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The construction and the symmetries of Chem-Simons vortices in harmonic and uniform magnetic
force backgrounds found by Ezawa, Hotta, and Iwazati and by Jackiw and Pi are generalized using
the nonrelativistic Kaluza-Klein-type framework presented in our previous paper. All Schrodinger-
symmetric backgrounds are determined.

PACS number(s): 11.10.Kk, 11.10.Lm, 11.15.—q

with p = 4"4 and

= (1/rc)e's J', (3)

J = (1/2i)[%*D @ —@ (D @ )*].

These equations can be solved [2—4] by applying a coordi-
nate transformation to a solution @ of the problem with
(o = 0 studied in Ref. [1], according to

1 . r2
'0 (t, x) = exp —iw —tanwt)coast 2

x exp{i(JV/2z e)(ot)4'(X, T),
(4)

(A ) = Att —tt (
A't),

The construction of static, nonrelativistic Chern-
Simons solitons [1] was recently generalized to time-
dependent solutions, yielding vortices in a constant exter-
nal magnetic Beld 8 [2—4]. Putting (o = 8/2, the equation
to be solved is

i(D ),0 = {——,
'D' —Ail" 4 )4 .

(We use units where e = m = 1.) Here the covariant
derivative means

(D ) =8 —i(A ) —iA

(o.=0,1,2), where A is a vector potential for the constant
magnetic field, A = 0, A; = 2e;szs8 = (oe;sos (i, j=1,2),
and (A ) is the vector potential of Chem-Simous elec-
tromagnetism; i.e., its field strength is required to satisfy
the field-current identity

B = ~e8;A =s—(1/e)p and Z' =——8;A —8&A'„

with

T = tan(ot/u, X = (1/cosset)R(art)x.

Here JV = f ~4'~ d2x is the vortex number and R(e) is the
matrix of a rotation by angle l)) in the plane. (The prefac-
tor exp[iNurt/27re] and the extra term —8 [((o/2rre) JVt]
are absent &om the corresponding formula of Ezawa,
Hotta, and Iwazaki [2].) A similar construction works
in a harmonic background [4].

In this paper we show that the above generalizations
arise by reduction from suitable curved spaces. As ex-
plained in a previous paper [5], (2+1)-dimensional non-
relativistic Chem-Simons theory can in fact be lifted to
"Bargmann space, " i.e., to a four-dimensional Lorentz
manifold (M, g) endowed with a covariantly constant null
vector ( [5]. Our theory is decribed by a massless non-
linear wave equation

{D„D"—R/6+ A~/~ )@= 0,

where D„= V„—ia„(p= 01, ,2)3, V' is the metric-
covariant derivative, and R denotes the scalar curva-
ture. The scalar field @ and the "electromagnetic"
field strength f„„=28(„a„~ are related by the field-
current identity Irf„„= i/ ge„„~$1'j—, where j"
(1/») X*(D"0) &(D"&)*]. —

A Bargxnann space admits local coordinates (t, x, s)
such that Q, the quotient of M by the integral curves of
( = 8„can be labeled by (t, x). The field strength f„
is clearly the lift of a closed two-form F„„onQ. So the
vector potential may be chosen as a„= (A, 0) with A
8 independent. %hen supplemented by the equivariance
condition
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our theory projects to a nonrelativistic nonlin-
ear Schrodinger —Chem-Simons theory on the (2+1)-
dimensional manifold Q for @(t,x) = e "Q(t, x, s).
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Q» = 8puX"P~7d x,
Et

&p &" = (il»)[@*(Dp@) @—(Dp@)*]

—-(
I

—IVI'+ (D"W)*DR + —14 I'
I

1 (R

(8)

A symmetry is a transformation of M which inter-
changes the solutions of the coupled system. Each (-
preserving conformal tre~~formation is a symmetry. In
Ref. [5] we proved a version of Noether's theorem saying
that, for any $-preserving conformal vectorfield (X&) on
Bargmann space, the quantity

Bnd that including the "vector-potential" components
into the metric (10) results, after reduction, simply in
modifying the covariant derivative D in "empty" space
(A = 0) according to D ~ (D ) . The associated
equation of motion is hence the obvious curved-space gen-
eralization of Eq. (1).

