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We consider light-cone quantized (1+1)-dimensional +CD on a "cylinder" with periodic boundary
conditions on the gluon Selds. This is the kamework of discretized light-cone quantization. We
reviewer the argn~ent that the light-cone gauge A+ = 0 is not attainable. The zero mode is a
dynamical and gauge-invariant Seld. The attainable gauge has a Gribov ambiguity. We exactly
solve the problem of pure glue theory coupled to some zero mode external sources. We verify the
identity of the &ont and the more fa~iBar instant form approaches. We obtain a discrete spectrum
of vacuity~ states and their wave functions.
PACS number(s): 11.15.Tk

I. INTRODUCTION

Recently the Hami&tonian approach to field theory has
been tackled with renewed interest. The hope is that
Dirac's front form" Hamiltonian scheme [1] is useful for
confionting qua»t»~ chromodyna~ics (/CD). Often in
the literature this is called "light-cone, " "null-plane, " or
"light-front" quantization. In what follows we shall per-
sist with the origi»~& Dirac nomenclature. This formu-
lation uses z+ = (1/~2)(ct + z), called the light-cone
time, as the "time" evolution parameter rather than the
conventional ze = ct. For an extensive bibliography the
reader is referred to Ref. [2]. One reason for the modern
phase of this approach is the apparent simplicity of the
vacu»m in &ont form theory. In the more familiar "in-
stant form" quantization the /CD vacu»~ contains an
infinite n»aber of soft particles. But then in front form
field theory the following question arises: Where can long
range phenomena of spontaneous symmetry breaking and
perhaps even confinement appear in the apparent absence
of any "infrared" vacu»~ structure'?

The specific approach of discretized light-cone quanti-
zation (DLCQ) is one setting in which one can answer
this question and hopefully pursue the program to a so-
lution. Here the theory is defined in a finite "spatial
vol»me" with periodic or antiperiodic boundary concB-
tions imposed. on bosonic or fermionic fields, respectively.
There are two appealing reasons for such a formulation.
One obtains an in&ared regulated theory, and the dis-
cretization of momenta facilitates putting the many-body
problem onto the computer. The price one has to pay,
shown actually some time ago [3], is that Fourier zero
modes of the fields are often not independent dyne~i-
ca1 quanta. Rather, by a constraint equation, they are
dependent on them. Recent work on such a constrained
zero mode in scalar (1+1)-dimensional 44 ($4i+z) theory
has led to the insight that it gives rise to the phenomena
of spontaneous symInetry breaking and field condensates

[4], aspects normally attributed to a nontrivial vacuum
structure.

Our concern in this paper, however, is with zero modes
that are true dynamical independent fields. One way
they can arise is as follows. Because of the boundary
conditions in gauge theory, one cannot fully implement
the traditional light-cone gauge A+ = 0. The develop-
ment of the understanding of this problem in DLCQ can
be traced in Ref. [5]. The field A+ turns out to have a
zero mode which cannot be gauged away [6]. This mode
is indeed dynamical, and is the object we study in this
paper. It has its analogue in instant form approaches to
gauge theory. For example, there exists a large body of
work on Abelian and non-Abelian gauge theories in 1+1
dimensions quantized on a cylinder geometry [7]. There
indeed this dynamical zero mode plays an important role.

We too shall concern ourselves in the present work with
non-Abelian gauge theory in 1+1dimensions, examining
the model introduced by 't Hooft [8]. A DLCQ treatment
of the theory, giving meson and baryon spectra and wave
functions, was undertaken by Hornbostel et aL [9]. Apart
from a modified approach by Lenz et al. [10],sero modes
have been neglected in previous DLCQ studies of (1+1)-
dimensional /CD (QCDi+i). This we rectify to some
extent in the present paper.

