s-channel in
these processes, only the J = 0 partial waves can be af-
fected so that the addition of a Higgs particle cannot be
sufficient to restore unitarity. For other processes, also
t- and u-channel exchange occurs. However, even here
the addition of a Higgs particle does not cure the bad
high-energy behavior.

Considering the equivalence of the KMSS model and
the GIDS model without Higgs interactions and without
Lw,” one expects that amplitudes for a model with only
Lps are in general M = O(s?), since the BKS model
(which is equivalent to taking only Lwge as far as only
terms linear in the deviations from the standard model
are concerned) is the only model that can be embedded
into the KMSS model in which the amplitudes are only
O(s) even and bilinear in the deviations from the stan-
dard couplings. In this context, I re-emphasize that the
s2 terms are, however, absent also linear in egs and not
only in ews.

IV. CONCLUSIONS AND REMARKS

It is well known that the inclusion of the Higgs exten-
sion in the standard model is crucial to ensure the per-
turbative unitarity as well as the renormalizability of the
theory. Concerning the dependence of one-loop radiative
corrections to four-fermion scattering amplitudes on the
mass of the Higgs boson, the standard theory only shows
a mild, logarithmic My dependence (screening theorem
[26]).

The role of the Higgs sector in the standard theory
can be studied by looking at the corresponding behavior
in the nonlinear sigma model [27], which is obtained by
integrating out the physical Higgs particle of the stan-
dard theory. The nonlinear sigma model in the unitary
gauge corresponds to the case of no Higgs particle, or,
equivalently, to the limit of an infinite mass of the Higgs
particle in the standard model. In the nonlinear sigma
model, tree amplitudes grow as O(s). In contrast to the
standard model, this model is nonrenormalizable. It has

"I remind the reader that this equivalence only holds linearly
in the deviations from the standard model.
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a logarithmic cutoff dependence.

I have investigated the role of the Higgs extension
in effective theories with nonstandard vector-boson self-
couplings. These theories are nonrenormalizable even
when a Higgs extension is included. Only terms at most
linear in the deviations from the standard couplings have
been considered. This restriction is also explicitly as-
sumed in the following discussion, if not otherwise spec-
ified.

Istart with the KMSS model, (2). This model is equiv-
alent to the GIDS model with e = 0,ews # 0,eps # 0
and no Higgs interactions. We saw that vector-boson
scattering amplitudes grow at most as O(s). The O(s)
growth remains if the Higgs interactions are added. Thus,
in distinction from the case of the models with standard
vector-boson self-couplings, the omission of the Higgs ex-
tension in the nonstandard interactions does not change
the high-energy behavior of tree amplitudes. If we add
the quadrupole interaction Lw we also find at most an
O(s) growth.

As to loop effects, a complete analysis of one-loop cor-
rections to four-fermion scattering amplitudes due to the
dimension-six terms of the GIDS model has been pre-
sented in [20]. It is shown there that the effects of
these terms can be described by cutoff-dependent (renor-
malized) coefficients of other dimension-six terms that
have tree-level effects and by a renormalization of the
standard-model parameters. I note that only the de-
pendence of the coefficients on the scale A can be de-
termined unless one knows the underlying renormaliz-
able theory [28]. If the Higgs interactions are excluded
(KMSS model), the renormalized coefficients are propor-
tional to A% and InA. When the Higgs sector is included,
the quadratic A dependence disappears and only an InA
dependence remains. In addition, a quadratic My de-
pendence appears. This behavior is similar to the re-
placement rule My — A when going from the standard
model to the nonlinear sigma model, although for the
effective theory this replacement does not quantitatively
reproduce the heavy-Higgs-boson limit.

The behavior of the different models is summarized in
Table 1.