Let now y denote a conformal Bargmann O'Heo-

morphism between two Bargma~n spaces; i.e., let y:
(M, g, g) ~ (M', g', (') be such that y*g' = 02g and
(' = y (. Such a mapping projects to a difFeomorphism
of the quotients Q and Q' we denote by C. Then the same
proof as in Ref. [5] allows one to show that if (a'„,Q') is
a solution of the field equations on M', then

is a constant of the motion. (Here p;~ is the met-
ric induced on it by g„„on Zq, the "transverse space"
t=const. )

For example, M can be fiat Min&owski space with
metric dX + 2dT dS, where X g R and S and T
are light-cone coordinates. This is the Bargmann space
of a free, nonrelativistic particle [6]. The above sys-
tem of equations projects in this case to that of Ref.
[1]; the (-preserving conformal transformations form the
(extended) planar Schrodinger group, consisting of the
Galilei group with generators J' (rotation), 'R (time
translation), g (boosts), 'P (space translations), aug-
mented with the dilatation 'V and expansion K, and cen-
trally extended by the "vertical" translation JV [7]. With
a slight abuse of notation, the associated conserved quan-
tities are denoted by the same symbols. (Explicit formu-
las are listed in [1] and [5].) Applying any symmetry
try~formation to a solution of the Beld equations yields
another solution. For exemple, a boost or an expansion
applied to the static solution @0(X) of Jackiw and Pi
produces time-dependent solutions. Using the formulas
in [6], we recover the expression [1]

a = (V *a') @ = fiV *0'

is a solution of the analogous equations on M. Locally,
we have y(t, x, s) = (t', x', s'), with (t', x') = 4(t, x) and
s' = s+ Z(t, x), so that g = Qy*g' reduces to

@(t,x) = O(t) e*~&'"&@'(t',«'),

A = @*A' (a = 0, 1,2).
(i2)

Q» = V*Q».

Note that y takes a (-preserving conformal transforma-
tion of (M, g, () into a ('-preserving conformal transfor-
mation of (M', g', ('). Conformally related Bargmann
spaces therefore have isomorphic symmetry groups.

The associated conserved quantities can be related by
comparing the expressions in Eq. 8. Using the trans-
formation properties of the scalar curvature R, a short
calculation shows that the conserved quantities associ-
ated with X = (X") on (M, g, () and to X' = p X on
(M', g', (') coincide:

%(T,X) = exp —— 2X b+ Tb

„(X+bT)2 ) (X+bT)+k
1 —kT

) (1—kT) !0

The labels of the generators are, however, difFerent (see
the examples below).

Consider, for example, the Lorentz metric

(14)

Now we present some new results. The most general
"Bargmann" metric was found long ago by Brinkmann

g;~ dx'dx~ + 2dt[ds + A dx] + 2Apdt, As ———U, (10)

where x „ER, r „= !x „!,and u is a constant.
Its null geodesics correspond to a nonrelativistic, spin-
less particle in an oscillator background [6,9]. Requiring
equivariance (7), the wave equation (ll) reduces to

where the "transverse" metric g;~ as well as the "vector
potential" A and the "scalar potential" U are functions
of t and x only. Clearly, ( = 8, is a covariantly constant
null vector. The null geodesics of this metric describe
particle motion in curved transverse space in external
electromagnetic fields 8 = —BqA —V'U and 8 = V' x A

Consider now a Chem-Simons vector potential (a )„=
((A ),0) in the background (10). [The subscript ()
refers to an external-field problem. ] Using that the only
nonvzLnishing components of the inverse of the metric
(10) are g'~, g" = —A', g" = 2U + A;A*, g' =1, we

(D = 8 —iA, A = A/2), which describes Chem-Simous
vortices in a harmonic force background, studied in
Ref. [3]. The clue is that the mapping y(t „,x „,s „)=
(T,X, 8) [9], where

tamest, x „ 2
= s», — "tan~t~„,

cu
' cos~t, ' 2

(16)

carries the oscillator metric (14) conformally into the
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free form dXs + 2dT dS, with conformal factor O(t „=
[cosset „~ i such that rp (9, = (9s. Our formula lifts
the coordinate transformation of Ref. [4] to Bargmann
space.