The specific task we undertake here is to understand
the zero mode subsector of the pure glue theory, namely,
where only zero mode external sources excite only zero
Inode gluons. We shaH see that this is not an approxima-
tion but rather a consistent solution, a subregime within
the complete theory. A similar &aming of the problem
lies behind the work of Luscher [ll] and van Baal [12]
using the instant form H~miitonian approach to pure
glue gauge theory in 3+1 dimensions. The beauty of
this reduction in the (1+1)-dimensional theory is twofold.
First, it yields a theory which is exactly soluble. This is
useful given the dearth of soluble models in field theory.
Second, the zero mode theory represents a paring down
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to the point where the kent and instant forms are man-
ifestly identical, which is nice to know indeed. We solve
the theory in this specific dynamical regixne and find a
discrete spectr»m of states whose wave functions can be
completely determ~ned. These states have the quant»~
n»~bers of the vacu»~. There is a s»mmary and discus-
sion of the results at the end of the paper. The Appendix
explains the notation.

II. GAUGE FIXING

0

A, =0. (6)
The reason is that there still remains freedom to perform
gauge transformations that depend only on light-cone
time x+ and the color xnatrix 0 . The above condition
Eq. (6) can be reached from the arbitrary configuration
B"by the Lie algebra element

W = P exp ig —dx+Bs (x+)—
~+ 2

0

We consider an SU(2) non-Abelian gauge theory in
1+1dimensions with classical sources coupled to the glu-
ons. The Lagrangian density is

8 = —Tr (F„„F"")+ 2 Tr (J„A"),
2

where F„„=B„A„—B„A„—g[A„,A„]. With a finite in-
terval in x &om —L to L, we impose periodic boundary
conditions on all gauge potentials A„.

We now show that the light-cone gauge A+ = 0 cannot
be reached. A gauge transformation U bringing a gauge
potential B", itself in some arbitrary gauge configura-
tion, to some other gauge con6guration A" is

gA" = B„UU + gUB"U (2)

Here g is the coupling constant and U is an element of
the Lie algebra of SU(2). Clearly U given by

U = Pexp —g dy B+(y )—I

will bring us to the gauge A+ = 0.
We appear to have been successful in getting the light-

cone gauge. However, the element U through which we

wish to achieve the gauge condition must satisfy Z2-
periodic boundary conditions, as in [13],namely, U(z) =
(+)U(x + 2L). Clearly Eq. (3) does not satisfy these
boundary conditions. So in fact the attempt has failed.

With the notation given in the Appendix, a modifica-
tion of Eq. (3) is

U(&) ese B pe s I & ds —B+(s ) (4)

0
Since B+ is the zero mode of B+, this is an allowed gauge
transformation but it does not completely bring us to the
light-cone gauge. We 6nd instead

0
A+ =a+.

In other words, we cannot eliminate the zero mode of the
gauge potential. The reason is evident: It is invariant
under periodic gauge transformations. But of course we
can always perform a rotation in color space. In line with

0
other authors [14], we choose this so that As is the only
nonzero element, since in our representation only 0 is
diagonal.

In addition, we can impose the subsidiary gauge con-
dition

where x0 is some arbitrary but fixed light-cone time. It,
moreover, does not "undo" the previous gauge condition.

The above procedure would appear to have enabled
complete 6xing of the gauge. This is still not so. Gauge
transformations

nm'
V = exp ix cr

0&A+ &3 (10)

which defines a fundamental modular legion [12].

III. EQUATIONS OF MOTION

Equations for pum glue theory. Ultimately, the argu-
ment that the vacu»m in kont form 6eld theory is trivial
rests on the linearity of the Euler-Lagrange equations of
motion in the light-cone time x+. This itself stems from
the expression for the O'Alembertian in light-cone coor-
dinates & = 8+8 in one space dimension. It is the very
same fact that causes most zero modes to be constrained
when there are transverse dimensions: The space deriva-
tive destroys the mode, thus e»m~nating the time deriva-
tive in the equation of motion. However, a careful ex-
amination of the equations can sometimes reveal double
time derivatives 8+~ due to the gauge structure. Thus
there can still be dynamical zero mode degrees of free-
dom even in DLCQ which could, in principle, undermine
the vacu»~ "triviality" argument. This is what we now
explore for SU(2).