Finally, I note that in the four-parameter KMSS

Www(a,B,7, k1, k2, ks, gv, kv, yv)

= iegv[ — °Pk) + g77(ks — k3)* + g7k
+ k(g™ K] - k)]
+ie{l-‘:{[ KTk kS — KPRJRS
+ki - ka(kg% — Kig™)
W7 (ks) + ky - k3(k3 98 — k5 9°7)
+ka - ko(Kg™ — K1%9)|

W (k2)

Val(k:)

with V=15 or Z

2
ey + €
and g, = 1, 9z = —w
1+ ewe + s (1 L )

K. = € € K, = € - €

vy we t+ ¢Be, Kz Tt ewe + ewe 3,8
w

Yy = ¢€w, ¥z = g ew

FIG. 2. Three-boson vertex.
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TABLE I. Growth of tree amplitudes, cutoff dependence, and My dependence in various theories.

No Higgs boson Linear Higgs sector
Loops
Self-interactions Model Amplitudes Loops Model Amplitudes My Cutoff
Standard a O(s) InA b O(s%) InMy none
Nonstandard c O(s) A% InA d O(s) M} InA
e O(s?)
*Nonlinear o model [27].
bStandard model [3-5,26].
°BKS model, two-parameter KMSS model [9,10,29].
9Linearly SU(2). xU(1)y invariant dimension-six extension of the standard model (GIDS) [20,23].
“Four-parameter KMSS model [9,10].
7alk) Wi k) Vyyww(a, 8,7, 8 ki, ka, ka, ks) model, which cannot be embedded into a gauge invari-
ant framework without taking dimension-eight terms, we
=ie?[ g™g" +g™gPr — 297 g have an O(s?) growth of amplitudes. The p parameter

depends only quadratically on the cutoff [29], but the A
dependence of the other one-loop contributions has not
yet been investigated.

_ + W poabv(k, ko ks, k
7o(ka) Wi (ko) e G

Za(ky) Wiks)  Verww(e8,7,6, k1 ks, ks, ke) ACKNOWLEDGMENTS
. 2 C
=ie' 5| (1 + EC%,Q) I would like to thank Dieter Schildknecht for suggest-
(g°7g" + g°3gP — 2¢°8g%)  ing this work to me and for continuous advice. I thank
Mikhail Bilenky, Carsten Grosse-Knetter, and Hubert

A X

Y(k2) Wi (ks) + B FePS(ky ky, ks, k
My (ki ks, ko) Spiesberger for useful discussions and help.
Zo(k) W (ko) Vzzww(a,B,7, 8, ky, ka, ks, ks) APPENDIX A: VERTICES
= ie’—ﬁd’-[ (1 +2£c¥i) The vertices needed for the computation of the am-
w (g°"gﬁ5:g°€ oo _ ages gy plitudes can be classified according to vertices involving
: 97" - 29*°g
Zp(k2) W5 (ks) + %F“‘M(kl, k, ks, kq)
/W;(k;) Vaww(B,7, k1, k2, k3, )
Z (08,7, 6, ks, ko, ko, k. H(k) — — =ia| Mg
W (ky) ‘ W (ks) wwww(a,B,7,0, ki, ka, k3, kq) +%( Pk - (ks + k)
W (ka) X X
= —ie’—%—{ (1 +25W¢) LA ‘k2kla_kgk1)}
Sw
,(gaﬁg'ys + gasgﬂ‘y _ 2ga‘vgﬁ5)
W (ka) Wi (ko) + S P05 (ky kg, kg, k Zs(k
xfév‘ (K1, ks, k2, 4)] 5(k2) Vit 28 K Ko )
where H(k) — —

— 1
=i Gy Hyy (we — <pe)

Fobvé(k =
(K1, k2, ks, k) o (ks) (977 (k - ks) — KERY)

9°P g™ ((ky - k3) + (kv - ka) + (k2 - k3) + (k2 - ka))
—g*7gP8 (k1 - ka) + (k2 - k3))

Vi VY k1, ka, ks,
— %P7 (ky - ka) + (ks - ko)) Hz2(B,7, kr, k2, k3, )

NN S

Zp(k2)
— P (KTKS + JRS + Kk + KEK]) =ig| Mg
— g (KPke + kokP 4 kPke a B H(k,) — — w 2
9" (kikg + k3ks + kkg + k3KY) (k) +ﬁ—(swo+§lem)
+ 9T (RERS — KERS + KRS + KiD) RPN
Zo(ks) (ke tat k)