A solution in the harmonic background can be ob-
tained by Eq. (11). A subtlety arises, though. The
mapping (16) is many to one: It maps each "open strip"

((Xosc) to8c'I Sosc)~(2 2)rr + ~to c + (g + g)rr)

(17)

(where j = 0, kl, . . .), corresponding to a half oscillator
period, onto the full Minkowski space. Application of
(ll) with 0' an "empty-space" solution yields, in each Iz,
a solution, 4 „. However, at the contact points t~ =~ (&)

(j + &)(s'ur), these fields may not match. For example,
for the "empty-space" solution obtained by an expansion,
Eq. (9) with b = 0, k $0,

8(() ( ))(+' (( '(»)"'...8 '~
)

@(u+~)
to,c mt~+0

Then continuity is restored by including the "Maslov"
phase correction [10]

@'osc(tosc) xosc) = ( 1) (1/co~tosc)
xexp( —(i~/2)r „tanurt „)@(T,X),

(+osc)0(tosc) Xosc)

1
[Ao (T, X) —u sinut „x„A(T,X)], (19)

COSCfiJ tQs Q

Aosc(tosc) Xosc) —(1/cosrdtosc) A (T!X) )

covariant derivative D given as in Eq. (2). The inetric
(21) is readily transformed into an oscillator metric (14):
The mapping y(t, x, s) = (t „,x „,s „)given by

t „=t, x'„= x'cosset+ e' x~s.inst, s „=2, (22)

(which ainounts to switching to a rotating frame with
angular velocity ~ = 8/2) takes the "constant-8 inetric"
(21) into the oscillator metric (14). The vertical vectors
0,... and 0, are permuted. Thus the time-dependent ro-
tation (22) followed by the transformation (16), which
projects to the coordinate transformation (5) of Refs. [2]
and [3], carries conformally the constant-8 metric (21)
into the ~ = 0 metric. It carries therefore the "empty-
space" solution e"4 with iIr as in (9) into that in a uni-
form magnetic field background according to Eq. (11).
Taking into account the equivariance, we get the formu-
las of [2], i.e., (4) without the JV terms, but multiplied
with the Maslov factor (—1)~. (The JV term arises due to
a subsequent gauge transformation required by the gauge
fixing in [3]).

It also allows one to "export" the Schrodinger symme-
try to nonrelativistic Chem-Simons theory in the con-
stant magnetic field background. The (rather compli-
cated) generators, listed in Ref. [11],are readily obtained
using Eq. (13). For example, tiine translation t -+ t + w

in the 8 background amounts to a time translation for
the oscillator with parameter x plus a rotation with angle
un. Hence H. ri = H „(uJ' = 'R—+(u K —(uJ. Similarly,
a space translation for 8 amounts, in "empty" space, to
a space translation and a boost, followed by a rotation,
yielding P& ——P' + ue'~g~, etc.

All our preceding results apply to any Bargmann
space which can be conformally mapped into Minkowski
space in a (-preserving way. Now we describe these
"Schrodinger-conformally fiat" spaces. In D = n+ 2 ) 3
dimensions, conformal Batness is guaranteed by the van-
ishing of the conformal Weyl tensor

where j is as in (17). Equation (19) extends the result
in Ref. [4] from ~tosc~ ( m2u to any t „.For the static
solution in [1] or for that obtained from it by a boost,
limq ..~q,. 4 „=0, and the inclusion of the correction~ (~)

factor is not mandatory.
Since the oscillator metric (14) is Bargmann-

conformally related to Minkowski space, Chem-Simons
theory in the oscillator background has again a
Schrodinger symmetry. The generators of this symme-
try are J„=g, II „=Q + (d2K, and N „
already found in Ref. [3], completed by

(C „)~= ('R —(d K +2i~27) and

(p .,)g = (p +i(ug).