The equations of motion for the theory are

[D",F„]= 8"F„„—g[A",F„„]= J„.

generate shifts, according to Eq. (2), in the zero mode
component

0 0
+ +A3 -+ A3 +

gL

All of these possibilities, labeled by the integer n, of
course, still satisfy 8 A+ = 0, but as one sees ri = 0
should not really be included. One can verify that the
transformations V also preserve the subsidiary condition,
Eq. (6). One notes that the transformation is z depen-
dent and Z2 periodic. It is thus a simple example of a
Gribov copy [15] in 1+1 dimensions. We follow the con-

0
ventional procedure of restricting A3+ to a region &ee of
copies, for example,
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For our purposes it is convenient to break this equation up into color components A . Color will always be the
lower index. Rather than the three color fields A~&, A~2, and A3, we will use chiral notation with A~+ ——A~~ +iA& and
A" = A~ —iA~2. In terms of these components the equations of motion are

++
8»8"As —8"8»A»s + A—"8"A» + + —(A" B„A»+ —A+8»A" ) + ig(B„A"A»+ —8»A~A" )P~+ 2

— P + +

and

+g2[—A„,+A" As + 2A», s(A+A" + A" A»+)] = Js (12)

8"B„A"—8"B„A" + igAs»8" A», + ig(As 8»A" —A" 8»As») + 2ig(8»A2A" —B„A"As)

+g [A»,s(A" As —A2A") + 2A„, (A~A" —A" A+)] = J", (13)

where we use the antisymmetric derivative ABB
A(BB) —(BA)B. A third equation is the complex conju-
gate of Eq. (13).

Next we break these equations up into normal and zero
mode components [6], and look at the equations for each
Lorentz component v = +, —and each color component
a = 3, +. With the above gauge conditions the v = +
equations are

and

(iB+)~As = Js+,
0

o= J+,
0

(iB++gA+) A = J+,

0 0 0
g'(A+)'A = J+

(14)

(16)

(17)

Observe that these equations exhibit no time 8+ deriva-
tives. Correspondingly, for v = —,

i 0 n
8+8 As ——(A 8+A~)„+g As+(AiA )„=Js,

Qd' s ~phys) = o (24)

In the model we consider below, the sources are merely
external classical fields, essentially just parameters, and
so the specific theory we consider there is only meaningful

0
if J3+ as a parameter vanishes.

I

not so much a property of the front form, but is rather the
Gauss law exhibiting itself. The equations correspond to
the fact that, in noncovariant gauges, the Beld A is gen-
erally a nondynamical Beld. In a Hamiltonian approach
it plays the role of a Lagrange multiplier to the Gauss
law. In the approach we shall take to quant»m theory,
we shall implement these as "strong, " namely, operator
constraints. However, special comment must be reserved
for Eq. (15). It actually does not even occur since we have

gauged away As . If the sources themselves were part of
the dynamical problem, then this equation would have to
be reintroduced as a "weak" constrai»t, »~ately, applied
to physical states of the quant»m Hilbert space. It has its
analogue in the instant form approach [16],where the di-
agonal part of the color-charge operator must a»»ihilate
physical states,

i 0 0
—(8 ) As+ ——(A 8+A~)0+g As (A+A )0 ——Js,

n 0 n
—8+8 A —igA~+8 A

0 n
—2igB As+A —ig(A 8+A ) (20)

+ig(8+As A )„—g As+(As A )„=J
0 0 0 0

igAs+8 —A —2igB As+A —ig(As 8+A )o
0 0

+ig(8+As A )o —g As+(As A )0 —J

(21)

(22)

(23)

Note the presence of both constraint and evolution equa-
tions.