+ g (kY — k7RG + KRS + KTRE) -3~ ) |

+ P RERS + kS — KRS + KEKD) o
B a a a a

+ g7 (ki kg + ks ki — K3k + kJkS) FIG. 4. Vertices with one Higgs boson and two vector

FIG. 3. Four-boson vertices. bosons.
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three vector bosons (Fig. 2), vertices involving four vector
bosons (Fig. 3), and vertices involving one Higgs scalar
and two vector bosons (Fig. 4). In Figs. 2-4, the ver-
tices are explicitly given. All particles are understood to
be entering the vertex. Vertex functions involving out-
going particles can easily be constructed by replacing an
incoming particle by the outgoing antiparticle and simul-
taneously replacing the particle’s four-momentum by its
negative four-momentum.

APPENDIX B: RELATIONS BETWEEN
AMPLITUDES

Given the particle types in the initial and final states,
there is in principle a number of 81 different amplitudes
if all particles are massive. The number of distinct ampli-
tudes can be significantly reduced, however, if one relates
certain amplitudes to each other by using the fact that
the S matrix is invariant under C, P, and T transfor-
mations (e.g., [24,30,31]). Also, amplitudes for reactions
involving different sets of particles can be related to each
other.

I denote an amplitude for the reaction of the par-
ticles AB — CD with lelicities Aj,A2,A3,A4 (in
this order) and center-of-mass scattering angle ¥ by
M(AA2A3)04)(AB — CD)(¥). In the following, the
frame axes in the center-of-mass system are defined in
such a way that the reaction takes place in the Z-Z plane.
Particle A travels in the positive Z direction and parti-
cle C has momentum component p, > 0. The scattering
angle 7 is restricted to 0 < ¥ < 7. In the relations I give
here, I take into account the phase factors according to
the Jacob and Wick phase convention. Derivations of the
relations can be found in [25].

From the invariance of the S matrix under a rotation
one obtains the relation

M(AA223)4)(AB — CD)(9)

= (=1) 722 FA=ds Af( A1 0403) (BA = DC) () .
(B1)

This relation can also be obtained from exchanging the
two particles in the imitial states as well as the two par-
ticles in the final state.

A parity transformation P changes momentum p and
angular momentum J according to p &+ —p and J — J.
Counsider Fig. 5. The small arrows symbolize the com-
ponent of spin in the direction of flight; from them, the
helicity can be read off. For example, an arrow perpen-
dicular to the direction of flight designates a particle in
the longitudinal polarization state. Rotating the figure
obtained after applying P by an angle w about the y
axis, one obtains the same physical situation as before P
was applied; only the particles’ lelicities have changed
sign. It is thus clear that M(A1A2A3)04)(AB — CD)(¥)
is equal to M(—A; — A2 — A3 —A4)(AB — CD)(9), up to
a possible phase factor. The phase factor is found to be
(—1)*s—2—X1+22 Rotating further by an angle 7 about
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Vs(3, Aa) Va(p3,— M)
Valgi, =)
Vi, M) % p A ,’) 5
z Va(p2, A2) 7 Vi(p2,—\)
Va(pi, M) Vi(pi, —A3)

FIG. 5. Transformation of initial and final states under a
parity transformation.

the z axis I obtain the relation

= M(=A1 — Az — A3 — Ay)(AB — CD)(-9) . (B2)

When charge conjugation is applied to a state, particles
are changed into their antiparticles, while their momenta
and helicities remain unchanged. The invariance of the
S matrix under charge conjugation implies the relation

where A is the antiparticle of particle A etc.

After a rotation by an angle m about the y axis, an
exchange of particle labels in the two-particle states, and,
successively, a rotation by an angle m about the z axis,
one obtains the relation

M(MA223)4)(AB — CD)(9)

Time reversal changes initial to final states, or, equiv-
alently,

P—>—P
I -3 }A-—)A,

where ) denotes helicity (see Fig. 6). After a rotation by
an angle m — 9 about the y axis one obtains the relation