Consider next the metric

dx + 2dt[ds+ 2e;~8x~dx'],

g[a ~~1

+(D -1)(D —2)

Now R„„~ (" = 0 for a Bargmann space, which im-
plies some extra conditions on the curvature. Insert-
ing the identity (&R""zo ——0 into C""z ——0 and us-
ing the identity („R„" = 0 (R"—:R""„),we find 0

[(~R"—( R"—
] + R/(D —1)[(~b" —( b "].Contracting

again with ( and using that ( is null, we end up with
R(~(" = 0. Hence the scalar curvature vanishes, R = 0.
Then the previous equation yields (~~R"j ——0 and thus
R" = ( rj" for some vector field rl. Using the symmetry
of the Ricci tensor, R~~„~ = 0, we find that g = p( for
some function 10. We 6nally get the conaiatency relation

where x. E R and 8 is a constant. Its null geodesics
describe a charged particle in a uniform magnetic 6eld
in the plane [6). Again, when imposing equivariance,
Eq. (11) reduces precisely to Eq. (1) with A = A/2 and

The Bianchi identities (V„R„" = 0 since R = 0) yield
(~(9~g = 0; i.e., g is a function on spacetime Q. The
conformal Schrodinger-Weyl tensor is hence of the form
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C""~ = R""~—[4/(D —2)]g6("(~(~"( ).

It is noteworthy that Eq. (24) is the Newton-Cartan
field equation with g/(4z'G) as the matter density of the
sources.

It follows from Eq. (24) that the transverse Ricci
tensor of a Schrodinger-conformal Hat Bargmann metric
necessarily vanishes, R;s = 0, for each t T.he trans-
verse space is hence (locally) fiat, and we can choose

g;s = g,s(t). Then a change of coordinates (t, x, s)
(t, G(t)x, s), where G = (G;s) is the square-root matrix
h sG; Gs = g;s, casts our Bargmann metric into the form
(10) with g;s = b;s. Note that this transformation brings
in a uniform magnetic field and/or an oscillator into the
metric, while jc remains unchanged. In this case, the non-
zero components of the Weyl tensor of the general D = 4
Brinkmann metric (10) are found as

& y e — &yea — 4

C „„t——+C tt, ———4BB,1

C.&.&
—— ,'[B,(B„A-„--B.A.) —X.B„8,) + —,'[B.' —B„']V,

(26)

C„&„&——+-,'[B,(B„A„-B.A.) —A„B.8] —
—,'[B.' —B„']V,

[C(t) = —arz(t)] isotropic oscillator, and a uniform force
field X(t) in the plane which may all depend arbitrarily
on time. It also includes a curl-free vector potential a(x)
that can be gauged away if the transverse space is simply
connected: a, = B;f, and the coordinate transformation
(t, x, s) m (t, x, s + f) results in the "gauge" transfor-
mation A; ~ A; —B;f = —&8e;szs. If, however, space
is not simply connected, we can also include an external
Aharonov-Bohm-type vector potential.

Being conformally related, all these metrics share the
symmetries of Bat Bargmann space: For example, if the
transverse space is Rz, we get the full Schrodinger sym-
metry; for R $(0), the symmetry is reduced rather to
o(2) x o(2, 1) x R, just like for a magnetic vortex [12].

The case of a constant electric field, which went »~no-
ticed so far, is quite amusing. Its metric dx + 2dt ds—
2F ~ xdt2 can be brought to the kee form by switching
to an accelerated coordinate system:

X=x+-Ft T=t, S=s —F xt, —6F t .
S (28)

This example also shows that the action of the
Schrodinger group, e.g., a rotation, looks quite cMerent
in the inertial and in the moving &ames.

Let us finally mention that Eqs. (24) and (25) are
equivalent to the condition [13]

(29)

C.,„,= +-,' [B,(B.A„+B„A.) + 2B.B„u]
—4(A B —A„B„)8.

Then Schrodinger-conformal Batness requires

A; = ze;, 8(t)x +a,., V x a=0, Bta=0,

U(t, x) = —,'C(t)R'+ F(t) x+ K(t).

(27)

In conclusion, our "nonrelativistic Kaluza-Klein" ap-
proach provides a ~u6fied view on the various known con-
structions and explains the common origin of the large
symmetries. We described all such spaces, extending the
set of generators in an oscillator background given by
Jackiw and Pi in [3], presented one more example, and
pointed out a possible time dependence as well as the
possibility of adding an Aharonov-Boom-type potential.
We have also shown that formula (4) may require a phase
correction for times larger than a half oscillator period.

[Note, in passing, that (24) automatically holds: The
only nonvanishing component of the Ricci tensor is Rqq ——

-B,{V X) ——,'8, —SV.]
The metric (10)—(27) describes a uniform magnetic

field 8(t), an attractive [C(t) = ar2(t)] or repulsive
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