The constr~~~ed nature of the first set of equations is

IV. THE ZERO MODE SOURCE PROBLEM

0
0 J+

A~ ——
0

g2(A+)2
(26)

Once again, the other Gauss law in the zero mode sector

The classical solution. We now consider a regime of
the theory excited by sources that are purely time de-
pendent. Thus our theory difFers from that studied by
other authors [16] in that the sources are classical, only
their zero mode parts are retained, and they are part of
a light-cone quantized theory. The reader is referred to
the final section for more discussion on these sources for
this problem. Vanishing normal mode gluons are then a
consistent solution to the above equations of motion in
the normal mode sector. Only zero mode gluons occur.
From the zero mode equations of motion there are then
only two equations with nontrivial content. The last of
the Gauss law (v = +) equations is simply solved to give
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0 0 0 0 0
-(a-)'~++ 2~+~-~- = J- (26)

0
constrains J3+ to vanish as a parameter. Prom the v =—
equations we extract only one relevant equation

has to solve the Schrodinger equation

1 ( d2 (2Lm)2 Bq
2 ( dq2 q2 2I j

(34)

We observe that the pure glue theory in 1+1 dimensions
involves only a single genuine degree of freedom, the Beld

0

As . Substituting our solutions Eq. (25) into the dynam-
ical equation (26) we obtain

0 0
0 J+J+ 0

—(8 )A++ + =J
g2(g+ )

3
(27)

From this we can see that this reduction of the theory is
not equivalent to a perturbation around the free (g = 0)
theory. For convenience we henceforth use the notation

0
A+=v3 z+=t )

0 0
J+J+ 0

, J3 = —. (28)

The dynamical equation can then be compactly written

F03 = 80VS+3 + g6p3 Ag v )
0 (35)

one gets p = —BOV as the only conjugate momentum. The
Hamiltonian is now taken as the generator of translations
in z0. Thus

with the eigenvalue E' = E/(2L) actually being an energy
density.

Before proceeding with the solution let us brie6y show
that exactly the same structure is obtained beginning in
the instant form. Here we introduce the periodic bound-
ary conditions on a Rnite interval of length 2L in zs. The
appropriate gauge choice is 83A = 0 and then a color
rotation can single out the diagonal color component of

0
v = A&. Zero modes are of course now deBned with re-
spect to the z direction. After the color diagonalization,

0
one can gauge away A3 and, by analogy to the above, set
all normal mode sources to zero. With

82 m2 B
V+

Btz vs 2
' (29) H = —[p —g (A ) v + 2J A +2vJs](2L),

It can be solved by easy reduction to quadrature with
the solution

pdp

/By'+ 2m'Gy' + m' ' (30)

where G is an integration constant.
The solution to the quantum problem We pu. rsue a

Hsmi&tonian formulation where, in the front form, the
generator of z+ translations P or light-cone energy op-
erator is taken as the Hamiltonian. The only conjugate
momentum is

The Gauss law is

0
0 JO

Ao a
g2v2

n = 1, 2. (36)

(37)

H = — p'+ ', ', +2vJ,' (2L,). (38)

which upon substitution into the Hamiltonian yields

1
H = —p'+, +Bv (2L) . (32)

Of course, Hamilton's equations of motion agree with
Eq. (25) and Eq. (26). Quantization is achieved by im-
posing a commutation relation at equal light-cone time
on the dynamical degree of &eedom. Introducing the
variable q = 2Lv, the appropriate commutation relation
ls

[q(~').p(*')] = '. (33)

Note that the zero mode v or q satisBes a Geld theory
of one dimension less than the original Beld theory. In
1+1 dimensions the Beld theoretic problem reduces to
quant»~ mechanics of a single particle as in Manton's
treatment of the Schwinger model in Ref. [7]. One thus

0 0

@=II3 = BA3+ =8 v.
0

The Hamiltonian density T+ = 8 As+11& —l: leads to
the Hamiltonian

Q(q) = R~q J„(v2Eq) + S~uJ „(v'28q) . (39)

0
With the same chiral color convention one has (Jo)2 =

0 0
J+OJ and thus obviously the same Hamiltonian as in
Eq. (32).