D
Rotation by B
angle # — 9 ~
about y C 3y -

FIG. 6. Transformation of initial and final states under
time reversal, succeeded by a rotation.
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TABLE II. Relations among amplitudes for a given process AB — CD using the Jacob and Wick
phase conventions. A relation applies if the corresponding condition cited in the left column applies.
The relation is due to the invariance under the transformation cited in the center column. Sample
usage: For W™W* — W~WT, we can use the invariance of the S matrix under P, C, and T
transformations. One obtains relations due to P, C, and T as well as relations due to the combined

transformations CP, CT, PT, and CPT. For example, due to CPT, M, __o(9¥) = Mot4+-(—19),
where the subscripts on M denote the helicities.
Condition that Relation
is satisfied Transformation M(A1A2A3A4)(F) =
(always) P-+rotations M(-1—-2—-3—4)(—9)
A=B C+rotations M(2143)(—9)
ANC =D
AB=CD T-+rotations M(3412)(—9)
Identical initial Exchange of (—1)*27>2 M(2134)(9 £ )
particles, A =B labels+rotation
Identical final Exchange of (1)~ s AM(1243)(9 £ )
particles, C = D labels+rotation

The interactions of the GIDS model are actually invariant
under P, C, and T transformations. The relations (B1)
to (B5) can therefore be applied as follows.

(i) Amplitudes for the processes which I did not cal-
culate, listed in parentheses in (11) and (12), can be ob-
tained from the ones which I calculated. For example,
using C' conjugation,

M(/\1A2/\3A4)(W+W+ — W+W+)(’l9)

= M(A1/\2/\3A4)(W_W_ — W_W—)(’ﬂ) .

(ii) Amplitudes for a given process, AB — CD, but
with different helicities, can be related to each other (cf.
Table II).

Parity together with rotational invariance always gives
a relation. In addition, the fulfillment of each of the
conditions that (1) particle A is the antiparticle of B
(A = B) and particle C is the antiparticle of D (C = D),
(2) the initial state contains the same particles as the
final state (in any order) (AB = CD), (3) the initial
state contains identical particles (A = B), and (4) the
final state contains identical particles (C = D), gives one
more relation, each of which follows from the invariance
under a certain transformation, possibly accompanied by
rotations. For the cases (3) and (4) one obtains relations
among amplitudes in which identical particles have been
exchanged. It is clear that the two amplitudes differ at
most by a phase. Finally, all combinations of relations
can also be applied to the considered process.

APPENDIX C: LISTING OF AMPLITUDES

The amplitudes have been expanded in powers of
M}, /s < 1. The expansion is valid for two cases: (1)
s> M} and (2) no Higgs particle (Mg — oo). I list the
terms that grow as O(s). There are no terms that grow

with higher powers of s. The terms depending on ew are
in agreement with [32]. The high-energy approximation
has been carried out at a fixed center-of-mass scattering
angle Y. The expansion breaks down in the collinear re-
gion. More precisely, it is invalid if (1 + cos ) is so small
that it is comparable in magnitude to MW z/s. Terms
bilinear in the ¢; are not listed. I omit these terms for
consistency, because taking into account bilinear terms
one would also have to consider terms of dimension eight
in the Lagrangian density, since these are, like the bilin-
ear terms, proportional to A~%.

Amplitudes that are not listed are either related to one
of the listed amplitudes by one of the relations of Table
II or do not have O(s) terms. I note that, in case (1), no
O(s) terms are present whenever the standard amplitude
does not approach zero in the limit s — co except when
all external bosons are in the longitudinal polarization

state.® In the listing,
. g%s . eZs . e%s
Sg=i-osy Se=i—n, Sz=i—rs,
g7 AME)’ M3z’ 4MZ

sw =sinfw, cw =cosbw, tw = tanbw .

The meaning of the variables 3, £, and @ is

1 -
s = l i — t =

ls(l—cos19)+
4s—M§ 4 4

1
t— M% 2’

i 1s(1 +cos¥)

4 u—M§ 27

However, in the two cases for which the expansion is
valid, these expressions are simplified: For case (1), the
variables are O(s™!) and are multiplied by at most one
power of s in the amplitudes. Therefore, one can set
§=1%t=a =0 for case (1) Case (2) is obtained by
setting § = —} and t=u=3.