Let us return to solving the Schrodinger equation (34).
All eigenstates Q have the quantu~ numbers of the naive
vacuum adopted in standard &ont form Beld theory: All
of them are eigenstates of the light-cone moment»m op-
erator P+ with zero eigenvalue. The true vacuum is now
that state with lowest P eigenvalue. In order to get
an exactly soluble system we perform one more simpliG-

cation. We eliminate the source 2B = J3 . One of the
solutions to Eq. (34) is then @(q) = ~qZ„(v 28q) where,
in the notation of [17], Z„ is the Bessel function with
v2 =—(2Lm)2 + 1/4. Note that mL is independent of L if
m, which is proportional to the external source, scales in
L like a dynamical source [18]. The general solution is
a superposition of the regular and irre~»sr Bessel func-
tions, that is,
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where X " denotes the mth zero of the vth Bessel func-
tion J„. We have shifted the lowest eigenvalue to zero.
In general, these zeros can only be obtained numerically.
Thus

0 (v) = &Ii~.(y 2~'"'s) (41)

is the complete solution. The true vacuum is the state of
lowest energy, namely, with m = 1.

V. DISCUSSION AND PERSPECTIVES

Let us first summarize the essential points. We ana-
lyzed pure glue non-Abelian gauge theory in a compact
spatial vol»»)e and periodic boundary conditions on the
gauge potentials. Working in the ft.ont form Hamilto-
nian approach, we demonstrated how one carefully fixes
the gauge. The equations of motion enabled identifica-
tion of dynamical and constrained zero mode variables.
We solved the quant»~ theory consisting of gluons ex-
cited only by pure time-dependent external sources. This
reduction uncovered a basic regime of non-Abelian gauge
theory where the &oat and the instant form approaches
were seen to be identical. It also reduced a quant»»)
field theory problem to a quant»m mechanical one which
could be solved for the Schrodinger representation wave
function. With the explicit interaction term for the dy-
namical zero mode switched oK, we exactly solved the
theory in a fundamental modular domain.

The exact solution we obtained is genuinely nonpertur-
bative in character. It describes vacu»~&eke states since
for all of these states P+ = 0. Consequently, they all
have zero invariant mass M2 = P+P . The states are
labeled by the eigenvalues of the operator P . We ex-
plain below why the nonzero sources are useful. But with
them being nonzero we have obtained a generalization of
the result of Hetrick [13].The linear dependence on L in
the resu1t for the discrete ene~ levels is also consistent
with what one would expect from a loop of color Bux run-

The constants R and S need to be specified by bound-
ary conditions, square integrability, and continuity of
the first derivative. When v ) 1/2 square integrabil-
ity leads to S = 0. The boundary condition that is to
be imposed comes from the restriction to the fundamen-
tal modular domain. Since the wave function vanishes
at q = 0, we must demand that the wave functions van-
ish at q = +2m/g. The overall constant R is then fixed
by normalization. Note that this requirement does not
automatically ensure that the wave function vanishes at
+2nn/g 'for all n, when arbitrary sources are present.
Therefore the pieces of the wave function for each funda-
mental modular region will not be exact copies of each
other. For the source-free case the wave functions for the
different regions are indeed exact copies [13].The bound-
ary condition leads to the energy density only ass»»)ing
the discrete values

2
Z~"& = ~, [(X&"~)'—(X~&"~)'], m = 1,2, .. . ,8+2

(40)

ning around the cylinder. In the source-kee case Hetrick
[13] uses a wave function that is sy~~etric about q = 0.
For our problem this corresponds to

(q) = N cos(v 2e q), (42)

where N is fixed by normah~ation. At the boundary of
the fundamental modular region q = 2w/g and Q
(—1) N; thus vt'2e 2m/g = mz and

(43)8
Note that m = 1 is the lowest energy state and has as
expected one node in the allowed region 0 & g & 2x/g.
Hetrick [13] discusses the connection to the results of
Rajeev [7] but it amounts to a shift in e and redefining
m ~ m/2. It has been argued by van Baal [19] that the
correct boundary condition at q = 0 is tP(0) = 0. This
would give a sine in Eq. (42) and would match smoothly
with our result Eq. (41). For the cosine solution there
is a discontinuous transition from the source-&ee to the
nonfree case. The marufest equivalence of the &ont and
instant form treatments of this problem is a consequence
of the elimination of all but topological features and in
this respect the topology is identical in the two forms.
We speculate that a point form [1]calculation would lead
also to the identical H~~Mltonian. In our picture, the two
forms wiQ begin to look cMerent with the introduction
of genuine dyne~ical content and in higher dimensions.
However, the same physical content should be present.