8High-energy forms for the standard amplitudes with a light
Higgs particle can be found in [32].
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W-WwWtsWwW-wt
Moooo = —4(1 — dews)3y5 — (1 — dewa)sgt(1 — cosI) + 3(ewa + tiyena)sy(1 + cos ) ,
Moo+ = —8ewaSg5 + ewsg cos ¥ — 2ewesy ,
Moto- = 26W§sgf(l —cos?) + (GWQ - %ew) sgcosy — (ewq, + gew) Sg ,

My = —2ewsg(1 + cosd) ,
My = —dewsg(l + cosV) ;

WHWw+ s wWw+
Moooo = —(1 - 4€Wq>)3gt.(1 — cos ‘19) - (1 - 4€W§)891.1.(1 -+ cos ’19) - G(GWQ + t%VeBé)sg s

- 3
Moto- = 26W§Sgt(1 - COS19) + (Gw.} + %Ew> Sg cos?d — <€Wq> - —-ew) Sg »

2
My =dewsg,
Moy =8ewsg ;
W-W+t—> 22
Moooo = —4(1 —dews — Zt%VGBq,)sgé' + 6ewassg ,
Moo+ = —8(ews + thyeps)sys + 2[2s% (ews + €Bs) — ewas — tiy€pa|sy ,
1 s 1
Moto- = —E(ewq, + qu,)sgc—W(l —cos¥) — Eewsgcw(3 + cos¥) ,
w
M++oo = —86W§895 - 2€w<§sg y
Moo =My 4y = —dewsycly ,
My = —8Bewsycoy ;
W-Z-W-2Z

Moooo = —(1 + dews — 2t%Vqu,)sgf(1 —cosV) — 3ewasg(l — cosV)
2
Moo+ = —(ewa + GBQ)SgZ—Z + ewsgcw cosV
Moto- = 2(ews + t%VeBQ)sgf(l —cos?) — 2(ewas + €Bs)34Coy (1 — cosd)

1 — cos?
—€BeSg——3 — + (ews + 3epa)sg(l — cos ) ,
%

2

1 1
Moo= —2—(ewq, + qu,)sgz—x(l + cos ) — Eewsgcw(3 —cos?) ,

M o0 = 2ews3,t(1 — cosI) — ewasg(l — cosV) ,
Misio = Myit = 2ewsgciy (1 —cosd) ,
My = dewsycy (1 — cosd) ;

ZZ - 727

Moooo = (1 — 4cyews — 453 eps)sy[—45 — t(1 — cosd) — i(1 + cos )] ,
Moo+ = —8(ews + tieps)sys — 2(ews + tiyepa)sy ,
Moio— = 2(ews + thyeps)syt(l — cosV) — (ews + theps)sy(1 — cosd) ;

vy o> W-W+
Moo = —4(ews + €Ba)Se ,

Moo =My gy = —dewse,
My = —8Bewse ;

6721



6722 INGOLF KUSS 50
YW= = AW~
Myo_o0 = —2(ews + €Bs)se(l — cos V) ,
M+++_ = M++_+ = 2€W88(1 - COS’!9) 5
Mis__ =4ewse(l —cos?) ;
vZ - W-W+
1 Se 1 Se
M oo- = -§(€W§+€B§)—-(1+COS19) — —€w (—3+COS‘I9) s
Sw 2 sw
M.H)_o(’l’) = —.M+oo_ (71' - 'l’) )
Se§
Mytoo = —4(ews — €Bs) + (ews — €Bs) — 4(ews — tan® OWGBQ)SeC—W— )
swew swew Sw
c
Myppo =My =My =M, __ = _46W5e;v::' )
Miy = —8€W5551 )
Sw
Wy o W-2Z
1 Se
Moto- = (E(Ewcp + 3634,) — 20€V(€W<1> + 634,)) (1 — cos '19) ,
CwSw
M -1 + % (1 + cosd) + 1e i‘—e—(——3+cosz9)
o+—0 = —5(ews E1341>)3W( cos¥) + gew - ;
Se Se
Mii00 = (ews + €Bs) — + ew—cos ¥,
sw sw
1
Myjpo =My =My =M, ___ = §M++—- ;

= 2ew SVK.&'e(l —cos) ,
Sw
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