This calculation offers the lesson that even in a &ont
form approach, the vacu»~ might not be just the sim-
ple Fock vacuum. Dynamical zero modes do imbue the
vacuum with a rich structure. However, the advantage
of the &ont form is not severely lost. In higher dimen-
sions we expect that the tres~verse gluon components
are not dynamical but rather are constrained. If these
constraints can be solved, the vacu»m will not be inordi-
nately beyond control. This is in sharp distinction to the
instant form approach. There is nonetheless one possible
scenario in which a simple vacu»~ could be restored, at
least in 1+1 dimensions. The inclusion of normal mode
dynamics via the sources will build additional states on
top of the vacua of the present work. When the naive
continu»m bm~t L ~ oo is taken only the states built on
the lowest level might remain. When one goes to higher
dimensions issues of how one takes the continuum limit
and range of validity will become much more ¹~%cult.
The issue is how much resolution is necessary to under-
stand the physics one is interested in and as one moves to
higher resolution what new information must be added
so that one accurately re6ects the low energy regime of
/CD. Some discussion of these issues can be found in the
work of van Baal [12]. We &»ash by briefiy addressing the
program for tackling the higher dimensional theory, and
how our result will actually be valuable for the problem
in 3+1 dimensions. A crucial observation is that as zero
modes are independent of at least one space coordinate
they satisfy a field theory in a fewer n»mber of space
dimensions than the original. One can thus envisage un-
dertaking a hierarchy of projections &om 3 ~ 2 -+ 1 -+ 0
space dimensions, at each level extracting a zero mode
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theory within the previous higher Dimensional theory. A
similar idea lies behind the recent work of [20]. In our ap-
proach one arrives at a quant»~ mechanical problem of
similar structure to the one we have solved in the present
work. The difference would be that the dynamical quanta
of the higher dimensional theory, both fermions and glu-
ons, will be the sources for the lower dimensional theory.

Our exact solution with nonvaiiishing sources provides
for eventual understanding of how constrained and other
dynamical zero mode quanta come in at higher dimen-
sions, and how they generate QCD spectroscopy in the
real world of 3+1 dimensions.
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APPENDXX: NOTATXON AND CONUENTIONS

The conveation for light-cone coordinates we employ
is that of [21], 2:+ = (xo 6 zs)/v 2. The dot prod-
uct decomposes as A B = A+B + A B+. Following
Dirac [1], x+ is taken as the time parameter. The time
derivative is thus 8+ = 8/8z and, implied, the met-
ric tensor g"" leads to 8+ ——8 . Correspondingly,
8 = 8/8z = 8+ is the space derivative. We con-
sider the theory "compactiSed" in the space dimension:
the light-cone space coordinate z 6 [ I,+I]. Perio—dic
boundary conditions are imposed. Thus a given field P
can be expanded in Fourier modes where the discrete
moments take values

'7rI+=n —,L'

The missing zero mode n = 0 is projected out by

(A1)

(A2)

while the s»~ of the remaining nonzero modes is the
normal mode

& =- (&(& )) -=&(* ) —(&)o . (A.3)

We use the notation of Itzykson and Zuber [22] for writ-
ing the SU(2) gauge theory. The gauge potentials are
represented by

(A4)

'ta, th) abCtc (A5)

and o' are the Pauli matrices

The following identities are useful:

u b abc c+ gab

tr(t t') = —1/2h'.

fl 01

(A6)

(A7)

(AS)

In component form, the 6eld strength tensor can be writ-
ten

and

F„„=pA —vA„+ gP™A„A

D"b ——8"h b —ge b,A", (A10)

is the covariant derivative in the adjoint representation.

where t are representation matrices satisfying the Lie
algebra
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